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NEARLY EVERY NORMAL MODAL LOGIC IS PARANORMAL

JOÃO MARCOS

The principal interest is philosophical: not to
confine oneself to what is necessary for (current)
practice, but to see what is possible by way of
theoretical analysis.
— [Kreisel, 1970].

An overcomplete logic is a logic that ‘ceases to make the difference’: Ac-
cording to such a logic, all inferences hold independently of the nature of
the statements involved. A negation-inconsistent logic is a logic having
at least one model that satisfies both some statement and its negation. A
negation-incomplete logic has at least one model according to which nei-
ther some statement nor its negation are satisfied. Paraconsistent logics are
negation-inconsistent yet non-overcomplete; paracomplete logics are nega-
tion-incomplete yet non-overcomplete. A paranormal logic is simply a logic
that is both paraconsistent and paracomplete.

Despite being perfectly consistent and complete with respect to classical
negation, nearly every normal modal logic, in its ordinary language and in-
terpretation, admits to some latent paranormality: It is paracomplete with
respect to a negation defined as an impossibility operator, and paraconsis-
tent with respect to a negation defined as non-necessity. In fact, as it will be
shown here, even in languages without a primitive classical negation, nor-
mal modal logics can often be alternatively characterized directly by way
of their paranormal negations and related operators. So, instead of talking
about ‘necessity’, ‘possibility’, and so on, modal logics could be seen just
as devices tailored for the study of (modal) negation. This paper shows how
and to what extent this alternative characterization of modal logics can be
realized.

1. Affirmative and negative modalities

In the course of the last hundred years or so, traditional modal logic was
extraordinarily reinvigorated, at the outset with the firsthand assistance of
symbolic logic, then by the successful development of both its algebraic and
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relational semantics. Of all adverbs which have been formalized with the
help of modal languages, the most popular turned out to be a certain ‘2-like’
modality with a universal character and its ‘3-like’ existential dual, irre-
spective of their circumstantial readings — alethic, deontic, doxastic, tem-
poral, etc — on each particular application field. The gate to possible worlds
(and to some bad science fiction) was opened by the tacit assumption that
the usual classical connectives should be interpreted locally, while 2 and 3

were supposed to have a global scope.
To be perfectly fair, not all modal semantics conform to the above pat-

tern. The traditional modal interpretation of intuitionistic and intermedi-
ate logics, for example, as well as the ternary relations of relevance logics,
end up with a global interpretation of both the implication and the negation
connectives, all other connectives being interpreted classically and locally.
Other modal logics go farther, and are themselves built over non-empty sets
of non-classical worlds, be they many-valued, incomplete or even inconsis-
tent. On the other hand, several other linguistic modal bases have also been
tried at a few occasions. To mention just a particularly meaningful one, I
recall the contingency / non-contingency logics explored by several authors
since [Montgomery and Routley, 1966], trading 2 and 3 for the non-normal
modal connectives O and M, with which the former are interdefinable only
in the case of sufficiently convoluted classes of frames.

Traditional literature on modal logic such as [Hughes and Cresswell, 1968]
has it that a ‘modality’ is just an arbitrary finite sequence of 2’s, 3’s and
∼’s, where ∼ is a symbol for classical negation. Aristotle had a picture of
a ‘Square of Oppositions’ (SoO) involving negation and quantification. An
analogous picture (see Figure 1) for the basic case involving modalities can
be found in [Łukasiewicz, 1953] — and probably even earlier.

Figure 1. Square of Modalities (SoM)
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The four modal corners from the above SoM were not really treated on
an equal footing in the recent literature of modal logic. To be sure, that
circumstance alone should not count against any of the modalities thereby
contained, as even nowadays there is no agreement on what modal logic is,
in general abstract terms. In a brilliant book originated from a frustrated
attempt at such a definition of modal logic, [Segerberg, 1982], p.128, the
following comment can be found:

Among the many possible operators that have never been proposed
by anyone, there is one that should be mentioned here, the unary `,
with `α bearing the intuitive reading ‘it is not necessary that α’ or
‘α is non-necessary’. The concept of non-necessity does not appear
to equal in intuitive significance that of impossibility, let alone those
of necessity or possibility. But from a theoretical point of view, `

is on a par with a as well as with 2 and 3.
[in the quote, the symbols for a and ` are mine]

On that matter, according to [Horn, 1989], linguistic researches attest that,
at least for pragmatic reasons, the bottom-right corners of both the SoO and
the SoM seem not to have exact natural language equivalents in any of the
world’s living natural languages (but it should be noticed that this is no
longer true if one considers artificially constructed languages such as Lojban,
check [Cowan, 1997]). The noted asymmetry does not seem to have a con-
vincing semantic explanation, and one can indeed find authors like Béziau
(in a series of papers culminating recently at [Béziau, 2005]) preaching the
study of the ‘nameless corner of the square of oppositions and modalities’
as an utterly intuitive enterprise. On what concerns the upper-right corner
of the SoM, one should note that, alongside the classical connectives and a
binary modality of strict implication, impossibility (a) was in fact the only
primitive unary modality appearing in [Lewis, 1918], the cornerstone study
that marked the contemporary revival of modal logic.

In the philosophical literature (and only there!), modal logics are still often
seen simply as the study of operators ‘used to qualify the truth of a judge-
ment’ (check, for instance, [Garson, 2003]). Of course, such truth-qualifying
operators can analogously be used to qualify falsehood, and if the left-hand
side of the SoM can be seen as displaying operators that qualify affirmation,
the right-hand side can similarly purport to display operators that qualify
negation. But does that interpretation really make sense? Can a and ` be
seriously proposed as proxies for a negation operator? The answer is very
often YES, but to understand that ‘very often’ it is useful to fix first some
terminology.
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1.1. Basic modal semantics

Consider the standard language of classical propositional logic, whose sig-
nature is equipped with binary connectives for conjunction (∧), disjunction
(∨), implication (⊃), and a unary connective for negation (∼). Let SCPL or
S∧∨⊃∼ denote the set of formulas freely generated by a denumerable set
of sentential variables, P , over the above signature (the subscripts will be
dropped when clear from the context). A frame here will be given by a non-
empty set of worlds, W , and a model over a given frame will be obtained by
coupling it with a (bi)valuation V : P × W → {0, 1}. Valuations can be
used to define a canonical notion of satisfiability, |=M

x ⊆ Pow(S)×Pow(S),
for each world x of a model M, with the help of the following clauses that
tell us how each connective should be understood:

|=M
x p iff V (p, x) = 1, for p ∈ P

|=M
x α ∧ β iff |=M

x α and |=M
x β

|=M
x α ∨ β iff |=M

x α or |=M
x β

|=M
x α ⊃ β iff |=M

x α implies |=M
x β

|=M
x ∼α iff 6|=M

x α

To write 6|=M
x α is to say that |=M

x α does not hold. I will also denote
that, alternatively, by writing α |=M

x . In general, for a given world x of a
model M of a given frame, I will assume that:

Γ |=M
x ∆ iff (∃γ ∈ Γ) γ �

M
x or (∃δ ∈ ∆) �

M
x δ

The notion of a valid inference and the corresponding entailment (seman-
tic global consequence relation) |=CPL ⊆ Pow(S) × Pow(S) associated to
classical propositional logic is fixed by setting Γ |=CPL ∆ iff Γ |=M

x ∆ for
every world x of every model M of an arbitrary frame. Of course, in the
case of CPL, the recourse to a set of worlds W does not help that much, as all
the connectives of this logic are evaluated locally, i.e., evaluated inside each
(classical) world.

The expressive power of CPL is well-known: The logic has an adequate 2-
valued functional semantics, and in fact every 2-valued n-ary truth-function
can be written with the help of the above connectives. Some other particular
connectives that are often used in the literature and that will be mentioned
in the text below include the 0-ary connectives top (>) and bottom (⊥), and
the binary connectives for equivalence (≡) and coimplication (6⊂, the ‘dual’
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to implication in a precise sense to be specified in Subsection 2.1). Here is
the intended interpretation of these connectives, together with some possible
ways of defining them in terms of the connectives taken above as primitive
or defined earlier on:

Definitions Characterizing properties
α 6⊂ β

def
== ∼α ∧ β |=M

x α 6⊂ β iff β ⊃ α |=M
x

α ≡ β
def
== (α ⊃ β) ∧ ∼(α 6⊂ β) |=M

x α ≡ β

iff |=M
x α ⊃ β and |=M

x β ⊃ α

>
def
== α ⊃ α, for any α |=M

x >

⊥
def
== α 6⊂ α, for any α ⊥ |=M

x

In the case of ordinary normal modal logics, I will consider again a frame
based on non-empty set of classical worlds but now I will enrich it with
an accessibility relation R ⊆ W ×W between the worlds, and read xRy as
‘x sees y’ or ‘y is accessible to x’. A model based on such a frame, as before,
will be assembled from a given valuation over the sentences and worlds, and
a corresponding inductive definition of the interpretation for the whole set of
formulas. This time the signature will contain two further unary connectives,
box (2, often read as ‘necessity’) and diamond (3, often read as ‘possibil-
ity’), and it will be denoted by SNML or S∧∨⊃∼23. The interpretation of
the new connectives is given by the following clauses (where ⇒ substitutes
‘implies’ and & is used for ‘and’):

|=M
x 2α iff (∀y ∈ W)(xRy ⇒ |=M

y α)

|=M
x 3α iff (∃y ∈ W)(xRy & |=M

y α)

All other definitions are similar to the classical case. Several different modal
logics (that is, several different relations of global entailment) can be defined
in the above signature, according to the restrictions imposed over the acces-
sibility relations in each case. In fact, when talking about a logic, from here
on, I will always make sure that its set of formulas and an associated conse-
quence relation are clearly defined, be it in proof-theoretical, in semantical
or in abstract terms. The minimal normal modal logic, K, where NO restric-
tions are imposed over R, can be axiomatized by adding one of the three
following sets of further axioms and rules to any complete set of axioms and
rules for CPL:
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(1.1) ` 2(α ⊃ β) ⊃ (2α ⊃ 2β)

(1.2) ` α ⇒ ` 2α

(2.1) ` α0 ∧ . . . ∧ αn ⊃ α ⇒ ` 2α0 ∧ . . . ∧ 2αn ⊃ 2α,
where this rule reduces to (1.2) in case n = 0

(3.1) ` 2>

(3.2) ` 2α ∧ 2β ⊃ 2(α ∧ β)

(3.3) ` α ⊃ β ⇒ ` 2α ⊃ 2β

(The axioms for 3 are dual. For the present purposes, 3α may be defined
as ∼2∼α.)

The explicit definability of all ‘admissible modal operators’ from the ba-
sic modal language was investigated, for instance, in [Wansing, 1996], with
respect to their associated ‘proof-theoretic semantics’. Among the many
new connectives that can now be defined in every NML, one could pinpoint
contingency (O) and non-contingency (M), definable for instance by setting
Oα def

== 3α ∨ 3∼α and Mα def
== 3α ⊃ 2α, besides, of course, the two new

modalities at the right-hand side of the SoM, a and `, definable as in Fig-
ure 1.

1.2. Modal negations?

Some particular restrictions on the accessibility relation R will produce de-
generate examples of modal logics. Call a world autistic in case there is no
world accessible to it according to R, and call it narcissistic in case it can
only see itself. The collection of all autistic frames (that is, frames whose
worlds are all autistic) determines a logic called Ver, and can be axioma-
tized by the addition of the axiom ` 2α to the axioms and rules of K. The
collection of all narcissistic frames (that is, frames whose worlds are all nar-
cissistic) determines a logic known as Triv, or KT ! as in [Chellas, 1980],
and can be axiomatized by the addition to the axioms and rules of K of the
axiom ` 2α ≡ α. It is easy to see that both Ver and Triv are but thin
disguises for classical propositional logic: In the first, 2 and 3 are unary
operators that produce tops, in the second, 2 and 3 behave like identity op-
erators. The logic that I will call TV and that is situated exactly midway
in between Triv and Ver is also important in the present story. It is deter-
mined by the class of all frames that are either narcissistic or autistic, and
axiomatized by the addition to K of the axiom ` α ⊃ 2α.

In what follows it will be helpful to use }n as an abbreviation for n iter-
ations of a given unary connective }. I will be saying that a logic L2 is a
(deductive) fragment of a logic L1 (and L1 is an extension of L2) if L1 can
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be written in a signature containing all the symbols from the signature of L2

and if, in that case, all inferences allowed by L2 are also allowed by L1.
[Makinson, 1971] proved that every normal modal logic is a fragment of

either Ver or Triv (and possibly of both, that is, of TV ). For instance, the
modal logic KT , determined by the class of reflexive frames and axioma-
tized by the addition to K of the axiom ` 2α ⊃ α, is only a fragment of
Triv but not of Ver; on the other hand, the logic of provability GL, de-
termined by the class of transitive and reversely well-founded frames and
axiomatized by the addition to K of the axiom ` 2(2α ⊃ α) ⊃ 2α, is
only a fragment of Ver but not of Triv; finally, K5, determined by the
class of euclidean frames and axiomatized by the addition to K of the axiom
` 3α ⊃ 23α, is a fragment of TV . More importantly, every extension of
K obtained by the sole addition of axioms of the form ` 3

i
2

jα ⊃ 2
k
3

lα,
for i, j, k, l ∈ N, complete with respect to a convenient combination of the
so-called confluential (Church-Rosser) frames, is a fragment of Triv — and,
as a matter of fact, very few of the most widely known modal logics fail to
be a fragment of Triv.

Can a and ` be understood as ‘negations’ inside all of the above logics?
For one thing, inside of Ver it seems already difficult to accept that reading:
All formulas of the form aα and `α would be theorems of this logic. . . But
what connectives are to count as ‘negations’, to start with? First of all, it
must be cleared up that there is NO general — nor even partial — agreement
in the literature on an answer to that. As we will see, this is not to say,
however, that the very concept of negation is unruly!

Consider from this point on a (non-overcomplete)† logic L1 endowed with
some symbol ¬ intended to denote ‘negation’. Even if we consider no other
circumstantial symbols from L1’s signature and its corresponding set of for-
mulas S1, there is a number of pure positive meta-rules that might be consid-
ered to govern the behavior of negation with respect to 1, the consequence
relation associated to L1. For instance, the following two rules can fully
characterize classical negation inside a non-overcomplete logic:

(Explosion) (∀Γ,∆ ⊆ S1)(∀α ∈ S1) Γ, α,¬α 1 ∆

(Implosion) (∀Γ,∆ ⊆ S1)(∀α ∈ S1) Γ 1 α,¬α,∆

Any non-classical negation will have to fail one of the above rules, and pos-
sibly both. In that case, what are the ‘stable’ rules of negation, if any, that is,
which are the rules that every negation ought to obey? This is the very issue
about which each author will have her preferred answer, and it seems that
there is little hope for any sort of agreement to be expected to settle around

† For a semantic account of that concept, check Section 2.



“18marcos”
2005/11/15
page 286

i

i

i

i

i

i

i

i

286 JOÃO MARCOS

that. However, there is some chance of agreement, I submit, if one only turns
the attention to a certain set of pure negative rules, such as:

(n-verificatio) (∃Γ,∆ ⊆ S1)(∃α ∈ S1) Γ,¬n+1α 61 ¬nα,∆

(n-falsificatio) (∃Γ,∆ ⊆ S1)(∃α ∈ S1) Γ,¬nα 61 ¬n+1α,∆

In the present environment, the above rules have at least 3 immediate pleas-
ant consequences for the behavior of ¬n+1 over ¬n: If ¬n+1 is to obey those
rules, it cannot produce only bottoms, it cannot produce only tops, and it
cannot be an identity operator. Seems sensible enough: Is anyone prepared
to accept or propose as a ‘real negation’ any symbol not enjoying the above
features? On the one hand, those rules are sufficient to confirm already our
intuition that the logic Ver should be ruled out as a system interpreting a

and ` as negation operators. (But what will we be able to say, in that case,
about its fragments?) On the other hand, the last rules are clearly respected
by classical negation, and thus also by a and ` inside the logic Triv. With
that criterion in mind, from here on, I will assume, as in [Marcos, 2005c],
that a decent negation should respect (n-verificatio) and (n-falsificatio), for
every n ∈ N.

Consider now a fragment L2 of L1, such that L2 is directly embeddable
in L1 by way of an identity translation, that is, 2 ⊆1, where 2 is the
consequence relation associated to L2. In case the signature of L2 also con-
tains ¬ then it is clear that ¬ will in L2 respect at most as many positive rules
as it does in the case of L1, never more. One might say in that case that ¬
in L2 is sub-L1; if L1 is classical logic one might simply say that ¬ in L2

is subclassical. So, now one may finally ask the question: In which normal
modal logics the operators a and ` produce subclassical operators? It is not
difficult to check for instance that GL is not one of such logics: As shown in
[Vakarelov, 1989], the characterizing axiom of GL can be rewritten in terms
of a as ` a(α∧aα) ⊃ aα, and this is not a valid formula in CPL. One can
count though on the following straightforward answer to the above question:

The operators a and ` constitute subclassical negations inside a given nor-
mal modal logic if and only if this logic is a fragment of Triv.

Indeed, we already know that a and ` coincide with classical negation in-
side Triv. As a consequence, those symbols define decent subclassical nega-
tions, a fortiori, also in the fragments of Triv. On the other hand, a logic
with a subclassical negation is by definition a fragment of classical logic, as
long as both logics are written in the same language. Recall now that Triv is
classical logic in disguise, possibly with some extra boxes and diamonds col-
oring its inferences but behaving just like identity operators. This proves our
case. (Alternatively, suppose that you erase the boxes and diamonds from



“18marcos”
2005/11/15
page 287

i

i

i

i

i

i

i

i

NEARLY EVERY NORMAL MODAL LOGIC IS PARANORMAL 287

any normal modal logic that is not a fragment of Triv. Then you clearly
transform a and `, taken to be defined as in Figure 1, into non-subclassical
negations.) QED

Still and all, the reader should not imagine that all decent negations are
subclassical. Post’s cyclic many-valued negations, for instance, are coun-
terexamples to that. In one way or another, let me clarify that this paper will
concentrate exclusively on subclassical negations.

The next sections will show which properties are enjoyed by a and `, and
to what classes of negations they belong to. They will also show how normal
modal logics can be naturally reconstructed on other signatures based on a,
` and related connectives.

2. Varieties of paranormality

For the sake of the following discussion, let L be an arbitrary logic with an
entailment relation |= (recall Section 1.1) defined over a set of formulas S
of a language that contains a negation symbol ¬ with a decent interpretation
(that is, respecting rules verificatio and falsificatio from the last section). For
all we know, such a logic might turn out to have some queer models, as for
instance:

(Dadaistic) (∀α ∈ S)(∀x ∈ W) |=M
x α

(Nihilistic) (∀α ∈ S)(∀x ∈ W) α |=M
x

(To simplify notation, I will from this section on drop the contexts Γ’s and ∆’s
from the inferences.) According to the above definitions, everything is true
for a dadaistic model, and everything is false for a nihilistic model. Follow-
ing [Marcos, 2005c], I will say that the logic L is overcomplete in case all
of its models are either dadaistic or nihilistic. Thus, for a non-overcomplete
logic, (∃α, β ∈ S) α 6� β. Now, even in the case of such a logic, it might
still happen that negation has some odd models such as:

(¬-inconsistent) (∃α ∈ S)(∃x ∈ W) |=M
x α and |=M

x ¬α

(¬-incomplete, or (∃α ∈ S)(∃x ∈ W) α |=M
x and ¬α |=M

x

¬-undetermined)

So, a ¬-inconsistent model allows for some formula to be satisfied together
with its negation, and a ¬-undetermined model allows instead for both a for-
mula and its negation to be non-satisfied. Obviously, a dadaistic model is
simply an extreme case of an inconsistent model, and a nihilistic model an
extreme case of an undetermined model. In the present framework, and fol-
lowing [Marcos, 2005a], L will be called a decent ¬-paraconsistent logic
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if it allows for non-dadaistic ¬-inconsistent models, that is, if (∃α, β ∈
S) α,¬α 6|= β. Dually, L will be called a decent ¬-paracomplete logic
if it allows for non-nihilistic ¬-undetermined models, that is, if (∃α, β ∈
S) β 6|= α,¬α. In particular, a paraconsistent logic will be non-explo-
sive, and a paracomplete logic will be non-implosive (recall the definitions of
those properties from Section 1.2). Following [da Costa and Béziau, 1997]
and [Béziau, 1999], I will call L paranormal if it is both paraconsistent and
paracomplete.

Paranormality comes in several brands. Explosion or implosion might be
lost, but maybe it is possible to recover them, ‘with gentleness and time’.
Maybe there is something that we can say about a formula so as to guarantee
that it behaves consistently / determinedly? Here is a way of realizing this
intuition. Let ◦(p) be a (possibly empty) set of formulas on one single vari-
able such that:

(∃α ∈ S) ◦(α), α 6� and ◦(α),¬α 6�,

and yet

(∀α ∈ S) ◦(α), α,¬α �

Following [Carnielli and Marcos, 2002], any logic containing such schematic
set of formulas is called ¬-gently explosive. A logic of formal inconsistency
(LFI) is a paraconsistent yet gently explosive logic. In such a logic, ◦ is said
to express ¬-consistency.

Dually, let I(p) be a (possibly empty) set of formulas on one single vari-
able such that:

(∃α ∈ S) 6� α,I(α) and 6� ¬α,I(α),

and yet

(∀α ∈ S) � ¬α, α,I(α)

Any logic containing such schematic set of formulas is called ¬-gently im-
plosive. A logic of formal undeterminedness (LFU) is a paracomplete yet gen-
tly implosive logic. In such a logic, I is said to express ¬-determinedness,
or ¬-completeness.

The following lines are very rough, but should suffice to inform the reader
about what LFIs and LFUs are good for. As the reader might have suspected,
¬-consistency and ¬-determinedness in paranormal logics serve as sorts of
‘normalizing connectives’. In fact, I will from here on call them ‘perfect’.
From the original meaning of the word, in Latin, we know that something
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is perfect when it is ‘done to the end’, when it is somehow ‘complete’, and
‘nothing essential is lacking’. In case a logic has a negation lacking the ‘con-
sistency presupposition’, if one adds to it the power to express consistency
then one can somehow recover what had been lost: Consistency in this case
is the sought perfection. To put it in a different and semi-formal way, con-
sider a logic L1 in which explosion holds good for a decent negation ¬, that
is, a logic that validates, in particular, (∀α ∈ S1) α,¬α �1. Let L2 now be
some other logic written in the same signature as L1 such that: (i) L2 is a
proper fragment of L1 that validates many or most inferences of L1 that are
compatible with the failure of explosion; (ii) L2 is expressive enough so as to
be an LFI, thus, in particular, there will be in L2 a set of formulas ◦(p) such
that (∀α ∈ S2) ◦(α), α,¬α �2 holds good; (iii) L1 can in fact be recovered
from L2 by the addition of ◦(p) as a new set of valid schemas / axioms.
These constraints alone suggest that the whole reasoning of L1 might some-
how be recovered from inside L2, if only a sufficient number of ‘consistency
assumptions’ is added in each case. Thus, typically the following derivabil-
ity adjustment theorem (DAT) can be proven:

(∀Γ∀∆∃Σ) Γ �1 ∆ iff ◦(Σ),Γ �2 ∆.

The essentials behind such sort of DATs were highlighted in [Batens, 1989],
but some very specific instances of DATs could already be found in one of the
forerunning formal studies on paraconsistent logic, [da Costa, 1963]. It is no
exaggeration to say that such theorems constitute the fundamental idea be-
hind both the ‘Brazilian approach’ to paraconsistency (C-systems and LFIs)
and the ‘Belgian approach’ (inconsistency-adaptive logics). As I see it, the
main difference between the two approaches is in fact methodological (but
also a bit ideological). As I argued in [Marcos, 2001], while retaining in
a paraconsistent logic ‘most rules and schemata of classical logic’ was a
desideratum laid down already in [da Costa, 1974], it was never really sys-
tematically pursued by the ‘Brazilian school’. The approach favored by
[Batens, 1989] and the ‘Belgian school’, in contrast, took the motto to the
letter: Assuming consistency by default, maximality is pursued by way of
allowing for non-monotonic reasoning to take place. Another remarkable pe-
culiarity is that in an LFI, by its very design, the clauses in the above theorem
can in fact be internalized at the object-level language, making its statement
more convenient and language-independent. Sometimes, moreover, there
are yet other ways of reproducing classical reasoning inside an LFI through
a direct translation, without the addition of further premises. For its impor-
tance, I will dub the ability of recovering consistent reasoning in one way or
another the Fundamental Feature of LFIs.
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Clearly, all that was said for consistency and LFIs in the previous paragraph
can be easily dualized for determinedness and LFUs.

I will from here on consider only the simpler case in which ◦ reduces to a
single schema, thus to a consistency connective ◦ whose contradictory op-
posite (its classical negation), will represent an inconsistency connective to
be denoted by •. A similar thing will be done for I, in that I will be work-
ing from here on more simply with a unary determinedness connective I
and the accompanying undeterminedness connective H.

2.1. Duality, at last

I have been mentioning duality all along, with a strong semantic intuition,
but in a very loose way. Let me here make a short digression to explain
precisely what that is supposed to mean.

Given an arbitrary connective }, let its dual be denoted by }d. Given a
set of formulas Γ, let Γd denote the result of substituting all connectives of Γ
by their duals. Given a logic L1 with a consequence relation 1 over a set
of formulas S1, the dual logic L2 will be defined by setting S2 = Sd

1 and
Γd 2 ∆d iff ∆ 1 Γ. So, in abstract terms, all we have to do, somehow,
is to read the original inferences from right to left, instead of reading them
from left to right, and change the names of the logical constants whenever
necessary (some connectives can of course be self-dual inside a given logic).

This little trick is just enough for conjunction to be characterizable as dual
to disjunction (even more, each elimination rule for conjunction will be dual
to a corresponding introduction rule for disjunction, and so on), implication
as dual to coimplication (and this coincides in fact with the algebraic intu-
ition about duality explored already in [Rauszer, 1974]), box as dual to dia-
mond, explosive negation as dual to implosive negation, (para)consistency as
dual to (para)completeness, LFIs as dual to LFUs, dadaism as dual to nihilism,
and so on.

The place where duality will show up in the Square of Modalities (Fig-
ure 1) is in place of the relation of ‘subalternation’. According to the tradi-
tional semantic intuition behind subalternation, the truth of each upper cor-
ner implies the truth of the corresponding bottom corner, but not the other
way around. The application of this simple idea is not without problems:
The subalternation in the SoO only works well once you grant existential
import to the universal quantifier, the subalternation in the SoM works fine
only if you are talking about normal modal logics extending KD, the ‘deon-
tic’ system with the seriality presupposition (in which 3> is provable). The
above definitions of duality, however, suggest a full horizontal symmetry in
the very same square, allowing for the mentioned provisos to be dispensed
with. With that in mind, it does not really seem illuminating thus to think
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Figure 2. Square of Perfections (SoP)

of diamond as subalternate to box (nor the other way around). That’s why I
proposed from the start the update of the (SoM) with the denomination ‘du-
alitas’ in the place of ‘subalternatio’. Now, Figure 2 shows how the square
would look like if rebuilt so as to apply to the perfect connectives introduced
in Section 2. Notice that, according to the traditional semantic intuition of
the square, Ip and •p are ‘contrary’ (they cannot both be simultaneously
true), while ◦p and Hp are, instead, ‘subcontrary’ (they cannot both be si-
multaneously false).

2.2. The route from modality to paranormality, and the easy way back

Where K is some class of frames and sig is some propositional signature,
let (L)sig denote the logic whose set of formulas is Ssig and whose set of
valid inferences is determined with the help of the canonical interpretation of
the connectives in sig. With this abbreviation, every normal modal logic L,
in its usual language with set of formulas SNML, will here be denoted as
(L)∧∨⊃∼23.

We already know from the above that the usual language of normal modal
logics is expressive enough so as to be able to define a decent paraconsis-
tent negation ` and a decent paracomplete negation a. It is not difficult
now to see how the corresponding perfect connectives for consistency and
inconsistency (◦ and •), and for determinedness and undeterminedness (I
and H) can also be produced. Of course, those connectives will only have
their expected behavior under some specific circumstances. Consider some
normal modal logic L not extending TV (recall Section 1.2). Then, here is a
possible set of definitions for the above connectives and the properties they
should enjoy in L:
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Definitions Properties enjoyed by them
`α

def
== 3∼α p,`p 6� q

◦α def
== α ⊃ 2α ◦p, p 6� and ◦p,`p 6�,

and yet ◦p, p,`p �

•α def
== α ∧ `α � •α iff ◦α �,

•α � α and •α � `α

aα
def
== 2∼α q 6� ap, p

Iα
def
== α 6⊂ 3α 6� p,Ip and 6� ap,Ip,

and yet � ap, p,Ip

Hα
def
== aα ∨ α Hα � iff � Iα,

α � Hα and aα � Hα

Indeed, as a consequence of the above definitions:

A necessary and sufficient condition for
(L)∧∨⊃`◦• to characterize a modal LFI, and for

(L)∧∨⊃aIH to characterize a modal LFU

is that L does not extend TV .

It is obvious that the condition is necessary. Indeed, if L is TV , Triv or
V er, then it is not paranormal with respect to the new connectives above.
Conversely, to show that this restriction provides a sufficient condition to
verify the expected properties of the new connectives, consider first the case
of ` and ◦, and define a model M1 such that W = {x, y}, V (p, x) = 1,
V (p, y) = 0 and V (q, x) = 1, and consider any R such that (x, y) ∈ R ⊆
W×W . Such models are always realizable in logics that do not extend TV ,
and all you have to do is to vary the accessibility relation according to the
strictures of each class of frames. But then, p,`p 6|=M1

x q. Next, consider
any model M2 based on a frame such that W = {x}, V (p, x) = 1. Then,
◦p, p 6|=M2

x , once 2 is not an operator producing only bottoms — and we
know that it is not, from rule (1.2) or axiom (3.1) (recall Section 1.1). Fi-
nally, consider a model M3 exactly like M1, except that now V (p, x) = 0.
In this model ◦p,`p 6|=M3

x , for every logic distinct from V er. It is clear,
however, that ◦p, p,`p � for any normal modal logic.
The case of a and I is entirely similar. QED

Now, what if we started from a paranormal language and tried then to
define the usual connectives of normal modal logics? Can that be done at
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all? Again, the answer is very often YES, but, as we will see below, to
understand that ‘very often’ one had better pay a lot of attention to the initial
choice of language.

Consider first the connectives `, ◦, a and I to be primitively defined by
the clauses:

|=M
x `α iff (∃y ∈ W)(xRy & α |=M

y )

|=M
x ◦α iff |=M

x α implies (∀y ∈ W)(xRy ⇒ |=M
y α)

|=M
x aα iff (∀y ∈ W)(xRy ⇒ α |=M

y )

|=M
x Iα iff α |=M

x and (∃y ∈ W)(xRy & |=M
y α)

Consider next an arbitrary normal modal logic (L)∧∨⊃`◦, where the non-
classical connectives from the signature are interpreted as above. The ques-
tion now is whether (L)∧∨⊃∼23 can be recovered from that. And the answer
is that it can, if only the following definitions are set:

⊥
def
== α ∧ `α ∧◦α, for any α 2α

def
== ∼`α

∼α
def
== α ⊃ ⊥ 3α

def
== `∼α

Furthermore, to obtain an inconsistency connective one can obviously just
set •α def

== ∼◦α. It is not difficult to check, indeed, that even inside the
minimal normal modal logic K the new connectives ∼, 2 and 3 behave
exactly as they should. For instance, in K the following rules hold good:
(α,∼α |=) and (|= ∼α, α). As we know, those two rules fully characterize
classical negation (recall Section 1.2). Therefore:

For every normal modal logic, (L)∧∨⊃∼23 and (L)∧∨⊃`◦
characterize the same logic under two different signatures.

Can the same be done if one starts from the language containing a and
I instead of ` and ◦? The answer now is not as immediate as one might
expect. Indeed, consider an arbitrary modal logic (L)∧∨⊃aI, where the non-
classical connectives are interpreted as above. How can a classical negation
now be defined so as to work as expected for all classes of frames? It is easy
to see that the above definitions will not do. An alternative is to set:

∼α
def
== α ⊃ aα 2α

def
== a∼α 3α

def
== ∼aα

In this case, however, in spite of (|= ∼α, α) holding good for every normal
modal logic, (α,∼α |=) holds good only for extensions of KT . Therefore,
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all one can guarantee in general is that:

For every extension of KT , (L)∧∨⊃∼23 and (L)∧∨⊃aIH

characterize the same logic under two different signatures.

To recover full generality and symmetry in the second result, the easiest
solution is to change implication for coimplication (putting both implication
and coimplication in the signature is too easy a solution, as those two connec-
tives alone are enough to provide a functionally complete set of connectives
for classical logic). So, using the coimplication alone one can set:

>
def
== Iα ∨ aα ∨ α, for any α ∼α

def
== α 6⊂ >

This new negation behaves classically already in K, and with its help one
can define box and diamond, again, exactly as in the preceding set of def-
initions. Obviously, a connective for undeterminedness can be defined by
setting Hα

def
== ∼Iα. The above reasoning shows that:

For every normal modal logic, (L)∧∨6⊂∼23 and (L)∧∨6⊂aI

characterize the same logic under two different signatures.

3. Imagine there are no sea battles. . .

I argued in [Marcos, 2005c] that the development of a really good theory
about ‘what negation is’, in logic, presupposes the previous development
of a modern and comprehensive formal version of the received theory of
oppositions.‡ This was nothing short than a big issue in ancient Greek phi-
losophy. Even nowadays, though, if one looks in retrospect, it is difficult to
get a feeling that the deep philosophical advances made on this topic have
received the formal counterpart they deserved. If we are to trust Plato on
his account of the pre-Socratic philosophy, Heraclitus of Ephesus has seem-
ingly spent his whole life thinking about opposition, and Parmenides spent
his own thinking about how he could oppose Heraclitus on that. The dispute
was allegedly also fed by their respective disciples, Cratylus and Zeno of
Elea. It has often been argued that Aristotle’s theory of opposition, and the
Square of Oppositions that would be polished from it along the following
centuries,†† was born from an attempt to reconcile the opponents and make

‡ In particular, as argued in Section 2.1, it could be advantageous in such a theory to talk
about ‘duality’ instead of ‘subalternation’.

†† For the historical development of the SoO, check [Parsons, 2004].
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sense of the above dispute. A sympathizer of Heraclitus (whom he dubbed
‘the Obscure’) in some respects and a strong critic in many others, Aristotle
seems also to have been the first (later, Apuleius, Boethius and Peter of Spain
were also not entirely without fault) to pervert the initial idea of a theory of
oppositions into a long and problematic theory of modal syllogisms.

In the last section we have seen how the language of normal modal logic
could have been alternatively chosen as the language of paranormal nega-
tions and related operators. Maybe, had Aristotle not been the tutor of
Alexander, there would never have been so much talk about sea battles, the
contingency of the future and the necessity of the past. Had modal logic and
Kripke-like semantics been developed with the objective of understanding
negation and exploring the viability of reasoning under inconsistent situa-
tions, and maybe the reader would have been surprised to learn only here
and now that YES, the same modal ideas and tools could be used to talk
about boxes and diamonds!

The negative modalities ` and a have received some attention in the last
decades as legitimate interpretations of negation. From this point on, let
→ and − denote intuitionistic implication and negation. In [Došen, 1984]
and subsequent papers, Kosta Došen showed how to axiomatize the log-
ics (L)∧∨→−a

and (L)∧∨→−`
, for L = K and for many extensions of K.

Those logics were treated as bi-modal, with one accessibility relation (reflex-
ive and transitive) used to interpret the intuitionistic connectives and another
accessibility relation (that of L) used to interpret a and `. A similar ap-
proach had in fact been undertaken a decade earlier by Dimiter Vakarelov,
and has been published in [Vakarelov, 1989], where the logics (L)∧∨→a>⊥

and (L)∧∨→`>⊥ were axiomatized, for L = K and for many extensions
of K, and also for signatures containing classical instead of intuitionistic
implication.

An interesting problem that was left open was that of axiomatizing such
logics in the language containing only the usual positive classical connec-
tives of normal modal logics (∧,∨,⊃,2,3), extended only by the paranor-
mal negations a or `, without recourse to the perfect connectives (◦,•,I,
H), as above. Consider the paraconsistent case and the set of formulas
S∧∨⊃`

. (Recall that the case where the related signature is extended by
the addition of the connective ◦ was fully solved above, where the logics
obtained were shown to provide just different versions of the usual normal
modal logics.) Suppose someone might object to the addition of the connec-
tive ◦ as a ‘natural connective’ of our logics. This person then should take
equal care so as not to add neither a bottom, ⊥, nor a classical negation, ∼,
to the original signature: Indeed, on the one hand, we have already seen how
∼ and ⊥ can be defined from ◦; on the other hand, from a primitive ∼ one
could easily define ⊥ def

== α ∧ ∼α, for an arbitrary α, and from a primitive
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⊥ one could define ∼α def
== α ⊃ ⊥ — thus, in both cases ◦ could be recov-

ered by setting ◦α def
== (α ⊃ ⊥) ∨ (`α ⊃ ⊥). Notice also that, whenever

a classical negation ∼ is present, the consistency connective ◦ will be suf-
ficient so as to define the remaining perfect connectives from Figure 2: Just
set Hα

def
== ◦∼α, Iα

def
== ∼◦∼α, and •α def

== ∼◦α.
On what concerns the above problem, vividly denounced in [Béziau, 2002]

for the case of S5, an axiomatization of (L)∧∨⊃`
was offered in [Béziau,

1997/98] only for that extreme case in which L = S5. As Jean-Yves Béziau
confessed, the extension of this result to the case of other normal modal log-
ics proved non-obvious. I have recently found, however, a thorough solution
to the problem, but for limitations of space I can only exhibit here the cor-
responding axioms. For the case of L = K, an adequate axiomatization is
given by adding to any complete set of axioms and rules for positive classical
propositional logic the following further axioms and rules:

(I.1) ` α ⊃ β ⇒ ` `β ⊃ `α

(I.2) ` α ⇒ ` `α ⊃ β

(I.3) ` `(α ∧ β) ⊃ (`α ∨ `β)

It is not difficult to extend this axiomatization so as to cover other logics.
Indeed, for L = KT you just have to add ` α ∨ `α as a new axiom, for
L = KB it suffices to add ` ``α ⊃ α as a new axiom, for L = K5
the axiom ` `α ⊃ (``α ⊃ β) will do. In fact, and here comes the
GREAT SURPRISE, again it is possible to recover all normal modal logics
from this simpler signature, if we now define classical negation by setting
∼γ def

== γ ⊃ `(α ⊃ α), for an arbitrary formula α. So:

For every normal modal logic, (L)∧∨⊃∼23 and (L)∧∨⊃`

characterize the same logic under two different signatures.

The paracomplete case is a bit more complicated (recall the need we had
for a coimplication in Section 2.2), as it can be proved that there is no de-
finable classical negation in (K)∧∨⊃a

, but only in (KT )∧∨⊃a
. But there is

a classical negation in (K)∧∨6⊂a
. The difficulties and details of the above

mentioned solutions are to be found in [Marcos, 2005d].
It should be highlighted that one of the most remarkable features of all the

above mentioned paranormal logics is the validity of the replacement prop-
erty (a.k.a. self-extensionality). A very common and desirable property of
logical systems, and a typical property of the usual systems of normal modal
logic, replacement is known to fail in the great majority of well-known sys-
tems of paraconsistent logic, and that failure often translates into trouble for
the study of their algebraic counterparts (check for instance the section 3.12
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of the survey paper [Carnielli and Marcos, 2002]). The above modal para-
consistent logics, by their very nature, shun such difficulties.

One last comment. I have hinted above to the reticence that is sometimes
to be found about the use of consistency connectives and LFIs, notwithstand-
ing the possibility they inaugurate of internalizing nice properties such as
the DATs (recall Section 2). I have also mentioned the unavoidability of such
connectives as soon as we are talking about positive classical propositional
logic extended by some paraconsistent negation and by either a classical
negation or a bottom. But the question might still remain as to whether that
consistency connective makes any sense if there is no paraconsistent nega-
tion around. Let us assume the above modal interpretation of this consistency
connective and of the related inconsistency connective to be taken as prim-
itive, and let us conservatively extend classical propositional logic by the
addition of such connectives. It is not difficult to see that the resulting lan-
guage has little expressive power: No diamonds nor boxes can in general be
defined, and the new connectives are not even ‘normal’ modal connectives
in the usual sense that the former more usual modal connectives are consid-
ered to be normal in contributing to the expression ‘normal modal logics’. In
the language whose formulas are S∧∨⊃≡∼◦•, however, one could read •α
as saying that ‘α is the case, but could have been otherwise’: It works as a
kind of (local) connective for ‘accidental truth’. Similarly, ◦ could be read
as expressing a (local) notion of ‘essential truth’. In [Marcos, 2005b] I have
axiomatized the minimal such logic of essence and accident, (K)∧∨⊃≡∼◦•,
by extending positive classical propositional logic with the following axioms
and rules:

(K0.1) ` ϕ ≡ ψ ⇒ ` ◦ϕ ≡ ◦ψ (K0.2) ` ϕ ⇒ ` ◦ϕ
(K1.1) ` (◦ϕ ∧◦ψ) ⊃ ◦(ϕ ∧ ψ)

(K1.2) ` ((ϕ ∧◦ϕ) ∨ (ψ ∧◦ψ)) ⊃ ◦(ϕ ∨ ψ)

(K1.3) ` •ϕ ⊃ ϕ (K1.4) ` •ϕ ≡ ∼◦ϕ
A similar interpretation could be proposed for the determinedness connec-
tive. One could read Iα as saying that ‘α is not the case, but it could have
been’. This suggests that I could work as a kind of (local) connective for
‘counterfactual truth’. I will leave this here as a path that seems worth ex-
ploring. It is easy if you try.
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