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PRINCIPIA MATHEMATICA, PART VI: RUSSELL AND WHITEHEAD
ON QUANTITY

SÉBASTIEN GANDON

Abstract
The article aims at providing an introduction to Russell’s and White-
head’s neglected mature theory of magnitude, presented in the last
published part of Principia Mathematica. I intend to show that Prin-
cipia, VI, is the culmination of a line of thought whose beginning
goes back to the time of Russell’s first works on the theory of rela-
tions, in 1900. But I insist as well on Whitehead’s own important
contribution. At the end, I address a more general problem: how to
articulate this quantitative doctrine of numbers with Russell’s and
Whitehead’s logicist stance?

1. Introduction

In a letter to Russell, dated 14/09/1909, Whitehead wrote:

Dear Bertie,

The importance of quantity grows upon further considerations —
The modern arithmetization of mathematics is an entire mistake —
of course a useful mistake, as turning attention upon the right points.
It amounts to confining the proofs to the particular arithmetic cases
whose deduction from logical premisses forms the existence the-
orem. But this limitation of proof leaves the whole theory of ap-
plied mathematics (measurement etc) unproved. Whereas with a
true theory of quantity, analysis starts from the general idea, and
the arithmetic entities fall into their place as providing the existence
theorems. To consider them as the sole entities involves in fact com-
plicated ideas by involving all sorts of irrelevancies — In short the
old fashioned algebras which talked of “quantities” were right, if
they had only known what “quantities” were — which they did not.
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226 SÉBASTIEN GANDON

(...)

You see in short that I have recovered the simple faith of my angel
infancy — I only hope that it is not a sign of decay of intellect or
of approaching death — You will have to devote some attention to
my MS — since their results will come as a shock to the current
orthodoxy. In fact mathematicians will feel much like Scotch Pres-
byterians who might find that a theological professor in one of their
colleges had dedicated his work to the Pope.

Yours affectionately, ANW

Russell’s logicism is often seen as an extension of the arithmetization of
mathematics associated with the names of Cantor and Dedekind. But ac-
cording to Whitehead here, it shouldn’t: “The modern arithmetization of
mathematics is an entire mistake”, said he — and as we can admit that, in
1909, logicism was not taken as an entire mistake by him, we can conclude
that Whitehead did not view logicism as an extension of arithmetization. The
following question cannot then be avoided: how to conceive logicism if not
as an extension of the arithmetization’s program? How to be still a logicist,
while criticizing the reduction of all mathematics to arithmetic? The issue
concerning the status of quantity in Principia has thus a central importance,
since it leads immediately to raise the issue of the nature of logicism and of
his relationship with arithmetization.

In this paper, my primary aim will be to flesh out what Whitehead put for-
ward in his letter. His attack against arithmetization is not a mere bavardage:
its full content is expounded in the last published part, part VI, of Principia
Mathematica. To my knowledge, no account of this work exists in the liter-
ature.1 Owing to the potential importance of the topic, importance brought
out by Whitehead’s letter, there is no doubt that this lack represents a serious
defect, liable to distort our picture of logicism. My goal here will be to begin
to fill this gap by offering a not too technical introduction to Russell’s and
Whitehead’s work.

Indeed, one of the reasons why Principia VI has been so much neglected
comes from the fact that the authors used there many complicated and eso-
teric notational devices, and relied heavily on the machinery presented in the
first five parts. In the few pages that follow, I will not be able to do justice to
the real richness of these developments. I can however facilitate the reading

1 One finds some very brief remarks in “Whitehead and the Rise of Modern
Logic” (see [Quine, 1995], p. 3–36); see as well [Quine, 1962], [Bigelow, 1988] and
[Grattan-Guinness, 2000].
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of the work in explaining the main ideas and in translating the basic symbol-
ism in a more up-to-date notation. In the sequel, I will put much emphasis on
the plan of Principia VI, and, especially, on the articulation between section
A, devoted to the definition of rational and real numbers, and sections B–D,
devoted to quantities and measurements.

I will first speak about the sources of Principia’s theory of quantity. Sec-
tion 3 will focus on the definitions of rational (and real) numbers, dealt with
in Part VI, A. In section 4, I will present the main lines of Russell’s and
Whitehead’s theory of quantity and measurement (Part VI, B–D). In my last,
conclusive, section, I will briefly come back to the issue concerning the re-
lation between the doctrine of quantity and logicism taken as a whole, and
also speak about Whitehead’s own contribution to the theory. We know that
Whitehead was in charge of Principia VI — does this mean that we should
consider him as the sole author of this work?

2. The sources

Russell and Whitehead referred to Burali-Forti’s paper Les propriétés for-
males des opérations algébriques as a source for their theory.2 In this work,
Burali-Forti attempted to axiomatize Euclid’s theory of quantity. He was
not, at the time, the only one pursuing such a project — at the turning of the
Century, many mathematicians offered various formal theory of quantity.3

Burali-Forti’s program was peculiar, however, in that he explicitly aimed to
oppose the arithmetization view, according to which continuous magnitudes
can be reduced to the whole numbers. Burali-Forti thus explained:4

Chapter I of this book contains the properties of the magnitudes
which do not depend on the idea of number (integer or fraction or
irrational). (...) Chapter II contains the basis of the theory of the

2 Whitehead alludes to this work in a letter to Russell dated 28/1/1913: “As to the preface
— The work on ‘grandeurs’ started with a study of Burali-Forti’s articles in the Rivista and
was directed initially to arrive at the same results. Of course his work is really based on
Euclid Bk V — whom I ought also to have studied, but did not. Thus our antecedents are
Euclid and Burali-Forti; but it should be mentioned that (1) by the introduction of ‘relations’
and (2) by the keeping of the group idea in the background, and (3) by the separate treatment
of ratio, and (4) by avoiding number and (5) by the introduction of cyclic groups, the subject
has been entirely modified. I think these points should be mentioned somewhere, not to claim
novelty, but to show people what to look for”.

3 For more on this, see [Gandon, 2008b].

4 [Burali-Forti, 1899], p. 34.
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228 SÉBASTIEN GANDON

whole numbers. The idea of a whole number is logically derived
from the usual and concrete idea of magnitude. (...)

An analogous procedure is followed in chapters III and IV, devoted
to the rationals and the irrationals.

A first conclusion of the method we just exposed is the swiftness
with which we can teach (...) the formal properties of the alge-
braic operations, by including the elements magnitudes and num-
bers which are usually examined separately. But another much more
important conclusion is reached, which consists in making it pos-
sible to obtain the general idea of number in a concrete shape by
deriving it from the concrete usual idea of magnitude, which is es-
sential for the metrical part of geometry as well.

While Dedekind was proud to define the real numbers without resorting to
the idea of continuous quantity,5 Burali-Forti attempted, in a complete re-
versal which is as well a genuine return to the Euclidean tradition, to base
arithmetic and real analysis on the concept of quantity.

I list the axioms (translated in today’s usual notation) which defined a set
G of homogeneous magnitudes 〈G, +〉 in [Burali-Forti, 1899]:

1- a, b ∈ G, a + b = b + a
2- a, b ∈ G, a + (b + c) = (a + b) + c = a + b + c
3- a, b, c ∈ G, (a + c = b + c) ⇒ a = b
Definition of order: if a, b ∈ G then a > b iff ∃x ∈ G\{0}, a = b + x
4′- a ∈ G, ∃x ∈ G, a + x = a
4′′- a ∈ G, ∃x ∈ G, a + x > a
5- b ∈ G, a ∈ G\{0}, (a + b) ∈ G\{0} 6

6- a, b ∈ G, a = b ∨ a < b ∨ a > b
7- a ∈ G, ∃x ∈ G\{0}, x < a
8- If U ⊂ G, U 6= ∅, ∃x ∈ G, ∀y ∈ U, y < x, then:

∃z ∈ G, ∀v ∈ G(v < z ⇔ ∃w ∈ U, v < w).

5 See the preface of [Dedekind, 1888]: “All the more beautiful it appears to me that
without any notion of measurable quantities and simply by a finite system of simple thought-
steps man can advance to the creation of the pure continuous number-domain; and only by
this means in my view is it possible for him to render the notion of continuous space clear
and definite.”

6 Axiom 5 implies that the semi-group 〈G, +〉 is strictly positively ordered.
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In modern terms, Burali-Forti defined a dense and complete7 monoïd.8 The
numbers were next introduced as ratios of homogeneous quantities.9 In the
rational case, which I will focus on because it is simpler than the real case,
two grandeurs A and B had the ratio m/n iff nB = mA. The ratio m/n
was said to be greater than another p/q when mq > np. From axiom 7
(which insures that 〈G, >〉 is dense), one could easily derive the density
of the ordered set of the ratios. In a similar way, Burali-Forti proved the
completeness of his ordered set of real ratios from axiom 8 (the Dedekindian
condition).

Before having been the source of 1913’s theory of magnitude, Burali-
Forti’s construction was at the basis of Russell’s doctrine of distance, first
developed in the English version of the seminal On the Logic of Relations,10

and resumed in the The Principles.11 As this theory, simpler than the mature
one, set the stage for Principia’s doctrine, I will briefly expound it.

7 Axiom 8 is a version of the Dedekindian condition. Burali-Forti proves that the Arch-
median hypothesis follows from the axioms.

8 A monoïd 〈G, +〉 is a set endowed with an associative binary operation which contains
a neutral element. More generally, at the end of the XIXth Century, one always found two
structures in the theories of quantity: a group or a semigroup structure (which gives sense to
the addition between magnitudes) and an ordinal structure (which gives sense to the idea that
a quantity can be greater than another).

9 The ratios are defined by the standard equimultiple condition:

∀a, b ∈ G, ∀c, d ∈ G\{0} (a : b = c : d

⇐⇒ ∀m, n ∈ N (ma <=> nb ⇐⇒ mc <=> nd))

10 In the published version, the sections devoted to quantities have been eliminated; com-
pare [Russell, 1900] and [Russell, 1901].

11 A copy of Burali-Forti’s article, annotated by Russell, can be found in the Russell
Archives (McMaster University), and many details in the construction evoke Burali-Forti’s
approach. There is however one important difference between the two theories. The Italian
mathematician starts with only one indefinable, the additive operation — order is derived (see
section 2). For Russell, on the other hand, order is a primitive concept. If the difference does
not greatly change the shape of the formal structure, it deeply affects the general conception
of magnitude. Indeed, for Russell, magnitude in general is primarily defined by a “capacity
for the relation of greater and less”, not by a capacity for divisibility; see [Russell, 1903]
p. 159. For more on the role of order in Russell’s theory, see [Michell, 1999].
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Here is the definition of a kind of distance ∆ given by Russell:12

∆ =Df FG ∩ L 3 {x, yελ. ⊃x,y .∃L ∩ R 3 (xRy) : Q = RL.

R1, R2, R3εL . R1QR2 . ⊃R1,R2,R3
. R1R2 = R2R1 . R1R3QR2R3}

Russell comments:13

This is a definition of a kind of distance, i.e. of a class of distances
which are quantitatively comparable. A kind of distance is a series
in which there is a term between any two, and it is also a group.

Thus, despite the strangeness of the notation, distance (or magnitude) is here
defined in a very standard way, as an ordered series (a F ), which is also
a group (a G). Some further continuity conditions are then added, which
make Russell’s notion very similar to Burali-Forti’s grandeurs homogènes
— indeed, Russell’s distance is isomorphic to 〈R, +〉, while Burali-Forti’s
magnitude is isomorphic to 〈R+, +〉.

However, the true import of the Russellian approach lies elsewhere, in
the way the group structure is conceived. In another passage of the same
manuscript ([Russell, 1900] p. 594), the notion is introduced that way:

G =Df Cls′1 → 1 ∩ K

3 {PεK. ⊃P .P̆ εK : P, RεK. ⊃P,R .PRεK.π = ρ}

That is, a group is a set K of one-one relations onto defined over the same
field π = ρ (in other words: K is a class of permutations of a given set) such
that, firstly, if P belongs to K, the converse P̆ belongs to K, and such that,
secondly, if P and R belong to K, the relative product PR belongs to K. In
other words, Russell defines a group as a permutation group defined on an
underlying set.14 Now, Cayley’s theorem, well-known by Russell and all the

12 F designates a dense series, G a group. L is a distance or a magnitude of a specific
kind, i.e. as Burali-Forti’s calls it, an homogenous magnitude. Q is the order relation of
the magnitude (Q = RL), and λ is the field of the magnitude (i.e. the field of the group
and of the series). R1, R2, R3εL . ⊃R1,R2

. R1R2 means that the group is commutative.
R1, R2, R3εL . R1QR2 . ⊃R1,R2,R3

. R1R3QR2R3 means that the ordinal relations and
group operation are compatible.

13 [Russell, 1900], p. 609.

14 In group theory, a permutation of a set S is any bijective function taking S onto S; a
permutation group is a group whose elements are permutations of a given set S, and whose
group operation is the composition of permutations.
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mathematicians of the beginning of the XXth Century, assures us that every
abstract group G is isomorphic to a permutation group. No loss of generality
is thus caused by Russell’s definition of a group in terms of permutation
group, and Russell knew very well he had the right to proceed that way. But
he also knew that he could have characterised the group structure in (what
seems to be) a more straightforward way, by just setting the standard axioms.
Why did he not do that? Why did he take a path which seems to be more
complicated than the standard abstract one?

From Russell’s standpoint, the group operation posed a problem: indeed,
how to account, in the new logic of relations, for addition? Is it a three-terms
relation, a combination of a relation with identity, or a new kind of term?15

Russell’s answer in 1900 was to say that a group operation is a relative prod-
uct (a relation of relations) defined on a special set of relations — worded in
a more contemporary terminology: addition was then conceived as a compo-
sition between bijective mappings. This solved the difficulty about the nature
of the group operation, and allowed Russell to take the theory of group as a
part of his new logic of relations. The elements of the group were relations,
and the group operation was also a relation.

This constitutes a first change with respect to Burali-Forti’s approach. For
Russell, quantities were not the elements of an abstract structure defined
axiomatically, but some relations belonging to a certain set; accordingly,
additivity was not any operation which has the required properties, but a
composition of relations. There is however another, more general, disagree-
ment: Russell did not adhere to Burali-Forti’s anti-arithmetization program.
Indeed, in the rest of [Russell, 1900], as in [Russell, 1903], Russell resumed
Cantor’s and Dedekind’s definitions of R; his own favorite characterisation
was a slightly amended version of Dedekind’s notorious cut definition.16 If
Russell found in [Burali-Forti, 1899] his technical inspiration, he thus did
not share the philosophical background of the work.

Be that as it may, the idea that quantities are relations and that quanti-
tative addition is a relative product remained the hallmark of Russell’s and
Whitehead’s approach to quantity in Principia Mathematica: the vector fam-
ilies (the 1913 word for the notion of kind of magnitudes) were defined as
some sets of relations and the addition between quantities was still thought

15 For a discussion of this problem, see [Sackur, 2005] pp. 143–209.

16 See [Russell, 1903], Part V.
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232 SÉBASTIEN GANDON

in terms of relative product.17 There were however two major changes in the
doctrine brought forward in Principia VI:

1) As we have seen, in 1900 (and in 1903), the real and the rational num-
bers were defined, in a purely Dedekindian way, without any reference to
quantity; in 1913, Russell’s and Whitehead’s definition linked the numbers
to their application in the measurement of quantities. It seems then that, as
time goes by, a rapprochement with Burali-Forti occurred. As we will see,
things are much more complicated, however.

2) In 1900 and 1903, the quantitative structure of distance was very rich,
since it was isomorphic to 〈R, +〉; this, of course, excluded from consid-
eration many kinds of quantitative domains. In Principia, the definition of
magnitude was considerably generalized, and could accommodate many dif-
ferent quantitative structures.

I will examine each of these changes in turn.

3. Numbers and magnitudes in Principia Mathematica

The first thing to note is that generalization of numbers comes very late —
this is only in the first section of Principia VI that the negative, the rational
and the real numbers are introduced. That is, more than two third of the work
is written without resorting to any notion of numbers (beyond the integers).
In particular, the whole theory of series is developed in part V. This means
that, in Principia, real analysis is constructed without any reference to reals.
Better, Russell and Whitehead explicitly contend that one of the advantage
of their presentation is to show that real analysis, in its essence, has nothing
to do with numbers and measurement:18

17 In the summary of part *303 devoted to ratios, we even find an attempt to justify this
move [Russell and Whitehead, 1913], p. 260–261): “This definition [of ratios as relation of
relations] requires justification [...]: we commonly think of ratios as applying to magnitudes
other than relations. [...] In applying our theory to (say) the ratio of two masses, we note
that the idea of quantity (say, of mass) in any usage depends upon a comparison of different
quantities. The “vector quantity” R, which relates a quantity m1 with a quantity m2, is the
relation arising from the existence of some definite physical process of addition by which a
body of mass m1 will be transformed into another body of mass m2. Thus σ steps, symbol-
ized by Rσ , represents the addition of the mass σ(m2 − m1). [...] Thus to say that an entity
possesses µ units of quantity means that, taking U to represent the unit vector quantity, U µ

relates the zero of quantity — whatever that mean in reference to that kind of quantity — with
the quantity possessed by that entity. It can be claimed for this method of symbolizing the
ideas of quantity (α) that it is always a possible method of procedure whatever view be taken
of it as a representation of first principles, and (β) that it directly represents the principle “No
quantity of any kind without a comparison of different quantities of that kind.” ”

18 [Russell and Whitehead, 1912], pp. 687. On this point, Russell is certainly indebted to
Hausdorff, who, in [Hausdorff, 1906], developed a pure and general theory of order types.
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In the definitions usually given in treatises on analysis, it is assumed
that both the arguments and the values of the functions are numbers
of some kind, generally real numbers, and limits are taken with re-
spect to the order of magnitudes. There is, however, nothing essen-
tial in the definitions to demand so narrow a hypothesis. What is
essential is that the arguments should be given as belonging to a se-
ries, and that the values should also be given as belonging to a series,
which need not be the same series as that to which the arguments
belong. In what follows, therefore, we assume that all the possible
arguments to our function, or at any rate all the arguments which we
consider, belong to the field of a certain relation Q, which, in cases
where our definitions are useful, will be a serial relation.

Think for instance of Russell’s and Whitehead’s discussions of the temporal
series;19 both philosophers directly used the concepts of convergence and
limit to investigate the nature of the temporal continuum, without first cor-
relating the series of instants to the series of numbers. This is in line with
Principia. For Russell and Whitehead, real analysis could immediately be
applied to non-numerical series — from their point of view, any detour by
numbers and measurements appeared as an artificial complication, merely
caused by the fact that the analysis of the fundamental notions of calculus
has not been generalized enough.

Now, if we do not need the reals for developing mathematical analysis,
why then introduce them? Russell and Whitehead claimed, at the begin-
ning of part VI, that generalization of numbers is necessary as soon as we
want to account for measurement: “The purpose of this Part [VI] is to ex-
plain the kinds of applications of numbers which may be called measurement
[and] for this purpose, we have first to consider generalizations of num-
ber” ([Russell and Whitehead, 1913], p. 233). Thus, the logicists clearly
endorsed the principle (sometimes, called application constraint20 ) accord-
ing to which the applicability of reals and rationals to measurement should
be built into their very definitions.

The idea is expounded in Part VI section A. For our purpose, it will be suf-
ficient to focus only on the account of positive ratios — we will leave aside
the definition of the reals, and all the difficulties involved by the questions of

19 [Russell, 1914], and [Whitehead, 1920].

20 See [Wright, 2000], who also uses the term “Frege’s Constraint”.
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types (that is, we will accept the axiom of infinity21 ). How did Russell and
Whitehead define the rational numbers?

In Part VI of Principia, the inductive cardinals, and the operations of addi-
tion and multiplication between them have already been defined. Russell and
Whitehead use these notions to define the relation Prm between two couples
of whole numbers (ρ, σ) and (µ, ν): (ρ, σ)Prm(µ, ν) iff ρ is prime relative to
σ and ρ × ν = σ × µ (that is, iff ρ/σ is the irreducible ratio equal to µ/ν).
The ratio µ/ν between two integers (ν 6= 0) is now defined in the following
way (*303.01, ibid., p. 260):22

µ/ν =Df R̂Ŝ{(∃ρ, σ).(ρ, σ)Prm(µ, ν).∃̇!Rσ∩̇Sρ}

In other words, a ratio µ/ν is a relation between two binary relations R and
S (Russell and Whitehead write R(µ/ν)S), such that:

(R1) ∃ρ, σ ∈ N, (ρ, σ)Prm(µ, ν)

(R2) There are two objects x and y such that the relation Rσ and Sρ hold
between them.23

Two remarks about this definition:

1) The second condition has an obvious resemblance with Euclid’s defini-
tion of ratio, resumed by Burali-Forti. Imagine that R is a certain positive
distance between two points on the line, and that S is another such a dis-
tance; then Russell and Whitehead say that R and S have the ratio µ/ν, if
one can find a point from which ν steps of size R makes one reach exactly

21 As the authors explained ([Russell and Whitehead, 1913], p. 234): “Great difficulties
are caused, in this section, by the existence-theorems and the question of types. These dif-
ficulties disappear if the axiom of infinity is assumed, but it seems improper to make the
theory of (say) 2/3 depend upon the assumption that the number of objects in the universe is
not finite. We have, accordingly, taken pains not to make this assumption, except where, as
in the theory of real numbers, it is really essential, and not merely convenient.”

22 Here, the type constraints are left implicit. But of course, in the following definition, if
x and y are object variables, R and S must be relations which take objects as arguments.

23 xRσy means x R | R | R | ...R
︸ ︷︷ ︸

σ times

y, where “|” denotes the “relational product” — or

the composition operation between binary relations (recall that if R and S are two binary
relations such that R ⊂ X × Y and S ⊂ U × Z, then S | R = {(x, z) ∈ X × Z : ∃y ∈
(Y ∩ U), (x, y) ∈ R ∧ (y, z) ∈ S}).
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the same point as µ steps of size S.24 Thus, (R2) is a first move toward ex-
plaining how rational numbers can be used for measuring quantities.

2) (R2) did not play any role in the derivation of the arithmetical (algebraic
and order-theoretic) properties of ratios. From a mathematical perspective,
the condition ρ × ν = σ × µ, given in (R1), is the mainspring of the con-
struction — this is not surprising, owing that it is the same condition as the
one used for defining the equivalence relation between couples of integers
in the standard definition of the rational numbers. From (R1), and from the
definitions of order and of the operations between ratios, Russell and White-
head derive all the usual algebraic and ordinal properties of Q+, without the
slightest difficulty (the questions of type left aside). The density of Q+, for
instance, directly derives from (R1) and from the definitions of order and
addition, and the idea that rationals are relations of relations do not play
any role in the deduction.25 In particular, no assumptions on the domain of
relations to which the ratios are applied is required in the derivation of the
standard mathematical properties of the rationals. From a purely arithmeti-
cal point of view, the relational part of *303. 01 is completely idle.

To summarize, 1913’s theory of rationals exhibits two very important fea-
tures: first, a connection is set between numbers and relations: rationals are
now said to be relations of relations; second, this new definition does not
compel Russell and Whitehead to put some special formal constraints on the
fields of relations the rationals are applied to.

The first point shows that Russell and Whitehead endorsed a version of
the application constraint. But the second point seems to limit the scope of
the first move. Let me explain why by comparing their approach to Burali-
Forti’s one. Burali-Forti adhered to the application constraint, and defined a
real number as a ratio between two members of G. But for him, the arith-
metical properties of the ratios were inherited from the formal features of

24 Note, however, that (R2) is an existential claim. This means that R(µ/ν)S does not
forbid that one can find another point on the line and another ratio γ/δ, such that δ steps
of size R from this point lead exactly where γ steps of size S lead. That is, nothing, in the
account given so far, excludes the possibility that two relations have more than one ratio (see
[Russell and Whitehead, 1913], p. 261–262). This fact plays an important role, as it will
soon be clear.

25 I cannot enter into too much details here, but the sole effect of (R2) is to increase the
difficulty of the derivations of the usual arithmetical properties of the ratios. For instance,
r and p being two rationals, in order to secure that (r + p)/2 is different from the empty
relations, Russell and Whitehead have to show that there are two relations R and S such that
R[(r + p)/2]S. That is, they have to show that there are sufficiently many distinct relations
to instantiate all the ratios. That such is the case, is a consequence of the axiom of infinity.
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G to such an extent that any weakening in the definition of the quantita-
tive domain was forbidden. For instance, the removal of axioms 7 and 8
would make us loose the density and completeness of the set of ratios. The
arithmetical properties of Burali-Forti’s ratios depended then on the formal
features of the fields the ratios were applied to. Such is not the case in Prin-
cipia. Rational (and real) numbers are here as well characterized as ratios
(relations of relations) — but the expected mathematical properties of the
definienda are derived without setting any constraints on the field the num-
bers are applied to. The link tied between numbers and quantities seems
thus less tight in Principia than in Les propriétés formales des opérations
algébriques. The difference comes, of course, from the fact that ratios are,
in Principia, relations of relations, and not relations of magnitudes. In or-
der to better understand this difference, we will now turn on the doctrine
of magnitude, presented in section B of Principia VI, and on the theory of
measurement, studied in sections C–D.

4. The concept of vector family

Russell and Whitehead begin section B by defining the notion of a correspon-
dence Φ on a common domain α. Such a correspondence is the semi-group26

〈Φ, +〉 of the injective mappings on α.27 That is:

Φ = {f : α → α | f is an injective mapping}

Now, a vector-family κ defined on α is introduced as follow:

1- κ is not empty and κ ⊆ Φ
2- ∀f∀g ∈ κ, f.g = g.f

The notion of vector family replaces the former concept of a kind of mag-
nitude. It should then be compared to the old notion of a kind of distance,
or to Burali-Forti’s homogeneous magnitude. Now, what emerges from such
comparing is that the vector family κ has a very weak structure. It has lost
nearly all its algebraic content — κ is not a symmetrical structure (each ele-
ment has not necessarily an inverse); the identity does not necessarily belong
to it; worse, κ is not necessarily closed under the composition operation.

26 A semi-group 〈G, +〉 is a set endowed with an associative binary operation.

27 A representation theorem about semi-groups (a kind of extension of Cayley’s theorem)
says that every abstract semi-group can be represented as a semi-group of injective mappings;
for more on this, see [Ljapin, 1960].
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Among the algebraic properties, only the commutativity condition is saved.
Of the rich ordinal structure of the distance, nothing remains.28 One thing
stood the test of time, however: even if it is no longer defined as a permu-
tation group, quantity is still regarded in 1913 as a structure which operates
over a set. The concept of magnitude is much more general than it was be-
fore; but it is still defined as a family of relations which acts on a common
domain α.

The main interest of this blunt generalization is to allow the definition of
many distinct sorts of quantity. The former notion of a kind of distance is,
of course, still considered as a vector family — but it is a very special sort
of quantitative structure, which, besides, does not receive much attention in
Principia.

The “connected” families are the most important kind of vector family (κ
is connected if it has at least one connected point, that is, if there is “one
member of α from which we can reach any member of α by a vector be-
longing to the family or by the converse of a vector belonging to the family”
(Ibid., p. 341)). Other kinds of species are also defined: the initial families,29

the open families,30 the cyclic families,31 the serial families,32 the families
in which a series of vectors can be defined (see *336) and the submultipli-
able33 families. I cannot enter into the details of Whitehead’s construction
here, but this enumeration suffices, I hope, to give an idea of how various
the directions in which the basic weak structure is developed are. Russell
and Whitehead set some refined conditions on the inverse operation and on

28 This last point moves the mature theory very far away from Russell’s former doctrine,
where quantity was an ordinal concept.

29 In which there is a point in the field α which is a starting point but not an end-point of
non-zero vectors; ibid. p. 390.

30 “In which no number of repetitions of a non-zero member of κι will bring us back to
our starting point”. Russell and Whitehead define the new relational structure κι as the set
of relations such that, if g, h ∈ κ, then g−1.h ∈ κι. The relation of κι are not necessarily
defined on the whole of α.

31 The definition, too complicated to be given here, is exposed in Ibid., p. 458.

32 In which every points are connected, and in which every points are such that, if g, h ∈ κ,
then there is a t ∈ κ such that g.h(x) = t(x); see Ibid., p. 385.

33 “One in which any vector can be divided into ν equal parts (where ν is any inductive
cardinal other than 0)”; Ibid., p. 418.
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the closure of the relative product; they introduce some ordinal relations be-
tween elements of α and/or of κ; they also put some constraints on the way
κ acts over α.

Now that we have briefly seen how general is the notion of quantity, let
me focus on the concept of measurement. In Principia, numbers and quan-
tities are independent from each other. As we have seen, the arithmetical
properties of numbers, derived in section A, do not depend in any way on
the shape of any given vector family. And vice-versa, the quantitative struc-
tures, examined in section B, do not have to be measurable. Rational (real)
numbers and vector families are described and studied for their own sake,
independently from each other. In particular, Russell and Whitehead under-
line that a couple of relations being given, there can be several distinct ratios
which relate them (see footnote 24), so that, at the beginning of section C, it
is impossible to consider a ratio as a measure of a vector.

In sections C–D of Part VI, Russell and Whitehead explain that, if some
appropriate restrictions are set on the vector families, then numbers can be
regarded as measures of vectors. What it is, then, for a vector family, to be
measurable?

This question is not an easy one. I simplify here an analysis which is, in its
detail, much more complicated.34 Russell and Whitehead give in section C a
series of four conditions which can be used when the family to be measured
is open:

(1) No two members of a family must have two different ratios. [...]
(2) All ratios [except 0 and ∞] must be one-one relations when
limited to a single family. [...]
(3) The relative product of two applied ratios ought to be equal to the
arithmetical product of the corresponding pure ratios with its field
limited [...]. That is to say ‘two-thirds of half a pound of cheese
ought to be (2/3 × 1/2) of a pound of cheese; and similarly in any
other case. [...]
(4) If X , Y are ratios, and [if R, S and T are members of the family
κ such that RXT and SY T ], we ought to have [[R | S](X +Y )T ],
that is two-thirds of a pound of cheese together with half a pound of
cheese ought to be (2/3 + 1/2) of a pound of cheese, and similarly
in any other instance.35

34 In section D, Russell and Whitehead offer another definition of measurement, which
accounts for the measure of angles. I leave this part aside here.

35 The four conditions, written in a more modern form, concern the relation between the
powers of the relation in the set:

a) ∀g, h ∈ κ, if ∃n, m ∈ N∗ such as gn = hm, then @n, m ∈ N∗, n/m 6= r/s and
gr = hs.
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The two first constraints aim at insuring the ‘regularity’ of the association
of vectors to numbers — two vectors should not have more than one ratio,
and, for each ratio, there should be one and only one vector which has this
ratio to a given relation. The last two conditions are intended for securing
a compatibility between the usual arithmetical operations and the relative
product. That is, if AT (R) designates the36 ratio p such that R(p)T (that is,
the measure of R according to the unity T ), the two last demands say that:

(1) AT (R) = AS(R)×AT (S), or the measure of R according to the unity
T is equal to the measure of R according to the unity S multiplied by the
measure of S according to the unity T .

(2) AS(T | R) = AS(T ) + AS(R), or the measure of the relative product
of T and R according to the unity S, is equal to the sum of the measures of
T and of R, each of them taken according to the unity S.

Russell and Whitehead show that the open connected submultipliable vec-
tor families37 are measurable in this sense. This means that if the rationals
(the reals), defined as they are defined in section A, are restricted to this kind
of family, then, a unity being chosen, the rationals (the reals) can be regarded
as measures of the relations of the family, in the sense that there is a one-one
correlation between a given set of rational (or real) numbers and the vec-
tors of the family, and that this correlation satisfy the two conditions (1), (2)
set out above. Russell and Whitehead call “applied numbers” the numbers
whose fields are restricted to a vector family — and they call “pure numbers”
the ratios and reals which are not subjected to this restriction. Then, applied
numbers, when they are restricted to a measurable family, can be taken as
measures of some magnitudes. On the other hand, pure numbers, even if
they are applied to relations (since they are relations of relations), cannot be
regarded as measures of quantity.

The framework presented in Principia VI is then quite subtle. Unlike
Burali-Forti, Russell and Whitehead do not define pure numbers as ratios of
quantities. They do not, however, content themselves to resume Dedekind’s
or Cantor’s definition of rationals and reals in terms of certain complicated
sets (of sets) of whole numbers. Instead, they define numbers as relations of

b) If ∃k, l ∈ κ such as ∃m, n ∈ N∗, km = ln, then ∀f ∈ κ, ∃g ∈ κ such as gn = fm.
If ∃k, l ∈ κ such as ∃m, n ∈ N∗, then ∀f, g, h ∈ κ, if fn = gm = hm, then g = h.
c) ∃n, m, r, s ∈ N∗, ∀f, g, h ∈ κ, fn = gm and gr = hs if and only if fnr = hms.
d) ∀f, g, h ∈ κ, ∃m, nr, s ∈ N∗, fm = hn and gr = hs

if and only if (f.g ∈ κ ⇒ (f.g)m+r = hns).

36 The first two conditions insure that this ratio is unique.

37 There is another condition that I leave aside.
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relations and, in so doing, they preserve the resemblance with Euclid’s def-
inition (if relations are interpreted as magnitudes, then the definition is very
close to the traditional one). At the same time, they cut the link between
the structure of the rational (and real) ordered field and the formal properties
of the quantitative domains. Russell’s and Whitehead’s pure numbers get
their arithmetical properties directly from their definition in terms of rela-
tions of relations, not from some special formal features of the structure of
the relations they are applied to.

In this construction, the key idea is to define the quantities not as the ele-
ments belonging to a particular axiomatically defined structure (as in Burali-
Forti’s homogeneous magnitudes), but as some relations. This move allows
Russell and Whitehead to consider the relationship between pure and applied
numbers as a relation of particularization: applied ratios are just pure ratios,
restricted to a certain domain. The nature of the link tied between num-
bers and measurement (in other words, between pure and applied numbers)
sets the logicists apart from both the arithmetizers and Burali-Forti. From
the former, Principia VI keeps the idea that the arithmetical properties of
numbers (pure numbers) should not be made dependent upon the shape of
any quantitative domain; from the latter, Principia VI retains the idea that
a good definition of numbers should explain how they are applied. Russell
and Whitehead open then a new path, which, while avoiding the complete
separation between numbers and measurement that we found in Cantor and
Dedekind, does not follow Burali-Forti’s way of reasoning. In Principia,
as in the Euclidean tradition, numbers and magnitudes are made for each
other. But this connection does not mean that the properties of numbers are
inherited from the properties of the quantitative domains. On this point, the
logicists remain faithful to the arithmetizer’s demand.

5. Whitehead, logicism, and the Northwest Passage

The (brief) account I have just sketched fleshes out, I hope, the rough picture
drawn in Whitehead’s letter. Principia VI is indeed an attempt to account for
“the whole theory of applied mathematics (measurement etc)” that arithme-
tization left “unproved”. Having read this part, one can understand as well
why “the old fashioned algebras which talked of “quantities” were right, if
they had only known what “quantities” were” (namely, relations). White-
head’s talk is thus not empty: it describes a program which is fully carried
out in Principia.

The most interesting ingredient of this doctrine is the subtle balance it sets
up between the demand of the application constraint and the wish to insure
the logical purity of arithmetical truths. This feature could be glossed along
very different lines. I have chosen, here, to focus on the relationship between
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Principia VI and the logicist program — and to focus also on the question
whether the theory of quantity should be attributed to Whitehead alone, or to
Russell and Whitehead. As I will explain now, these two issues are, in fact,
related.

In the literature, the following story is often told:38 Weierstrass, Cantor
and Dedekind constructed, each in their own way, the real field and real anal-
ysis from elementary arithmetic; Russell, after Frege, added his contribution
to the construction, in defining whole numbers as sets of equinumerous sets
and in founding therefore arithmetic on set theory. According to Russell, we
would have not only this schema:

Real analysis and real numbers
Arithmetic and whole numbers

but also this stronger one:

Real analysis and real numbers
Arithmetic and whole numbers

Logic and set theory

The ‘arithmetizers’ succeeded in going from the second to the third level;
Russell (after Frege) would have pushed the reduction one step further. Such
an account is made by Russell himself at the beginning of his Introduction
to Mathematical Philosophy (p. 5):

Having reduced all traditional pure mathematics to the theory of the
natural numbers, the next step in logical analysis was to reduce this
theory itself to the smallest set of premisses and undefined terms
from which it could be derived.

As we have seen, however, in Principia VI, Russell and Whitehead did chal-
lenge Cantor’s and Dedekind’s constructions for having ignored the applica-
tion constraint. And the disagreement runs very deep, since Euclid’s tradi-
tional approach, the one that the arithmetizers were opposed to, is explicitly
acknowledged as the main source of inspiration. How to reconcile Russell’s
description of logicism as an extension of the works of Weierstrass, Cantor
and Dedekind with the content of Principia VI?

One possible answer would be to refer this apparent tension to a differ-
ence between Russell’s and Whitehead’s conception. Principia VI has been

38 For more on this, see [Gandon 2008b].
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written by Whitehead, not by Russell. Couldn’t we then attribute the anti-
arithmetization stance only to Whitehead, and find in this way a means to
dispel the seeming discrepancy between logicism and theory of magnitude?
The idea would be to acknowledge that Principia VI is at odds with the main
line of Principia, but to explain the divergence by the fact that Russell wrote
the first five parts and Whitehead the sixth one.

This hypothesis does not stand up to scrutiny, however. Recall first that
Russell developed a relational theory of quantity as early as 1900. Section B
of part VI is nothing but a generalization of this early work. So Whitehead
then did not start from nothing — he heavily leaned on Russell’s own previ-
ous writing. It is thus difficult to completely sever his contribution with Rus-
sell’s works. What is more, Russell and Whitehead sent their manuscripts to
each other; they discussed them in their abundant correspondence, and dur-
ing numerous regular meetings. So, even if Whitehead was the driving force
behind part VI, Russell knew and agreed with what he was doing. Thus, in a
letter to Jourdain, dated 21/3/1910, Russell, after having recognised that one
could define, in a standard way, a ratio as a relation between integers, added
([Grattan-Guinness, 1977], p. 130):

I have now accepted from Whitehead a new quantitative (non-arith-
metical) definition of µ/ν, according to which it is a relation of vec-
tors R, S which holds (broadly) whenever ∃̇!Rν∩̇Sµ. This enables
you to take two-thirds of a pound of butter without an elaborate
arithmetical detour.

The initial “I have now accepted from Whitehead” is clear: Principia’s the-
ory of number and quantity has been devised by Whitehead, but understood
and accepted by Russell.

We cannot hope, then, to reconcile Russell’s presentation of logicism to the
content of Principia VI by exploiting the fact that the book was coauthored.
The doctrine of quantity shows that the logicist program cannot be seen as
a mere extension of arithmetization — and this is precisely what makes the
theory of magnitude so interesting. According to the often repeated story,
logicism would be a kind of Northwest Passage project: the main and sole
problem of Russell would be to go from logic and set-theory (the Atlantic
ocean, let say) to arithmetic (the Pacific ocean); between the two, a very
rough and difficult area, mined by the logical and set-theoretical paradoxes
(the North of Canada), would have to be crossed, and a channel across the
hostile land to be discovered. In other words, the logicist challenge is often
construed as an existence-problem: the difficulty is to find at least one path.
If it ever turned out that many such passages existed, it would be very good
news, but the existence of one channel is sufficient to satisfy the logicists.
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Now, I do not want to undermine the importance of the existence-problem.
My claim is, however, that the Northwest Passage issue is only a part of
the story. When one reads the mathematical parts of The Principles or of
Principia, that is, the parts which are situated at the middle or near the end
of the books (and which are usually completely neglected), one immediately
sees that, most of the time, the problems Russell (and Whitehead) faced
were related to the surplus of possible ways to define a mathematical theory.
The issue was thus not to find a passage, but to pick up one among many
available ones. For instance, in 1903, Russell had before him many possible
logical definitions of a projective space. He chose one, and tried at length
to explain his choice.39 The same holds for the definition of order in part
IV of [Russell, 1903]: not less than six different definitions of order were
presented and discussed in chapter 24. In many cases, thus, Russell’s and
Whitehead’s problem was not an existence, but a uniqueness issue. The task
was not to secure a reduction — it was to decide which to choose among the
many possible ones.40

Principia VI is a spectacular example of this line of thought. Russell’s
theory of relations was powerful enough to encompass Dedekind’s defini-
tion of the real numbers. But this did not mean that Russell should resume
it. Many others approaches were possible, and the issue was to decide which
one among them should be taken. Now, Dedekind’s theory did not explain
how numbers could be applied to quantity — and, from Russell’s and White-
head’s point of view, the application constraint seemed to be a sensible de-
mand. Principia VI is just the demonstration that the new logic could ac-
count for the mathematical structure of the rational and the real numbers,
while fulfilling the application constraint. The logicist program was not
given up – the properties of the rational and real numbers were still pre-
sented as logical properties (and on this point, Russell and Whitehead did
not follow Burali-Forti). But the arithmetization was clearly abandoned: the
structure of Q and R was not founded on the sole structure of N.

In order to understand how Whitehead’s theory of quantity is not incom-
patible to the logicist program, one has therefore to renounce the Northwest
Passage view — or, at least, to relativize it to the beginning of the logicist
venture. For Russell, it is true, there are not many ways to reach arithmetic

39 On this point, see [Gandon, 2008a].

40 On this problem of multiple possible reductions, see [Benacerraf, 1965]. Note that
Benacerraf regards his argument as directed against Russell’s logicism. According to me,
Benacerraf’s attack misses its target.
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from logic; what is more, the only possible path is threaten by the para-
doxes.41 But we should not reduce Principia to its first parts. As one moves
forward in the reading, one realizes that the existence problem is progres-
sively supplanted by the issue raised by the existence of multiple reductions.
Studying the last published parts of Principia does not merely allow us to fill
a gap in the scholarship; it helps us to readjust our conception of the whole
work.

One last word about Whitehead. I have suggested that the theory of quan-
tity fits well the logicist agenda, once this agenda is distinguished from the
arithmetization program — and that Russell could then be regarded as the
coauthor of the doctrine. This being said, Whitehead’s particular influence
on Part VI should be acknowledged. One thing is to say that a logicist defini-
tion of numbers satisfying the application constraint can be found; another is
to promote, as Whitehead did, the application constraint itself. At numerous
places in Whitehead’s writing, one finds the idea that the striving for gen-
eralization and abstraction in mathematics goes hand-in-hand with the wish
to account for application. For example, in Universal Algebra, Whitehead
attempted to show that Grassmannian algebra could find a natural interpre-
tation in terms of non-Euclidean geometries, thus revealing that the more
abstract and general the algebras were, the more capable of being applied
they became.42 But, closer to Principia VI, let me quote a passage from
([Whitehead, 1911], p. 100):

One of the most fascinating characteristics of mathematics is the
surprising way in which the ideas and results of different parts of
the subject dovetail into each other. During the discussions of [...]
the previous chapter we have been guided merely by the most ab-
stract of pure mathematical considerations; and yet at the end of
them we have been led back to the most fundamental of all the laws
of nature, laws which have to be in the mind of every engineer as
he designs an engine, and of every naval architect as he calculates
the stability of a ship. It is no paradox to say that in our most the-
oretical moods we may be nearest to our most practical applications.

The idea that “in our most theoretical moods we may be nearest to our most
practical considerations” can easily be used to justify the application con-
straint. Now, one does not find this emphasis on application in Russell’s

41 In fact, in Principia, Russell has given up the idea of deriving the infinity axiom —
according to Boolos (for instance), this shows that Russell did not find the Northwest Passage.

42 For more on this interpretation, see [Gandon, 2005] and [Desmet, 2010].
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writings.43 I am then not sure that Russell, without Whitehead’s impetus,
would have espoused the application constraint and would have felt the need
to wander from the standard Dedekindian definition. What is truly beau-
tiful then is that Principia’s logical framework was flexible and powerful
enough to accommodate the difference between Whitehead’s and Russell’s
own sources of inspiration.
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