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PHILOSOPHICAL LOGIC IN A FRAMEWORK
OF PROPOSITIONAL LOGIC∗

CHRISTIAN DAMBÖCK

(1) The classic approach to formal logic is twofold. First, describe the syn-
tactical perspectives of a formal language; and second, define a natural se-
mantic interpretation for it (and investigate whether or not there is a com-
plete calculus for this logic, whether or not the logic is decidable, etc.). In
that classic approach we have to discuss some more or less complicated and
complex meta-logical questions for each new logic. Those questions are
obviously important from a mathematical point of view. But they are less
important from a philosophical point of view. Thus, for philosophical dis-
cussions it would be desirable to have a simple semantic framework that
has some simple and straightforward meta-logical properties, and in which
we are able to implement any philosophical logic we like. Such a frame-
work quite possibly has no value for mathematical discussions, but it has
great value for philosophical discussions, because it keeps those discussions
free of complicated and more or less irrelevant meta-logical questions. The
present paper describes how to use propositional logic as a framework in
this sense. This framework, taken from a purely formal point of view, is
nothing new. But its exposition as a sufficient framework for philosophical
purpose is new. And this is one general point of the present paper: that it
would be a good idea for most philosophical discussions to use this strategy
of semantic restriction rather than the classic strategy that dogmatically ties
each language together with its ‘natural ontology’.

(2) There are two different (formal) ways of taking the expressive power
of a logic: a meta-logical and a metaphysical way. In the meta-logical sense,
the expressive power of a logic is given by model theoretic criteria like max-
imal cardinality of sets that can be characterized in this language up to iso-
morphism. In the metaphysical sense, the expressive power is given by all
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ments I am grateful to Richard Dawid, Marie Duží, Don Faust, Chris Fermüller, Sy David
Friedman, Edwin Glassner, Georg Gottlob, Manfred Kohlbach, Matthias Neuber, Richard
Nickl, Gerhard Schurz, and the Philosophy of Science Colloquium, Institute Vienna Circle
(http://www.univie.ac.at/ivc/koll/index.html).
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22 CHRISTIAN DAMBÖCK

those formal features of a language that can be interpreted as expressions of
some metaphysical properties. Having higher order quantification, having
modal operators, having many truth values, are formal features in this meta-
physical sense. In the classic understanding of logic, as driven forward most
prominently by W. V. O. Quine, these two notions of expressive power are
convergent. Having higher order quantification, to mention the most impor-
tant example for this reading, is strongly connected with the mathematical
property of having more expressive power than in the first order case. Tak-
ing this for granted, it would not make sense to give another specification of
higher order logic than in the so-called standard interpretation, because ev-
ery other specification (e. g. in many-sorted first order logic) would violate
the natural connection between philosophical expressivity and mathematical
expressive power.1

We argue, on the contrary, that there is no connection a priori between
metaphysical expressivity and meta-logical expressive power, or, to put it in
different words: the connection between these two things is a philosophical
and not a formal question. Thus, in principle, if we have a formal language
with expressivity A (in the metaphysical sense) we can search for a meta-
logical specification for this formal language that equips it with mathemati-
cal expressive power B. For example, we can equip a higher order language
with the standard interpretation but we also can specify it in a first order
and even in a propositional framework. For the philosophical purpose, the
procedure must be this: stipulate the mathematical expressive power B that
you need for your language, and then develop the language with the desired
metaphysical features A, in a meta-logical framework that secures B. The
present paper demonstrates this philosophical ‘technique’ for the case of a
philosopher who needs the expressive power of propositional logic.

(3) The best known example for this philosophical ‘technique’ is the so-
called Henkin-trick that allows us to reduce logics with arbitrary philosoph-
ical features A to first-order logic.2

(4) The stipulation of meta-logical expressive power B, first of all, is a
purely formal decision. It is the question of whether our meta-logical frame-
work should be decidable or complete, etc. In this sense we could stipulate
a meta-logical feature (decidability, completeness, etc.), and stipulate the
meta-logical framework, on the basis of these purely formal and technical
questions only.

But the meta-logical question is at the same time philosophical in an im-
mediate sense. It seems obvious that we buy some metaphysical features, on

1 For a discussion of the standard interpretation of second order logic and alternatives to
it cf. [16, section 4].

2 See [9]. Cf. [11] for a specification of numerous logics in such a first-order framework.
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the basis of our meta-logical decision, at least in the sense of being natural
in our framework. Every meta-logical framework seems to have something
like a natural metaphysical reading or a natural ontology. Quine’s reading
of first order logic, for example, can be understood in this sense.3 If we
accept the thesis that meta-logical and metaphysical expressivity are non-
identical, we could adopt Quine’s ontology and reject at the same time his
general understanding of logic; we could accept Quine’s ontological claims
in [13] as the development of the natural ontology of first-order logic and
reject them at the same time, because we prefer some different features, be-
yond the meta-logical level, e. g. because we prefer to combine the first order
framework with modal metaphysics, etc.

(5) Ultimately, this distinction between meta-logical and metaphysical fea-
tures is nothing else than a particular interpretation of the old distinction be-
tween syntax and semantics. What this new version of the distinction only
rejects are claims concerning a natural and even a necessary connection be-
tween syntax A and semantics B. In this domesticated and liberalized read-
ing of logic we have these two perspectives of logic as totally independent
perspectives. We now can have a logic which is syntactically first order and
semantically propositional, syntactically modal and semantically first order,
etc. What we have to do is to divide the discussion of our logic into two
different parts: first, a discussion of the semantic framework and the merits
of its natural ontology; second, a discussion of the metaphysical features that
we would like to establish inside of this framework (on the level of syntax).
To think little of such a ‘syntactization of metaphysics’, again, would be just
a symptom of the old understanding of logic that dogmatically ties the syntax
together with its natural semantic interpretation.

(6) From an historical point of view, this understanding of logic is opposed
to Quine, and it follows Carnap. Quine has a rather monolithic understand-
ing of logic. He claims that ontology and logic are ultimately the same thing.
Carnap, on the other hand, differentiates between internal and external ques-
tions of logic.4 External questions are questions of the general layout of a
‘formal framework’, whereas internal questions are questions that can be
asked inside of such a framework. Although Carnap obviously does not see
a direct connection between internal questions and syntax on the one hand,
and between external questions and semantics on the other, he differentiates
between two different levels of ontological questions. And this is exactly
what we do here. On the external level, we are aiming at a principal on-
tological layout, we establish a formal framework with a particular natural

3 Cf. [12, 14].

4 Cf. [2].
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24 CHRISTIAN DAMBÖCK

ontology. But the internal structure of the language also allows us to intro-
duce ontological features that go beyond the immediate level of the natural
ontology of our language. We can overrule the natural ontology, so to speak,
by introducing powerful metaphysical features on the internal level, on the
level of syntax. Therefore, Carnap’s famous principle of tolerance5 appears
to be nothing other than the principle of a modern understanding of logic
that gains enormous flexibility from its deep understanding of the fundamen-
tal distinction between the internal and the external level, between syntax
and semantics, between metaphysical and meta-logical questions. Quine’s
monolithic understanding, on the other hand, seems to be the most impor-
tant limiting factor for the development of logic during the last decades, be-
cause it prevents us from seeing the fundamental distinction which Carnap
had investigated.

(7) The present paper presents a particular example for a formal frame-
work, in the semantic sense – propositional logic – and it shows how to inte-
grate some metaphysical features – the features of first order logic and modal
logic – into this framework. This propositional framework is of particular
interest chiefly for two reasons: for its natural ontology and its simplicity.
Whereas the natural ontology establishes a rather neutral characterization of
the propositional framework, and a more technical reading of it, simplicity
provides us with a direct argument in favor of the propositional framework:

(8) The propositional framework is simple, insofar as it represents the most
basic version of a semantic framework. Candidates for such a framework are
propositional logic, first order logic and more complex systems like second
order logic with the standard interpretation. These candidates are obviously
frameworks of increasing complexity. Whereas it seems to be always possi-
ble to implement the metaphysical features of more complex frameworks in
simpler ones, more complex frameworks appear to be extensions of simpler
ones in a pretty straightforward sense. First order logic is propositional logic
plus first order machinery, higher order logic is first order logic plus higher
order machinery, propositional modal logic is propositional logic plus modal
machinery, and so on. Now, if the question of the framework turns out to be
a question of pure convention (because, for the philosopher, the natural on-
tological features of the framework are less important than the metaphysical
features which we can formalize inside of it), it seems to be extremely plau-
sible to choose the most simple framework.

(9) The natural ontology of propositional logic is rigid and finite in the
following sense. Rigidity is a feature that stems from the specific function
of constants in propositional logic (according to the classic Fregean under-
standing). Whereas in predicate logic (first or higher order) an individual

5 See [3, § 17].
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constant is extensionally interpreted by associating an arbitrary entity with
the name, the extensional interpretation of a constant, in the case of propo-
sitional logic, associates just a truth value. The answer, so to speak, that
semantics gives to a constant, is simply yes or no, whereas in the case of
predicate logic, it can be any object, whatsoever. Therefore, we can say that
the natural ontology of (two valued) propositional logic is simply this: to
interpret every constant as the proposition of something, to which we can
answer with yes or no.

The most important example for an external application of this proposi-
tional ontology is (first order) predicate logic. An individual constant, in a
propositionally interpreted predicate logic, is not interpreted as a name that
denotes an external object, but simply as the proposition that a particular
object exists (the semantics answers yes or no). A predicate constant is the
proposition of a particular property. If we bind this constant to names, then
the semantics responds no, if some of the objects denoted by a name does
not exist; otherwise, it answers yes, iff the objects have this property.

Quantification, in such a rigid setting is realized straightforwardly via con-
junction. ∀xP (x) can be defined as the formulaP (c1)∧P (c2)∧. . .where the
c1, c2, . . . are all individual constants of the language, representing all pos-
sible objects. Therefore it is only possible to quantify over infinitely many
objects, if we allow infinitely long formulas. And this, of course, is not
natural. Thus, the natural ontology of propositional logic is also finite.6

This does not mean that every logic we specify in the propositional setting
must be a finite logic with only finitely many objects. If we need infinitely
many objects, we simply have to accept infinitely long formulas. The prob-
lem that we obtain in such a case is only a technical one: finite versions of
propositional logic are always decidable (regarding both satisfaction and va-
lidity), whereas in infinite versions the meta-logical situation is more compli-
cated. Thus, the finite case is the natural one, but nevertheless it is possible
to consider also logics with an infinite universe. Particularly, the ontologi-
cal question whether a finite ontology is sufficient (e. g. for the purpose of
physics) seems to have no direct connection with the question of finiteness
in logic; therefore, this question shall not be discussed here.

6 A finite logic, in our sense, has a universe of a finite number of n objects. This case has
to be distinguished from the case of so-called finite model theory, where first order structures
are restricted to finite domains, but where the universe is the same as in non-restricted first
order logic. Cf. [5]. Note also that we discuss here only the natural ontology of predicate
logic in a propositional framework. This ontology in fact leads to a layout of free logic.
Nevertheless, we can implement a different – non-free and extensional – account of first
order logic inside of the propositional framework. This will be illustrated in section 2, below.
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26 CHRISTIAN DAMBÖCK

(10) An important aspect of the strategy pointed out in this paper is seman-
tic restriction: to have a simple formal framework with convenient meta-
logical properties, and to develop a language for this framework that imple-
ments a very high range of metaphysical features. Such ‘formal ontologies’
tend to buy with each metaphysical enrichment of a language a significant
modification of the logic on the meta-logical level, i. e. they are semantically
boundless.7 Our proposal in this paper shows how to break this rather unfor-
tunate connection. We now can choose the meta-logical and the metaphys-
ical properties (more or less) independently. We demonstrate the general
function of this strategy, for the case of a meta-logical framework of propo-
sitional logic, and we illustrate the metaphysics of two of the most simple
and straightforward examples of logical modes of expression inside of this
framework: first order logic and modal logic. How to implement a meta-
physically extremely rich language in this framework shall be demonstrated
in a future paper.

1. The propositional framework

Throughout this paper a logic is understood as an algebraic structure L =
(FL, SL,�L) that consists of a set FL of formulas (sentences) plus a class
SL of structures and a relation of satisfaction �L between them. We add
some metalogical notions: a formula φ is the logical consequence of a set of
formulas Γ, and we write Γ � φ, if every structure which is a model of every
formula out of Γ is also a model of φ. Two formulas of a logic are logically
equivalent, if they are satisfied in exactly the same structures.

The propositional logic RIGa(A) is built over a set A of propositional con-
stants which can be either finite or infinite (countable or uncountable). We
have the logical connective ¬ and the generalized conjunction

∧

, the latter
shall be defined for sets of formulas whose maximum cardinality is the car-
dinality of A. Other logical connectives like disjunction

∨

and implication
→ are defined in a natural way:

∨

Γ := ¬
∧

ψ∈Γ

¬ψ,

Γ → φ := ¬
∧

(Γ ∪ {¬φ}) .

7 Examples for languages that are metaphysically extremely rich, in this sense, can be
found in the writings of Richard Montague and Edward Zalta. Cf. [17, 19]. Because both
Montague and Zalta use the Henkin-trick, in order to keep there framework semantically first
order, there strategy is somewhat intermediate between semantic restriction and semantical
boundlessness.
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We also define ∧, ∨ and → for pairs of single formulas. Structures are
introduced as subsets of A (i. e. sets of true propositions). The relation of
satisfaction �a is defined for structures S, propositions p, finite formulas φ
and sets of finite formulas Γ:

S �a p iff p ∈ S,
S �a ¬φ iff not S �a φ,
S �a

∧

Γ iff S �a ψ, for every ψ ∈ Γ.
We call a logic L = (FL, SL,�L) rigid, if the following holds. There exists
a set Fat ⊆ FL that defines the set F̂L of all formulas

φ ::= φat | ¬φ |
∧

Γ,

where φat ranges over Fat and Γ over sets of finite formulas. Then there
exists a function Θ that (1) maps SL injective to ℘(Fat) and (2) maps FL

onto F̂L so that for every S ∈ SL and every φ ∈ FL it holds:

S �L φ iff Θ(S) �a Θ(φ).

Here �L and �a are the respective consequence relations of L and RIGa(A).
If the set Fat of a rigid logic is finite and the function Θ is recursive, then we
call this logic finite.

To each rigid/finite logic L we assign a triple L̃ = (Fat,Θ, S̃L), where Fat

and Θ are defined as above and S̃L is the image Θ(SL). This L̃ is a fragment
of the logic RIGa(Fat), because it holds that S̃L ⊆ ℘(Fat).

Proposition 1 : Every finite logic is generally decidable, i. e. it is decidable
regarding both satisfaction of a formula in a particular structure and logical
consequence.

Proof. Using the reduction to finite propositional logic we can decide satis-
faction and validity via truth-tables. Logical consequence must be decidable,
because there are only finitely many logically equivalent formulas, in a finite
logic, thus we can restrict ourselves to situations Γ � φ where Γ is a finite
set of formulas. �

It is a central point in the finite setup that there is no need in principle
for deductive systems in the traditional sense, because logical consequence
is decidable in a straightforward way (via truth-tables). Of course, the task
of deciding validity in a finite logic will also be a question of complexity.
Therefore, traditional deductive systems (i. e. polynomial algorithms for the
deduction of valid formulas) appear to be of interest, even for finite logics.



“02dambock”
2009/3/4
page 28

i

i

i

i

i

i

i

i

28 CHRISTIAN DAMBÖCK

Moreover, in the general case of a possibly non-finite rigid logic, deduc-
tive systems are indispensable. Unfortunately, there is no general rule how
to construct a complete deductive system for a rigid logic. Thus, the ques-
tions of completeness and decidability have to be discussed independently
for every single rigid logic. Obviously, there are complete (and polynomial)
deductive algorithms and even decision procedures for numerous rigid log-
ics, but, because of questions of space, we do not discuss this point any
further here. We only prove, for the logics described below, that they are
rigid and that there is a particular class of finite instances of them.

2. First-order logic

Classic first-order logic is not rigid, because of the possibility of varying the
domains of structures freely (the class of all structures of a rigid logic must
by definition be a set). The only straightforward way to construct a rigid ver-
sion of first-order logic seems to be the following. First, we have to restrict
the amount of possible entities in the domains of structures to a particular
(possibly infinite) set D. Second, we have to introduce the individual con-
stants of the logic in such a way that they always denote the same object out
of D. (In other words: individual constants in a rigid logic are similar to
Kripke’s rigid designators.8 ) Then we are able to formulate every possible
statement about the universeD in terms of individual constants, in particular
quantifiers like ∀ can be defined as

∀xφ iff φ
[

c
x

]

, for every individual constant c.

The first-order logic RIGp(D,P, α) is built over a (possibly infinite) setD of
individuals, a finite or countable set P of predicates and a function α : P 7→
N that assigns to each predicate its ‘arity’. (We do not introduce functions
and identity here.)

The idea is that the domain of a structure of the logic is always a subset of
the ‘universe’D. Because the non-logical constants serve both as ‘signature’
and as ‘domain’ of this logic (i. e. they provide both the non-logical constants
and the objects of the logic, following the rigid layout we described in the
introduction, above), we also call the collection of non-logical names of the
logic its domain-signature. It turns out that the domain-signature (D,P, α)

8 ‘Let’s call something a rigid designator if in every possible world it designates the
same object.’ [10, p. 48] We follow this conception here, with a slight modification. For us
a designator is rigid if it denotes either a definite object or nothing, i. e. there could be some
possible worlds in which the designator exists, however, the object it denotes does not exist.
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determines the whole ontological complexity of the logic RIGp, i. e. it deter-
mines every possibility of producing non-tautological expressions.

A predicate logic, in this setting, turns out to be a free logic9 , because we
will have structures where the individual(-constant) c is not an element of
the domain. But note that this layout of our logic is a direct consequence
of the rigid ‘natural ontology’ of the propositional framework. Of course,
it would be possible to define a non-free version of first-order logic also
in this framework (using semantic interpretations, in the usual sense). But
the specification of such a logic would be formally complicated and by no
means straightforward. If we would prefer a non-free account (because of
philosophical reasons), we can easily obtain this account as a special case of
our logic, as specified at the end of this section. (The logic RIGp is a free
logic only on a technical level, on the level of the natural ontology of the
propositional framework. Metaphysically, it can be interpreted any way we
like it: as free or non-free, etc.)

Another significant point of this rigid setting is given by the fact that con-
stants and objects are identified. A classic argument against such an identi-
fication urges that it leads to a collapse of the syntax-semantics-distinction.
This, however, is not true. We do have a semantics in the rigid setting. This
semantics is weaker than in the traditional first order case because the uni-
verse of the logic is restricted to a particular set D, whereas in the classic
case the universe is built by the class of all sets. But nevertheless, we have
the notion of a semantic structure here. The only technical difference be-
tween the classic and the rigid case is this: in the classic case the domain of
a structure is an arbitrary set, whereas in the rigid case it is a subset of the
universe D:

A structure S over the domain-signature (D,P, α) is defined by a pair
(D∃, π), where D∃ ⊆ D provides the set of ‘existing entities’ of S and π
is a function that assigns to every predicate P ∈ P with α(P ) = i a set
π(P ) ⊆ Di

∃
. We call Sp the set of all possible structures over (D,P, α). It

is easy to see that Sp is finite, iff D and P are finite. If n is the number of
elements of D we obtain, for finite domain-signatures:

|Sp| =
∑

i

[

(

n

i

)

∏

P∈P

2(iα(P ))

]

.

The elements of D are the individual constants of our logic. There is also a
countable set of variables. Individual constants and variables are also called
terms. If P is a predicate with α(P ) = i and t1, . . . , ti are terms, then

9 Cf. [1] and [8, section 1].
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30 CHRISTIAN DAMBÖCK

P (c1, . . . , ci) is an atomic formula. Additionally we have atomic formulas
E(t), where t is any term and E /∈ P is an existence predicate. The set of all
RIGp-formulas is defined as

φ ::= p | ∀xφ | ∃xφ | ¬φ | φ ∧ φ.

Here p ranges over atomic formulas and x over variables. We define satisfac-
tion �p. φ

[

c
x

]

we call the formula ψ which results from φ by replacing every
instance of x (if there is any) with c. For structures S = (D∃, π), atomic
formulas P (c1, . . . , ci),E(c) where the cj and c are constants, variables x
and formulas φ, ψ we have:

S �p P (c1, . . . , ci) iff (c1, . . . , ci) ∈ π(P ),
S �p E(c) iff c ∈ D∃,

S �p ∀xφ iff S �p φ
[

c′

x

]

, for every c′ ∈ D,

S �p ∃xφ iff there is a c′ ∈ D with S �p φ
[

c′

x

]

,

S �p ¬φ iff not S �p φ,
S �p φ ∧ ψ iff S �p φ and S �p ψ.

Proposition 2 : Every instance of RIGp(D,P, α) is rigid; it is finite, iff the
sets D and P are finite.

Proof. We restrict ourselves to formulas without free variables and define
Fat as the set of all atomic RIGp(D,P, α)-formulas without variables. Θ is
defined for atomic formulas p, variables x and formulas φ, ψ:

Θ(p) := p,

Θ(∀x.φ) :=
∧

c∈D

Θ
(

φ
[ c

x

])

,

Θ(∃x.φ) :=
∨

c∈D

Θ
(

φ
[ c

x

])

,

Θ(¬φ) := ¬Θ(φ),

Θ(φ ∧ ψ) := Θ(φ) ∧ Θ(ψ).

Further, Θ assigns to each structure S = (D∃, π) the subset of Fat which
contains (1) a formula E(c) iff c ∈ D∃, (2) a formula P (c1, . . . , ci) iff
(c1, . . . , ci) ∈ π(P ). Thus the logic is rigid and it is finite, if D and P

are finite. If D or P are infinite, then the logic is not finite, because the set
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of all structures Sp is infinite and Θ must be an injective function from Sp to
the finite set ℘(Fat). �

RIGp is not the only possible first-order logic that is rigid in the techni-
cal sense of section 1. But it is the only straightforward version of a rigid
first-order logic that implements the natural ontology of the propositional
framework, as pointed out in the introduction, paragraph (9).

With ∀ and ∃ we quantify over the whole range of individuals of the logic,
no matter whether they exist in a structure or not. In order to quantify only
over those individuals which do exist in the actual ‘world’, we define the
(dual) quantifiers ∀E and ∃E:

∃Exφ := ∃x (E(x) ∧ φ),

∀Exφ := ∀x (E(x) → φ).

If we now restrict our logic to formulas that does contain individual constants
only in the context of quantifiers ∃E and ∀E, i. e. if we not make any direct
use of individual constants and quantify only over existing individuals, then
we clearly obtain a straightforward version of extensional first order logic,
in the tradition of Russell and Quine.10

3. Modal logic

Given any logic L, we are able to construct a first-order logic over it in order
to quantify over the structures of L. This section will describe how to imple-
ment this well-known technique of modal model theory and correspondence
theory11 in a semantic framework of propositional logic. The advantage of
this framework is that it allows us to extend in a straightforward sense any
basic logic with first-order features for quantification over structures. This
is not possible, in the more general case of a classic first order framework
(as it is usually used in correspondence theory), because in the case of non-
rigid logics the class of all structures of a logic mostly is not a set (but rather
the class of all sets or the class of all finite sets) and therefore we cannot
introduce this class as a simple domain for (set theoretical) quantification.

A rigid layout of modality must be similar to the first-order logic which
we specified in the preceding section. Given a basic logic L = (FL, SL,�L),

10 The trick of avoiding statements which contain individual constants was already used
by both Russell and Quine. Cf. [15, 13].

11 Cf. [18].
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32 CHRISTIAN DAMBÖCK

over which we wish to quantify, we have to choose a set M of objects out
of SL as the modal domain of our logic (i. e. the set of all possible worlds).
Again, like in the rigid logic RIGp, the objects of M function as individual
constants and as objects, and we have some relations for quantification over
M. However, we do not introduce modal operators directly into the syntax
of our language. Instead, we have the syntactic element , defined as a bi-
nary relation between formulas and possible worlds. S  φ shall express
that formula φ is true in the possible world S. Given this device we can de-
fine modal operators from scratch, in the sense of ‘φ is true in every possible
world related to the actual’ (cf. formula (N), below).

Let L = (FL, SL,�L) be any logic. Then we define FLPL(Pw, αm,M)
as a logic over L, where Pw is a set of modal predicates, αm is a function
that assigns to each modal predicate its arity and M = (W,Π) is a modal
structure. Here, W is a set of structures out of SL, called the set of all
possible worlds of the modal structure. Π assigns to every modal predicate
P ∈ Pw with αm(P ) = n a set Π(P ) ⊆ W

n.
The elements of the set W of possible worlds are defined as constants.

Additionally, there is a constant SELF /∈ W. (Note the difference between
constants and possible worlds, according to our definition: every possible
world is a constant, but the constant SELF is not a possible world.) We
define, for possible worlds S,S′ and W-constants a1, . . . , an, a functional
expression that assigns to every finite sequence of W-constants a1, . . . , an
and to every possible world S a value S(a1, . . . , an):

S(S′) := S
′,

S(SELF) := S,

S(a1, . . . , an) := S(a1), . . . ,S(an).

We need this functional expression, simply because the semantic has to re-
place SELF by the possible world that is ‘actual’ on the respective place of
a formula. (Technically, the W-constants of the object language are inter-
preted as functions, on the level of the meta-language.)

We have a countable set of variables w,w′, . . ., every constant and ev-
ery variable is defined as a term. If P ∈ Pw is a predicate-constant with
αm(P ) = n and t1, . . . , tn are terms, then P (t1, . . . , tn) is an atomic FLPL-
formula. The whole range of FLPL-formulas is then defined as:

φ ::= φL | p | t  φ | ∀wφ | ∃wφ | ¬φ | φ ∧ φ.
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Here φL ranges over L-formulas, p over atomic FLPL-formulas, w over W-
variables and t over terms. We define, for L-formulas φL, atomic FLPL-
formulas P (a1, . . . , an) (where the ai are constants), possible worlds S,
constants a, variables w and FLPL-formulas φ, ψ:

S �FLPL
φL iff S �L φL,

S �FLPL
P (a1, . . . , an) iff S(a1, . . . , an) ∈ Π(P ),

S �FLPL
a  φ iff S(a) �FLPL

φ,

S �FLPL
∀wφ iff S �FLPL

φ
[

S′

w

]

, for every S
′ ∈ W,

S �FLPL
∃wφ iff there is an S

′ ∈ W with S �FLPL
φ
[

S′

w

]

,

S �FLPL
¬φ iff not S �FLPL

φ,
S �FLPL

φ ∧ ψ iff S �FLPL
φ and S �FLPL

ψ.

Proposition 3 : FLPL(Pw, αm,M) (1) is rigid, iff the basic logic L is rigid;
(2) it is finite, iff the basic logic L is finite and every predicate out of Pw is
decidable.

Proof. In the proof we restrict ourselves to the set of all formulas of the
form S  φ, which does not contain the constant SELF and which does
not contain free variables. Those restrictions are completely insubstantial,
because (1) S �FLPL

φ is true iff S  φ is true in any possible world;
(2) we can assign to every formula φ and every possible world S a formula
S  ψ, where ψ results from φ by replacing SELF with possible worlds, in
a pretty natural way.

Suppose that the basic logic is rigid. Let L̃ = (Fat,Θ, S̃L) be the propo-
sitional variant of L, in the sense specified in section 2. We define F ∗

at as
the set of all formulas S  φat, where φat is an element of Fat and S is a
possible world. Now we define the function Θ∗ in such a way that it holds,
for possible worlds S

′ ∈ W and formulas S  φat ∈ F ∗
at that

S  φat ∈ Θ∗(S′) iff S �FLPL
φat,

i. e. the set Θ∗(S′) is the same, for every S
′. Further we define Θ∗ for atomic

FLPL-formulas p (without variables and the constant SELF), L-formulas
φL /∈ Fat, formulas φat ∈ Fat, possible worlds S,S′, variables w and
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FLPL-formulas φ, ψ:

Θ∗(S  p) :=

{

S  > if S �FLPL
p,

S  ⊥ otherwise,

Θ∗(S  φL) := Θ∗(S  Θ(φL)) [sic: Θ, not Θ∗],
Θ∗(S  φat) := S  φat,

Θ∗(S  (S′
 φ)) := Θ∗(S′

 φ),

Θ(∀w.φ) :=
∧

a∈W

Θ
(

φ
[ a

w

])

,

Θ(∃w.φ) :=
∨

a∈W

Θ
(

φ
[ a

w

])

,

Θ∗(S  ¬φ) := ¬Θ∗(S  φ),

Θ∗(S  φ ∧ ψ) := Θ∗(S  φ) ∧ Θ∗(S  ψ).

Now we can prove by induction that FLPL is rigid and it immediately turns
out that FLPL can not be rigid, if the basic logic L is not (1). FLPL is finite,
if the basic logic L is finite and all the predicates out of Pw are decidable. If
L is not finite, then FLPL is also not finite, because the set F ∗

at then is infinite
(2). �

If we take the propositional logic RIGa as the basic logic, we obtain the
propositional modal logic FLPRIGa(A), what is pretty straightforward. In the
first order modal logic FLPRIGp(D,P,α)(Pw, αm,M) we can quantify both
over the RIGp(D,P, α)-structures and over the domain D. We literally do
nothing else here but to add some more predicates to the basic logic RIGp

which allow us to quantify over the RIGp-structures. Let � be a modal oper-
ator, defined with a relation over possible worlds R as

(N) �φ := ∀wR(SELF, w) → w  φ.

Then, as is easily seen, ∀E (defined like in section 2) provides a device for
variable domain quantification, i. e. the Barcan-formulas

∀Ex.�φ→ �∀Ex.φ and

�∀Ex.φ→ ∀Ex.�φ
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are both not valid. In the case of ∀, on the other hand, we have constant
domain quantification and the formula

∀x.�φ↔ �∀x.φ

is valid. (This is rather trivial, because by using ∀ we quantify over the same
objects, in every possible world.) In other words: the logic FLPRIGp(D,P,α)

can be interpreted in the standard directions, as pointed out in the classic
literature.12

We can introduce modal operators with many formulas as arguments in
every logic FLPL. As an example we consider a partial order< over the pos-
sible worlds (in the sense of a temporal logic) and define the until-operator
U(φ, ψ):

U(φ, ψ) := ∃w (SELF < w ∧ w  φ)∧

(∀w′ : SELF < w′ < w → w′
 ψ).

On the other hand we can introduce modal operators with predicates having
more than two arguments. For example, we introduce a relevance-logical
consequence relation ⇒ on the basis of the ternary relation R:

φ⇒ ψ := ∀w,w′ : R(SELF, w, w′) → (w  φ→ w′
 ψ).

FLPL is not the most general kind of a modal logic in a propositional frame-
work. First, we could use a different logic for quantifying over possible
worlds and formulas. Second, we could allow to vary the modal model in-
side of a logic. In such a logic M1PL (whose basic logic L must be rigid) we
have the set of all modal models M, as an additional sort, and satisfaction
must be defined, relative to pairs [S,M] of structures and modal models.
The predicates that range over M must be semantically specified here, via a
second-order modal model M

2 that is fixed for this logic. Now, by analogy
to this, we also could specify a logic M2PL, where we are able to quantify
also over second-order modal models. Further abstraction leads us to a logic
MnPL, for every finite n, where modal models of order x ≤ n are variably
defined and where a fixed modal model of order n+1 is stipulated. Satisfac-
tion, in such a logic, must be defined relative to a vector [S,M1, . . . ,Mn],
consisting of a structure and a modal model of every order x ≤ n. However,
we do not go into the formal details of those logics.

12 Cf. [6, Chapter 4], for an overview.
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A logic like FLPL has some crucial advantages over the classic setting of
modal logic. Its modularity allows us to establish FLPL as a direct extension
of arbitrary basic languages L. The logic FLPL inherits the meta-logical fea-
tures from L: if L is rigid, then also FLPL; if L is finite, then also FLPL. Es-
pecially the latter case should be of high interest for the philosopher, because
it allows us to concentrate on the really important philosophical questions.
Formally, the layout of every rigid language is the same, be it finite or not.
Thus, if we assume the logic to be finite, we do not have to change anything
in the principal formal layout. Finiteness, moreover, always implies that a
logic is decidable, both regarding validity and satisfaction. And that means
for us that in assuming finiteness we can assume every modal interpretation
of our logic to be decidable. Therefore, we can skip the whole range of com-
pleteness proofs for particular modal systems, because in our setting every
modal system is decidable (as long as we can express it in FLPL, and as long
as we assume the system to be finite). This ruling out of such meta-logical
questions which seem to be simply irrelevant for the most philosophical dis-
cussions allows us to slim down the formal apparatus and to concentrate on
the really important philosophical questions (e. g. the question of correspon-
dence theory, of a structural comparison between different modal systems).
In this way, a division of labor can be established between a philosophical
discussion in a simple framework such as the propositional framework we
presented in this paper, and the more technical discussions of the mathe-
matician and the computer scientist who search for particular meta-logical
properties, quick decision algorithms and elegant deductive calculi.
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