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EXTENSIONS OF THE BASIC CONSTRUCTIVE LOGIC FOR
NEGATION-CONSISTENCY BKc4 DEFINED WITH A FALSITY

CONSTANT∗

GEMMA ROBLES

Abstract
The logic BKc4 is the basic constructive logic for negation consis-
tency (i.e., absence of any contradiction) in the ternary relational se-
mantics without a set of designated points. In this paper, a number
of extensions of BKc4 defined with a propositional falsity constant
are defined. It is also proved that negation-consistency is not equiv-
alent to absolute consistency (i.e., non-triviality) in any logic in-
cluded in positive intermediate logic LC plus the constructive nega-
tion of BKc4 and the (constructive) contraposition axioms.

1. Introduction

A theory is a set of formulas closed under adjunction and provable entailment
(cf. §2). Then, negation-consistency is defined as follows:

Definition 1 : A theory a is n-inconsistent (negation-inconsistent) iff for some
wff A, A ∧ ¬A ∈ a (A theory a is n-consistent iff it is not n-inconsistent).

The basic constructive logic adequate to this sense of consistency in the
ternary relational semantics without a set of designated points, i.e., the logic
BKc4 is defined in [8]. Next, in this same paper, it is shown how to extend
BKc4 with the strong constructive contraposition axioms

(i). (A → ¬B) → (B → ¬A)

∗Work supported by research projects HUM2005-05707 and HUM2005-03848/FISIO
and by Juan de la Cierva Program financed by the Spanish Ministry of Education and Science.



“04robles”
2008/2/20
page 58

i

i

i

i

i

i

i

i

58 GEMMA ROBLES

and

(ii). B → [(A → ¬B) → ¬A)

and with some strong implicative axioms up to positive intuitionistic logic
J+. It is clear that J+ plus (i) and (ii) is minimal intuitionistic logic, Jm. Now,
although even in BKc4 the ECQ (‘e contradictione quodlibet’) axiom

(iii). (A ∧ ¬A) → ¬B

is provable, in none of the logics included in Jm, the ECQ axiom

(iv). (A ∧ ¬A) → B

or the EFQ (‘e falso quodlibet’) axioms

(v). ¬A → (A → B)

and

(vi). A → (¬A → B)

are, of course, derivable.
So, in none of the logics included in the spectrum delimited by BKc4 and

Jm is n-consistency equivalent to absolute consistency (i.e., non-triviality).
Consequently, all logics in the aforementioned spectrum are paraconsistent
logics in the sense of [7].

In respect of these results, the aim of this paper is fourfold:

(1) The logic BKc5 is axiomatized by adding (i) and (ii) to BKc4. Now, it
will be proved that the weak constructive contraposition axioms

(vii). (A → B) → (¬B → ¬A)

and

(viii). ¬B → [(A → B) → ¬A)

can be added to BKc4, the resulting logic being different from BKc5.
This logic is dubbed BKc4’. Next, it is proved that BKc4’ can be ex-
tended with the axioms prefixing,

(ix). (B → C) → [(A → B) → (A → C)]
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suffixing

(x). (A → B) → [(B → C) → (A → C)]

contraction

(xi). [A → (A → B)] → (A → B)

and the assertion rule

(xii). ` A ⇒ ` (A → B) → B

the resulting logic being different from the result of adding (ix), (x),
(xi) and (xii) to BKc5.
In this way, a series of modal logics that include BKc4 but neither
include nor are included in Lewis’ S5 are defined (cf. remark 9).

(2) The characteristic axiom of Dummett’s intermediate logic LC (cf.
[3])

(xiii). (A → B) ∨ (B → A)

is added to Jm. The resulting logic is, intuitively, minimal intermedi-
ate logic LCm. Thus, a series of constructive logics between BKc4 and
LCm are defined. In none of these logics the ECQ axiom (iii) and the
EFQ axioms (iv) and (v) are provable. In this way, it is shown that
in LCm and in all logics included in it negation-consistency is still
independent of absolute consistency.

(3) Although BKc4 (especially its implicative fragment) is not a strong
logic, in [5] it is shown how to build a definitionally equivalent logic
(the concept is explained in §5) in which negation is treated with a
propositional falsity constant F instead of the unary connective. So,
the third aim of this paper is to build logics with the falsity constant
definitionally equivalent to those referred to in (1) and (2).

(4) Consider the following definition:

Definition 2 : Let L be a logic and a be a theory whose underlying
logic is L. Then a is w-inconsistent (weakly inconsistent) iff a con-
tains the negation of a theorem of L (a is w-consistent iff it is not
w-inconsistent).
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The basic constructive logic adequate to this sense of consistency in
the ternary relational semantics without a set of designated points,
i.e., the logic BKc1, is defined in [10]. In this paper, the exten-
sions of BKc1 up to contractionless intuitionistic logic JW without w-
consistency collapsing in n-consistency or absolute consistency are
also defined. Therefore, the fourth aim of this paper is to compare
BKc4 and its extensions with BKc1 and its extensions.

The structure of the paper is as follows. In §2, the logic BK+ is defined. It
is the result of adding the K rule

(xiv). ` A ⇒ ` B → A

to Routley and Meyer’s well known logic B+. Then, some extensions of BK+
with some strong implicative axioms are defined. In §3, the logics BKc4 and
BKc5 are recalled and the logic BKc4’ is introduced. In §4, logics formulated
with F definitionally equivalent to those defined in §3 are introduced, and
in §5, the definitional equivalence is proved. In §6, all the logics treated
so far are extended with some strong implicative axioms. Finally, in §7 the
logics adequate to n-consistency and those adequate to w-consistency are
compared. All logics introduced in this paper are proved sound and com-
plete in respect of a modification of Routley and Meyer’s ternary relational
semantics for relevance logics (recall that all logics defined in this paper have
the K rule (xiv)).

We end this introduction by remarking that all logics here introduced are
paraconsistent logics in the sense of [7], and that they are paraconsistent in
respect of a precisely defined sense of consistency, i.e., n-consistency.

2. The positive logic BK+ and its extensions

Firstly, the positive logic BK+ is defined. It can be axiomatized with

Axioms

A1. A → A

A2. (A ∧ B) → A / (A ∧ B) → B

A3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A4. A → (A ∨ B) / B → (A ∨ B)

A5. [(A → C) ∧ (B → C)] → [(A ∨ B) → C]

A6. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)]
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The rules of inference are

Modus ponens (MP): ` (A & ` A → B) ⇒ ` B

Adjunction (Adj.): (` A & ` B) ⇒ ` A ∧ B

Suffixing (Suf.): ` A → B ⇒ ` (B → C) → (A → C)

Prefixing (Pref.): ` A → B ⇒ ` (C → A) → (C → B)

K: ` A ⇒ ` B → A

Therefore, BK+ is B+ with the addition of the K rule.
We now define the semantics for BK+. A BK+ model is a triple <K, R, �>

where K is a non-empty set, and R is a ternary relation on K subject to the
following definitions and postulates for all a, b, c, d ∈ K with quantifiers
ranging over K:

d1. a ≤ b =df ∃xRxab

d2. R2abcd =df ∃x(Rabx & Rxcd)

P1. a ≤ a

P2. (a ≤ b & Rbcd) ⇒ Racd

Finally, � is a valuation relation from K to the sentences of the positive
language satisfying the following conditions for all propositional variables
p, wff A, B and a ∈ K:

(i). (a ≤ b & a � p) ⇒ b � p

(ii). a � A ∧ B iff a � A and a � B

(iii). a � A ∨ B iff a � A or a � B

(iv). a � A → B iff for all b, c ∈ K, (Rabc & b � A) ⇒ c � B

A formula A is BK+ valid (�Bk+ A) iff a � A for all a ∈ K in all models.

Remark 1 : The postulates P3 Rabc ⇒ b ≤ c, P4 (a ≤ b & b ≤ c) ⇒ a ≤ c
and P5 R2abcd ⇒ Rbcd hold in all models.

In [10] or in [11], it is proved that BK+ is sound and complete in respect of
this semantics.

Remark 2 : As is known, in the standard semantics for relevance logics (see,
e.g., [12]), there is a set of ‘designated points’ in terms of which the relation
≤ is defined and formulas are determined to be valid. The absence of this



“04robles”
2008/2/20
page 62

i

i

i

i

i

i

i

i

62 GEMMA ROBLES

set in BK+ semantics (and the corresponding changes in d1 and the definition
of validity) are the only but crucial differences between B+ models and BK+
models.

Next, we define some positive extensions of BK+. Consider the following
axioms and rule of inference

A7. (B → C) → [(A → B) → (A → C)]

A8. (A → B) → [(B → C) → (A → C)]

A9. [A → (A → B)] → (A → B)

A10. ` A ⇒ ` (A → B) → B

A11. A → [(A → B) → B]

A12. A → (B → A)

A13. (A → B) ∨ (B → A)

The following logics are defined:

(1) TW+: B+ + A7 + A8

(2) EW+: TW+ + A10

(3) RW+: TW+ + A11

(4) JW+: RW+ + A12

(5) LCW+: JW+ + A13

(6) T+: TW+ + A9

(7) E+: EW+ + A9

(8) R+: RW+ + A9

(9) J+: JW+ + A9

(10) LC+: LCW+ + A9

The well known logics T+, E+ and R+ are the positive fragments (without
fusion ◦ and t) of ‘Ticket Entailment’, T, ‘Entailment Logic’, E, and ‘Rele-
vance Logic’, R, respectively; and TW+, EW+ and RW+ are their respective
contractionless fragments. On the other hand, J+ and LC+ are the positive
fragments of ‘Intuitionistic logic’, J, and ‘Intermediate logic LC’, LC (see
[3]), respectively, and JW+ and LCW+ are their respective contractionless
fragments. Finally, TWK+, EWK+, RWK+, JWK+ and LCWK+, TK+, EK+,
RK+, JK+ and LCK+ are the logics just defined plus the K rule. Now, the K
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rule is not, of course, independent in JWK+, LCWK+, JK+ and LCK+. So,
these logics will be referred to by JW+, LCW+, J+ and LC+.

We note:

Proposition 1 :
(1) RWK+ and JW+ (so, RK+ and J+) are deductively equivalent logics.
(2) TWK+, EWK+, RWK+ (= JW+) and LCW+, TK+, EK+, RK+ (= J+) and

LC+ are different logics.

Proof. (1) It is trivial and (2) it follows by well known results on relevance
and intuitionistic logics (alternatively, one can use MaGIC, the matrix gen-
erator developed by J. Slaney (see [13]). �

We now turn to semantics. Consider the following set of postulates

P6. R2abcd ⇒ (∃x ∈ K)(Rbcx & Raxd)

P7. R2abcd ⇒ (∃x ∈ K)(Racx & Rbxd)

P8. Rabc ⇒ R2abbc

P9. (∃x ∈ K)Raxa

P10. Rabc ⇒ Rbac

P11. Rabc ⇒ a ≤ c

P12. (Rabc & Rade) ⇒ (b ≤ e or d ≤ c)

Now, models for the logics introduced above are defined, similarly, as BK+
models except for the addition of the following postulates:

(1) TWK+ models: P6, P7.

(2) EWK+ models: P6, P7, P9.

(3) RWK+ models: P6, P7, P10.

(4) JW+ models: P6, P7, P10, P11.

(5) LCW+ models: P6, P7, P10, P12.

(6) TK+ models: P6, P7, P8.

(7) EK+ models: P6, P7, P8, P9.

(8) RK+ models: P6, P7, P8, P10.

(9) J+ models: P6, P7, P8, P10, P11.

(10) LC+ models: P6, P7, P8, P10, P12.
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As in BK+ models, validity is defined in all cases in respect of all points of
K.

We next define the canonical models (cf. [11]). We begin by recalling
some definitions. A theory is a set of formulas closed under adjunction and
provable entailment (that is, a is a theory if whenever A, B ∈ a, then A∧B ∈
a; and if whenever A → B is a theorem and A ∈ a, then B ∈ a); a theory a
is prime if whenever A ∨ B ∈ a, then A ∈ a or B ∈ a; a theory a is regular
iff all theorems belong to a. Finally, a is null iff no wff belong to a. Now, we
define the BK+ canonical model. Let KT be the set of all theories and RT be
defined on KT as follows: for all formulas A, B and a, b, c ∈ KT , RT abc
iff if A → B ∈ a and A ∈ b, then B ∈ c. Further, let KC be the set of all
prime non-null theories and RC be the restriction of RT to KC . Finally, let
�C be defined as follows: for any wff A and a ∈ KC , a �C A iff A ∈ a.
Then, the BK+ canonical model is the triple <KC , RC , �C>.

Now, let L+ be any of the extensions of BK+ defined above. The L+ canon-
ical model is defined, similarly, as the BK+ canonical models except that its
items are referred to L+ theories instead of BK+ theories. Then, we have

Proposition 2 : Given the logic BK+ and BK+ semantics, P6, P7, P8, P9, P10,
P11 and P12 are the corresponding postulates to A7, A8, A9, A10, A11, A12
and A13, respectively.

Proof. Given BK+ and BK+ semantics, we have to prove that each axiom
is proved valid with the corresponding postulate and that the corresponding
postulate is proved valid with the axiom. Now, that this is the case for A7
(P6), A8 (P7), A9 (P8), A10 (P9), A11 (P10) and A12 (P11) is proved in
(or can easily be derived from) e.g., [12]. So, we prove that P12 is the
corresponding postulate to A13.

(1) A13 is LCW+ valid: Suppose a � A → B, a 2 B → A for wff A, B
and a ∈ K in some model. Then, b � A, d � B, c 2 B, e 2 A for b,
c, d, e ∈ K such that Rabc and Rade. By P12, b ≤ e or d ≤ c. So,
either e � A or c � B, a contradiction.

(2) P12 holds canonically: Suppose RCabc, RCade for a, b, c, d, e ∈
KC , and, for reductio, b �C e and d �C c. Then, A ∈ b, B ∈ d,
A /∈ e, B /∈ c for some wff A, B. As a is non-null, it is regular
by the K rule. So, (A → B) ∨ (B → A) ∈ a by A13. As a is
prime, A → B ∈ a or B → A ∈ a. So, either B ∈ c or A ∈ e, a
contradiction.

�
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Remark 3 : The correspondence between postulates and axioms A7 (P6), A8
(P7), A9 (P8), A10 (P9) and A11 (P10) stated in proposition 2 can be proved
in respect of B+ instead of BK+.

Now, it is clear that, given the soundness and completeness of BK+, those
of TWK+, EWK+, RWK+ (= JW+), LCW+, TK+, EK+, RK+ (= J+) and LC+ in
respect of the corresponding semantics follow immediately by proposition
2.

3. The logics BKc4 , BKc4’ and BKc5

We add the unary connective ¬ (negation) to the positive language. Consider
the following axioms:

A14. ¬A → [A → (A ∧ ¬A)]

A15. [B → (A ∧ ¬A)] → ¬B

A16. (A ∧ ¬A) → ¬(A → A)

A17. (A → B) → (¬B → ¬A)

A18. ¬B → [(A → B) → ¬A]

A19. (A → ¬B) → (B → ¬A)

A20. B → [(A → ¬B) → ¬A]

Then, the logics are axiomatized as follows:

(1) BKc4: BK+ + A14 + A15 + A16

(2) BKc4’: BK+ + A15 + A16 +A18

(3) BKc5: BK+ + A16 + A120

We note the following theorems of BK+ and BKc4 (cf. [8]):

T1BK+ . (A → B) → [A → (A ∧ B)]

T1BKc4 . (A → B) → ¬(A ∧ ¬B)

T2BKc4 . ¬(A ∧ ¬A)

T3BKc4 . ` A ⇒ ` (B → ¬A) → ¬B

T4BKc4 . ` A ⇒ ` ¬A → ¬B

T5BKc4 . ¬A → [A → ¬(A → A)]

T6BKc4 . [A → ¬(B → B)] → ¬A
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Next, we prove the following theorems of BKc4’:

T1BKc4’ . ¬A → [A → (A ∧ ¬A)]

Proof. By T1BK+ ,

1. (A → ¬A) → [A → (A ∧ ¬A)]

By A18,

2. ¬A → [(A → A) → ¬A]

By 2 and the K rule

3. ¬A → (A → ¬A)

Then, T1BKc4’ follows by (1) and (3). �

Therefore, we have:

Proposition 3 : BKc4 is deductively included in BKc4’ (but does not include
it).

Proof. (1) A14, A15 and A16 are theorems of BKc4’. (2) MaGIC. �

Next, we have

T2BKc4’ . ¬B → [A → (A ∧ ¬B)]

Proof. By A18 and the K rule,

1. ¬B → (A → ¬B)

By T1BK+ ,

2. (A → ¬B) → [A → (A ∧ ¬B)]

So, T2BKc4’ follows by (1) and (2). �

T3BKc4’ . (A → B) → (¬B → ¬A)
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Proof. By A18,

1. ¬(A ∧ ¬B) → [[A → (A ∧ ¬B)] → ¬A]

By (1) and T1BKc4 ,

2. (A → B) → [[A → (A ∧ ¬B)] → ¬A]

So, T3BKc4’ follows by (2) and T2BKc4’ . �

T4BKc4’ . [B → ¬(A → A)] → [(A → B) → [A → ¬(A → A)]]

T5BKc4 , T6BKc4 , A18

We note:

Proposition 4 : Let BKc4’(b) = BKc4 + A17. Then, BKc4’(b) and BKc4’ are de-
ductively equivalent.

Proof. We have

T1BKc4’(b) . ¬B → (A → ¬B)

Proof. By A14 and A17,

1. ¬A → [¬(A ∧ ¬A) → ¬A]

Then, T1BKc4’(b) follows by T2BKc4 and the K rule. �

T2BKc4’(b) . ¬B → [A → (A ∧ ¬B)]

Proof. Similar to that of T2BKc4’ with T1BKc4’(b) . �

Finally, we have

T3BKc4’(b) . ¬B → [(A → B) → ¬A]

Proof. By T2BKc4’(b) and A17,

1. ¬B → [¬(A ∧ ¬B) → ¬A]
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Then, the theorem follows by T1BKc4 . �

Thus, BKc4’ can intuitively be described as the result of adding the weak
constructive contraposition axioms A17 and A18 to BKc4. �

We remark the following:

Proposition 5 : (1) BKc4 and BKc4’ are included in BKc5 (but do not in-
clude it).

(2) BKc4 and BKc4’ are different logics.
(3) BKc4, BKc4’ and BKc5 are well axiomatized in respect of BK+ (that is,

the negation axioms are, in each case, mutually independent).

Proof. (1) See [8]. (2), (3) by MaGIC. �

We now turn to the semantics. Consider the following postulates

P13. (Rabc & c ∈ S) ⇒ a ∈ S

P14. a ∈ S ⇒ (∃x ∈ S)Raax

P15. (R2abcd & d ∈ S) ⇒ (∃x ∈ K)(∃y ∈ S)(Racx & Rbxy)

P16. (R2abcd & d ∈ S) ⇒ (∃x ∈ K)(∃y ∈ S)(Rbcx & Raxy)

P17. (R2abcd & d ∈ S) ⇒ (∃x ∈ S)R2acbx

P18. (R2abcd & d ∈ S) ⇒ (∃x ∈ S)R2bcax

A BKc4 model is a quadruple 〈K, S, R, �〉 where S is a non-empty subset
of K, and K, R and � are defined, in a similar way, as in BK+ models, except
for the addition of the following clause

(v). a � ¬A iff for all b, c ∈ K, (Rabc & c ∈ S) ⇒ b 2 A

and postulates P13 and P14. Then, BKc4’ models (BKc5 models) are, similarly,
defined as BKc4 models, save for the addition of P15, P16 (P17, P18). In the
three cases validity is defined in respect of all points of K.

The BKc4 canonical model is the quadruple 〈KC , SC , RC , �C〉 where
KC , RC and �C are defined in a similar way to which they are defined in
the BK+ canonical model, and SC is interpreted as the set of all non-null
prime negation-consistent theories. A theory a is n-inconsistent (negation-
inconsistent) iff for some wff A, A ∧ ¬A ∈ a. A theory a is n-consistent
(negation-consistent) iff it is not n-inconsistent (cf. definition 1). The BKc4’
canonical model and the BKc5 canonical model are defined, similarly, as the
BKc4 canonical model, its items being referred now, of course, to BKc4’ and
BKc5 theories, respectively.
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Remark 4 : Clause (v) is an adaptation of the negation clause characteristic
of minimal intuitionistic logic in binary relational semantics. The intuition-
istic clause reads

a � ¬A iff (Rab & b ∈ S) ⇒ b 2 A

That is, a formula of the form ¬A is true at point a iff A is false in all consis-
tent points accessible from a –‘inconsistent’ is here understood in the (min-
imal) intuitionistic way–. So, in ternary relational semantics, the (minimal)
intuitionistic clause would be translated as clause (v). That is, a formula of
the form ¬A is true in point a iff A is false in all points b such that Rabc for
all consistent points c –‘consistent’ is here understood as n-consistent–.

Now, we recall that a theory is w-inconsistent iff it contains the negation
of a theorem (cf. definition 2 in §1). We prove:

Proposition 6 : Let a be a BKc4 theory. Then, a is n-consistent iff it is w-
inconsistent.

Proof. (1) Suppose that for some wff A, A ∧ ¬A ∈ a. By A16, a is w-
inconsistent. (2) Suppose that a is w-inconsistent, i.e., ¬A ∈ a, A being a
theorem. By the K rule, ¬A → A is a theorem. So, A ∈ a and consequently,
A ∧ ¬A ∈ a. �

Therefore, in BKc4 (and in all logics including it), n-consistency is equiva-
lent to w-consistency.

In [8] it is proved that BKc4 and BKc5 are sound and complete in respect of
the corresponding semantics defined above. So, we shall prove the sound-
ness and the completeness of BKc4’.

We first prove a useful proposition stating that n-consistency of theories
is preserved when they are extended to prime theories (this proposition is
implicitly used in what follows). Let BK+,¬ be any extension of BK+ in which
the rule contraposition

con. ` A → B ⇒ ¬B → ¬A

and

A16. (A ∧ ¬A) → ¬(A → A)

hold. We note that the following De Morgan law

dm. ` (¬A ∨ ¬B) → ¬(A ∧ B)
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is provable in B+,¬ (A2, A5, con.). We also remark that con. is provable in
BKc4 (cf. [8]).

We have

Proposition 7 : Let a be a BK+,¬ n-consistent theory. Then, there is some
prime n-consistent theory x such that a ⊆ x.

Proof. Define from a a maximal n-consistent theory x such that a ⊆ x.
If x is not prime, then A ∨ B ∈ x, A /∈ x, B /∈ x for some wff A, B.
Define the theories [x, A] = {C | ∃D[D ∈ x & `B+,¬ (A ∧ D) → C]},
[x, B] = {C | ∃D[D ∈ x & `B+,¬ (B ∧ D) → C]} that strictly include x.
By the maximality of x, [x, A] and [x, B] are n-inconsistent. So, C∧¬C ∈ x,
D∧¬D ∈ x for some wff C, D. By definitions, `B+,¬ (A∧G) → (C∧¬C),
`B+,¬ (B ∧ G′) → (D ∧ ¬D) for G, G′ ∈ x. By A16, `B+,¬ (A ∧ G) →
¬(C → C), `B+,¬ (B ∧ G′) → ¬(D → D). Then, by B+, `B+,¬ [(A ∨ B) ∧
(G ∧ G′)] → [¬(C → C) ∨ ¬(D → D)]. As (A ∨ B) ∧ (G ∧ G′) ∈ x,
¬(C → C) ∨ ¬(D → D) ∈ x. By dm., ¬[(C → C) ∧ (D → D)] ∈ x, but
`B+,¬ (C → C) ∧ (D → D) by A1 and Adj. Therefore, x is n-inconsistent
by proposition 6, which is impossible. Consequently, x is prime. �

Thus, in any logic including BK+ plus con. and A16, n-consistent theories
can be extended to prime n-consistent theories.

We prove

Proposition 8 : Given the logic BKc4’ and BKc4’ semantics,
(1) P15 is the corresponding postulate to A17, and
(2) P16 is the corresponding postulate to A18.

Proof. We prove, e.g., case 2. The proof of case 1 is similar.
A17 is BKc4’ valid: Suppose a � ¬B, a 2 (A → B) → ¬A for wff A,

B and a ∈ K in some model. So, b � A → B, d � A for b, c, d ∈ K
and e ∈ S such that Rabc and Rcde. By d2, R2abde, and by P16, Rbdz
and Razu for z ∈ K and u ∈ S. On the other hand, by a � ¬B, (Raxy
& y ∈ S) ⇒ x 2 B for all x ∈ K and y ∈ S. So, z 2 B. But z � B
(b � A → B, Rbdz, d � A).

P16 holds canonically: it follows immediately from the following lemma:

Lemma 1 : Let a, b, c be non-null elements in KT and d a non-null n-
consistent member in KT such that RT2abcd. Then, there are non-null x in
KT and some non-null n-consistent y in KT such that RT bcx and RT axy.
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Proof. Let a, b, c be non-null elements in KT and d a n-consistent element
in KT such that RT2abcd, i.e., by d2, RT abz and RT zcd for some z ∈ KT .
Define the non-null theories x = {B | ∃A[A → B ∈ b & A ∈ c]}, y = {B |
∃A[A → B ∈ a & A ∈ x]} such that RT bcx and RT axy. We prove that
y is n-consistent. Suppose it is not. Then, ¬A ∈ y, A being a theorem (cf.
proposition 6). So, B → ¬A ∈ a, C → B ∈ b for some wff B and C ∈ c.
As A is a theorem, by T3BKc4 , ¬B ∈ a. By A18, (C → B) → ¬C ∈ a. So,
¬C ∈ z (RT abz), whence, by A14, C → (C ∧ ¬C) ∈ z and consequently,
C ∧ ¬C ∈ d (RT zcd, C ∈ c), contradicting the n-consistency of d. �

�

Now, given the soundness and completeness of BKc4, by proposition 8, it
follows:

Theorem 5 : (soundness and completeness of BKc4’) `BKc4’ A iff
�BKc4’ A.

4. The logic BKc4F and its extensions

We add the propositional falsity constant F to the positive language together
with the definition

D¬: ¬A ↔ A → F

Now, consider the following axioms:

A21. F → (A → F )

A22. [A ∧ (A → F )] → F

A23. (A → B) → [(B → F ) → (A → F )]

A24. (B → F ) → [(A → B) → (A → F )]

A25. [A → (B → F )] → [B → (A → F )]

A26. B → [[A → (B → F )] → (A → F )]

Then, the following logics are defined:

(1) BKc4F : BK+ + A21 + A22

(2) BKc4F ′ : BK+ + A21 + A22 + A24

(3) BKc5F : BK+ + A22 + A26
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Remark 6 : The logic BKcr is the main logic defined in [11]. It is axiomatized
by adding to BK+ A23, A24 and the special law of reductio in the form [A →
(A → F )] → (A → F ). We note that BKcr is deductively included in (but
does not include) BKc4F ′ .

We shall prove that BKc4F and BKc4, BKc4F ′ and BKc4’, and BKc5F and
BKc5 are definitionally equivalent. So, the relations between the logics stated
in proposition 5 hold correspondingly for the definitionally equivalent logics
defined with the falsity constant. Moreover, we remark that BKc4F , BKc4F ′

and BKc5F are well axiomatized in respect of BK+ (MaGIC, cf. proposition
5).

We now define the semantics (cf. [5]). A BKc4F model is a quadruple
〈K, S, R, �〉 where K, S, R and � are defined, in a similar way, as in a
BKc4 model, postulates P13 and P14 hold, but clause (v) is substituted by the
clauses

(vi). (a ≤ b & a � F ) ⇒ b � F

and

(vii). a � F iff a /∈ S

Then, BKc4F ′ models (BKc5F models) are defined similarly as BKc4F mod-
els save for the addition of P15 and P16 (P17, P18). In the three cases validity
is defined in respect of all points of K.

Next, the BKc4F canonical model cf. [5]) is the quadruple 〈KC , SC , RC ,
�C〉 where KC , RC and �C are defined in a similar way to which they are
defined in the BKc4 (or BK+) canonical model, and SC , as before, is the
set of all non-null prime consistent theories, but now a theory is consistent
iff F /∈ a (a theory a is inconsistent iff F ∈ a). The BKc4F ′ canonical
model and the BKc5F canonical model are defined similarly, but with its items
referred to BKc4F ′ theories and BKc5F theories, respectively.

We prove:

Proposition 9 : Let a be a BKc4F theory. Then, a is inconsistent iff a is n-
inconsistent.

Proof. (1) Let F ∈ a. As ¬F is a theorem (A1, D¬), F ∧¬F ∈ a. Suppose
A ∧ ¬A ∈ a for some wff A. Then, F ∈ a by A22. �

Therefore, in BKc4F (and in all logics included in it), consistency (under-
stood as the absence of F ) and n-consistency are equivalent.
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Now, in [5] it is proved that BKc4F is sound and complete in respect of the
semantics defined above. So, we shall prove the soundness and completeness
of BKc4F ′ and BKc5F .

As in the case of BKc4, a proposition on the preservation of consistency
in building prime theories is provable. Let B+,F be the result of extending
the positive language of B+ with the propositional falsity constant F , no new
axioms, however, being added. We have:

Proposition 10 : Let a be a consistent B+,F theory. Then, there is some prime
consistent theory x such that a ⊆ x.

Proof. Define from a a maximal consistent theory x such that a ⊆ x. If x
is not prime, then A ∨ B ∈ x, A /∈ x, B /∈ x for some wff A, B. Define,
similarly, as in proposition 7 the theories [x, A] and [x, B] strictly including
x. Then, [x, A] and [x, B] are inconsistent, i.e., F ∈ [x, A], F ∈ [x, B]
whence, by definitions, `B+,F (A ∧ C) → F , `B+,F (B ∧ C ′) → F for
C ∈ x, C ′ ∈ x. Then, F ∈ x (cf. proposition 7), which is impossible.
Therefore, x is prime. �

Thus, in any logic including B+,F , consistent theories can be extended to
prime consistent theories.

We now prove

Proposition 11 : Given the logic BKc4F and BKc4F semantics, P15, P16, P17
and P18 are the corresponding postulates to A23, A24, A25 and A26, re-
spectively.

Proof. We prove, e.g., that P18 is the corresponding postulate to A26. The
rest of the cases are proved similarly and are left to the reader.

A26 is BKc4F valid: suppose a � B, a 2 [A → (B → F )] → (A → F )
for wff A, B and a ∈ K in some model. Then, b � A → (B → F ), d � A,
e 2 F for a, b, c, d, e ∈ K such that Rabc and Rcde. By d2, R2abde, and
as e ∈ S, by P18, Rbdx and Rxay for x ∈ K and y ∈ S. So, x � B → F
and then, y � F , i.e., y /∈ S (clause (vii)), a contradiction.

P18 holds canonically: It follows immediately from the following lemma:

Lemma 2 : Let a, b, c be non-null members in KT and d a non-null consistent
member in KT such that RT2abcd. Then, there are non-null y in KT and
non-null consistent x in KT such that RT bcy and RT yax, i.e., RT2bcax.

Proof. Suppose non-null a, b, c in KT and non-null consistent d in KT such
that RT2abcd, i.e., RT abz and RT zcd for some (non-null) z ∈ KT . Define
the non-null theories y = {B | ∃A[A → B ∈ b & A ∈ c]}, x = {B |
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∃A[A → B ∈ y & A ∈ a]} such that RT bcy and RT yax. We prove that x
is consistent. Suppose it is not. Then, F ∈ x. So, B → (A → F ) ∈ b for
some A ∈ a, B ∈ c. By A26, [B → (A → F )] → (B → F ) ∈ a. So,
B → F ∈ z (RT abz) and so, F ∈ d (RT zcd), contradicting the consistency
of d. �

�

Now, given the soundness and completeness of BKc4F , by proposition 11,
it follows:

Theorem 7 : (soundness and completeness of BKc4F ′ and BKc5F )
(1) `BKc4F ′

A iff �BKc4F ′
A

(2) `BKc5F
A iff �BKc5F

A

5. The definitional equivalence between BKc4 and BKc4F and their respec-
tive extensions

Firstly, we introduce F by definition in BKc4 (cf. [5]). Note that for any
formulas A, B, ¬(A → A) and ¬(B → B) are equivalent by T4BKc4 . Then,
we state:

Let A be a wff. Then,

DF : F ↔ ¬(A → A)

That is, F replaces any wff of the form ¬(A → A) (note that the defining
formula does not depend on the choice of A). We note:

Proposition 12 : Let a be a BKc4 theory. Then, a is n-inconsistent iff for some
wff A, ¬(A → A) ∈ a.

Proof. Proposition 6. �

Therefore, in BKc4 (and in all logics including it) a theory is n-inconsistent
iff it contains F as defined above. More precisely, in BKc4 (and in all logics
included in it) a theory is n-inconsistent iff it is w-inconsistent iff it contains
F (cf. propositions 6 and 12).

Next, we turn to the proof of the definitional equivalence. We shall under-
stand the notion as ‘definitional equivalence via translations’ (see, e.g., [6]).
We have to prove the following two propositions (cf. [2]):

Proposition 13 : (1) BKc4F ⊆ BKc4 ∪ {DF}
(2) BKc4 ⊆ BKc4F ∪ {D¬}
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Proposition 14 : (1) D¬ is provable in BKc4 ∪ {DF}
(2) DF is provable in BKc4F ∪ {D¬}

Propositions 13 and 14 are proved in [5]. So, in order to prove the defini-
tional equivalence between BKc4’ and BKc4F ′ , BKc5 and BKc5F , it suffices to
prove propositions 15 and 16 that follow:

Proposition 15 : (1) BKc4’ ⊆ BKc4F ′ ∪ {D¬}
(2) BKc4F ′ ⊆ BKc4’ ∪ {DF}

Proof.
(1) A18= A24, by D¬.
(2) T4BKc4’= A24, by DF .

�

Proposition 16 : (1) BKc5 ⊆ BKc5F ∪ {D¬}
(2) BKc5F ⊆ BKc5 ∪ {DF}

Proof.
(1) A20= A26, by D¬.
(2) Firstly, we note that B → {[A → [B → ¬(A → A)]] → [A →

¬(A → A)]} is a theorem of BKc5 by A20, T5BKc4 and T6BKc4 . Then,
this theorem is equivalent to A26, by DF .

�

6. Strengthening the positive logic

We take up again the extensions of BK+ defined in §2. Now, negation can
be introduced in these logics in a similar way to which it was introduced in
BK+. Thus, the following logics can be defined:

(1) TWKc4, EWKc4, RWKc4 (= JWc4), LCWc4

(2) TWKc4’, EWKc4’, RWKc4’ (= JWc4’), LCWc4’

(3) TWKc5, EWKc5, RWKc5 (= JWc5), LCWc5

(4) TKc4, EKc4, RKc4 (= Jc4), LCc4

(5) TKc4’, EKc4’, RKc4’ (= Jc4’), LCc4’

(6) TKc5, EKc5, RKc5 (= Jc5), LCc5
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It is clear that, given propositions 13-16, the logics definitionally equiva-
lent to those in groups 1-6, can be defined:

1’. TWKc4F , EWKc4F , RWKc4F (= JWc4F ), LCWc4F

2’. TWKc4F ′ , EWKc4F ′ , RWKc4F ′ (= JWc4F ′), LCWc4F ′

3’. TWKc5F , EWKc5F , RWKc5F (= JWc5F ), LCWc5F

4’. TKc4F , EKc4F , RKc4F (= Jc4F ), LCc4F

5’. TKc4F ′ , EKc4F ′ , RKc4F ′ (= Jc4F ′), LCc4F ′

6’. TKc5F , EKc5F , RKc5F (= Jc5F ), LCc5F

We prove some propositions on the relations between these logics:

Proposition 17 : TWKc4 and TWKc4’ are deductively equivalent logics. So,
EWKc4 and EWKc4’, RWKc4 (= JWc4) and RWKc4’ (= JWc4’) and LCWc4 and
LCWc4’, TKc4 and TKc4’, EKc4 and EKc4’, RKc4 (= Jc4) and RKc4’ (= Jc4’) and
LCc4 and LCc4’are deductively equivalent logics.

Proof. A17 is derivable by A8, A14 and A15; A18 is derivable by A7, A14
and A15. �

Proposition 18 : RWKc4 (= JWc4) and RWKc5 (= JWc5) and LCWc4 and
LCWc5 are deductively equivalent logics. So, RKc4 (= Jc4) and RKc5 (= Jc5)
and LCc4 and LCc5 are deductively equivalent logics.

Proof. Firstly, note that A17 and A18 are derivable. Next, by A11 and A17,

1. A → [¬A → ¬(A → A)]

By 1 and T6BKc4 ,

2. A → ¬¬A

Then, A19 and A20 are easily provable with, respectively, A17 and A18
together with introduction of double negation (2). �

Proposition 19 : EKc4 and EKc5 are different logics, the former being in-
cluded in the latter. So, TKc4 and TKc5, EWKc4 and EWKc5 and TWKc4 and
TWKc5 are different logics, the first member of each pair being included in
the second.

Proof. By proposition 5 and MaGIC. �
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By well known results on relevance and intuitionistic logics (alternatively,
one can use MaGIC), the contractionless logics here defined are different
from their respective counterparts plus the contraction axiom. So, the rela-
tions between these logics can be summarized in the following diagram (L
→ L’ means that L is included in L’).

A similar diagram is, of course, obtained for the definitionally equivalent
logics defined with the propositional falsity constant.

Remark 8 : Recall that LCWc4 (LCc4), RWKc4 (RKc4), EWKc5 (EKc5) and
TWKc5 (TKc5) are the result of adding the strong constructive contraposition
axioms A19 and A20 to LCW+ (LC+), RWK+ (RK+), EWK+ (EK+) and TWK+
(TK+), respectively, and that EWKc4 (EKc4) and TWKc4 (TKc4) are EWK+
(EK+) and TWK+ (TK+), respectively, plus the weak constructive contraposi-
tion axioms A17 and A18.

Remark 9 : EKc5, EKc4, EWKc5, EWKc4, TKc5 and TKc4, TWKc5 and TWKc4 are
constructive modal logics (the arrow in these logics is some kind of strict
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implication). But we note that these logics are not included in, e.g., Lewis’
modal S5 as axiomatized by Hacking [4] (and, of course, neither do they
include it): A14, for example, is not a theorem of S5. On the other hand, we
remark that a necessity operator � can be introduced (as in [1], §4.3) in EKc5
and EKc4, EWKc5 and EWKc4 via the definition �A =df (A → A) → A. Gen-
erally speaking, the operator thus introduced has the characteristic proper-
ties of the necessity operator of Lewis’ S4 but with interesting relations with
a possibility operator ♦ definable from it, due to the absence of elimina-
tion of double negation and its accompanying theses. The analysis of this
question cannot, however, be pursued here.

Regarding soundness and completeness of the logics introduced in this
section, it is obvious that they follow immediately from those of the positive
logics and BKc4 (BKc4F ), BKc4’ (BKc4F ′) and BKc5 (BKc5F ).

We end this section with the following proposition:

Proposition 20 : Though the ECQ axiom (iii) (A∧¬A) → ¬B is a theorem
of BKc4 (cf. [8]), the ECQ axiom (iv) (A∧¬A) → B and the EFQ axioms (v)
¬A → (A → B), (vi) A → (¬A → B) (cf. Introduction) are not provable
in LCWc4.

Proof. By MaGIC. �

Therefore, in LCWc4 (and in all logics included in it), n-consistency is
not equivalent to absolute consistency. Consequently, LCc4 (and all logics
included in it) are paraconsistent logics in the sense of [7].

7. A comparison between BKc1 and BKc4 and their respective extensions

The basic constructive logic adequate to w-consistency in the ternary rela-
tional semantics without a set of designated points, i.e., BKc1 (cf. Introduc-
tion) can be axiomatized by adding to BK+ the axioms

A27. ¬A → [A → ¬(A → A)]

and

A28. [B → ¬(A → A)] → ¬A

The logic BKc1’ is BKc1 plus the weak constructive contraposition axioms
A17 and A18, and the logic BKc2 is BKc1 plus the strong constructive con-
traposition axioms A19 and A20. Then, in [9], [10], a number of extensions
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of BKc1, BKc1’ and BKc2 with the positive axioms A7, A8 and A10-A13 are
introduced. However, no extensions with the contraction axiom A9 are con-
sidered, since its addition even to BKc1 would cause w-consistency to be
equivalent to n-consistency. Let us now compare these logics with the ones
defined in this paper. Firstly, we have:

Proposition 21 : BKc1, BKc1’ and BKc2 are included in (but do not include)
BKc4, BKc4’ and BKc5, respectively.

Proof. (1) A27 and A28 (T5BKc4 and T6BKc4 , respectively, cf. §3) are theo-
rems of BKc4. (2) By MaGIC. �

Now, let SKc1 (SKc1’ and SKc2) be any extension of BKc1 (BKc1’ and BKc2)
defined by adding any selection of the axioms A7, A8, A10-A13; and let
SKc4 (SKc4’ and SKc5) be the extension of BKc4, BKc4’ and BKc5 defined by
the same selection. We have:

Proposition 22 : SKc1 (SKc1’ and SKc2) is included in (but does not include)
SKc4 (SKc4’ and SKc5).

Proof. (1) By proposition 21. (2) Let LCWKc2 be the result of adding A7,
A8 and A10-A13 to BKc2. Although A14 is provable in LCWKc2, A15 and
A16 are not (MaGIC). �

Thus, for example, JWc2 and JWc5 are the result of adding to contraction-
less positive intuitionistic logic JW+ (i.e., B+ plus A7, A8, A11 and A12)
A19 and A20, and A16 and A20, respectively. Now, JWc2 is included in (but
does not include) JWc5.

Finally, note that the relations stated in propositions 21, 22 hold, of course,
correspondingly between the definitionally equivalent logics defined with the
falsity constant
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