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ON THE CONCEPT OF IDENTITY IN ZERMELO-FRAENKEL-LIKE
AXIOMS AND ITS RELATIONSHIP WITH QUANTUM STATISTICS

DÉCIO KRAUSE, ADONAI S. SANT’ANNA∗ AND AURÉLIO
SARTORELLI

Abstract
Georg Cantor said that a set is a collection into a whole of defined
and distinct objects. This intuitive idea is in certain sense grasped
by standard set theories, like Zermelo-Fraenkel’s (ZF), where we
can always (at least in principle) distinguish among the elements of
a set. So, a natural question is: How to treat as ‘sets’ collections
of indistinguishable objects, as those supposed by certain versions
of quantum physics? Motivated by these issues, we have developed
quasi-set theory. The problem of treating as ‘sets’ collections of
entities like electrons, which would be indistinguishable, was listed
as the first problem in list of Present Day Problems of Mathemat-
ics, posed at the Congress on the Hilbert Problems in 1974, spon-
sored by the American Mathematical Society. Embedded in such
a context, quasi-set theory acquires a strong commitment to the
way quantum physics copes with collections of elementary parti-
cles, once it admits particles of some sort. In this paper, we discuss
the axioms of quasi-set theory and sketch some of its possible appli-
cations to physics. The discussion, we hope, will also help us to get
a deeper understanding on the role played by the concept of identity
in mathematics.

1. Introduction

It is well known that certain formulations of quantum theory deal with ele-
mentary ‘particles’ as entities which may be absolutely indistinguishable, in
the sense of sharing all their physical properties. In classical physics, such
a situation is quite different, for two particles are never allowed (by nature)
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to share the same state during the same time interval. Classical particles
(the particles described by classical particle mechanics) are always distin-
guishable by either their intrinsic properties or by their state properties. But
in quantum mechanics (once admitted particles) there may exist elementary
particles which share the same intrinsic properties and the same quantum
state. In this case, they are said to be indistinguishable (‘identical’ by the
physicists). But, from the point of view of standard mathematics, indistin-
guishability entails identity. Hence, it would be impossible (in principle) to
have a coherent mathematical picture of two or more elementary indistin-
guishable particles. If we aim at to define a mathematical framework for
considering the possibility of having multiple collections of indistinguish-
able particles (indistinguishable with respect to all physical properties that
describe a particle), then two ways seem to be open to cope with this prob-
lem: either we admit that there is some hidden property (besides intrinsic
and state properties) that allows the existence of multiple objects with the
same physical (not hidden) properties, or we should admit some new math-
ematic framework where indistinguishability does not entail identity. The
first solution demands some sort of metaphysical hypothesis [23]. The sec-
ond solution seems to demand new mathematical foundations for quantum
mechanics. In the present paper we begin to explore the second alternative.

Physicists refer to particles that share the same physical properties as ‘iden-
tical’, while philosophers prefer to call them indistinguishable, since in the
standard philosophical jargon, identical things are to be the very same thing.
Standard set theories like Zermelo-Fraenkel, which sustain not only most
of standard mathematics, but also most of theoretical physics, are so that
sets (and their elements) obey a well defined theory of identity, according
to which, roughly speaking, two objects a and b are always either identical
(in the philosophical sense) or distinct (not identical). If a and b are distinct,
then there exists a set c such that a ∈ c but b /∈ c (in extensional contexts, we
might say that there exists at least one property -whose extension is c, which
distinguishes them, a result which may be considered as a consequence of
the so-called Leibniz Law -LL).1 In particular, the elements of a set can al-
ways be considered as individuals of a sort, since (at least ideally) they can
be counted, ordered, and named.

In this sense, standard set theories cannot deal with collections of ‘gen-
uine’ indistinguishable objects. The standard way mathematicians consider

1 Roughly speaking, in a second order language, if a and b are individual variables and F

is a variable for properties of individuals, then LL can be written as ∀F (F (a) ↔ F (b)) ↔

a = b. Even in first order standard theories, like ZF, LL appears in a way, due to the axiom of
extensionality and the postulates for identity of first order logic. Here, we shall term ‘Leibniz
Law’ indistinctly anyone of these formulations. But see more on this below.
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indistinguishable things vary, but all of them can, in some way or another, be
summed up by a technique used by H. Weyl to treat aggregates of individu-
als [29, App. B]; in short, starting from a set S with, say, n elements, Weyl
has assumed that there is an equivalence relation R defined on S, and then
he takes the equivalence classes C1, . . . , Ck to play the role of collections of
indistinguishable objects. So, what Weyl did was ‘to forget’ the very nature
of S as a collection of distinct objects, and considered only the quantity of
elements of S there are in each equivalence classes. As he says, this is what
imports to physics. He might be right, but from the foundational point of
view it seems that something is lacking, namely, an adequate treatment of
indistinguishable objects as such just from the beginnings.

Other ways of treating the same question can be given by the introduction
of invariance of some sort. For instance, we may consider as indistinguish-
able the elements which belong to the orbit of a certain element in a suitable
group.2 But all these ‘solutions’ are mathematical tricks, for the very char-
acteristics of the elements of a set as individuals is always present, at least
implicitly. So, this kind of devices cannot be considered as adequate answers
to the philosophical problem of dealing with collections of indistinguishable
objects.

But why is this kind of problem, namely, that of dealing with collections
of indistinguishable objects from the point of view of a ‘set’ theory, so im-
portant? From a historical perspective, let us recall that this is precisely the
first problem of the list of Problems of Present Day Mathematics, which ap-
peared in the Congress on the Hilbert Problems, organized by the American
Mathematical Society in 1974. The motivation for the stating of this prob-
lem is of course quantum physics, which (in some of its versions) deals with
indistinguishable objects; as put by Yuri Manin,

“We should consider possibilities of developing a totally new lan-
guage to speak about infinity (...) I would like to point out that
(...) [the usual language of set theory] is (...) an extrapolation
of common-place physics, where we can distinguish things, count
them, put them in some order, etc. New quantum physics has shown
us models of entities with quite different behavior. Even ‘sets’ of
photons in a looking-glass box, or of electrons in a nickel piece are
much less Cantorian than the ‘set’ of grains of sand. In general,
a highly probabilistic ‘physical infinity’ looks considerably more
complicated and interesting than a plain infinity of ‘things’ (...) The
twentieth century return to Middle Age scholastics taught us a lot

2 Similar restrictions can be made to the other techniques usually considered by mathe-
maticians, for instance the idea that indistinguishable objects are those elements which keep
invariant a given structure under automorphisms (see, for example, [23], [16]).
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about formalisms. Probably it is time to look outside again. Mean-
ing is what really matters.” [1, p. 36]

Of course the problem is not only to find a way of expressing indistin-
guishability. Physicists do this, for instance, by considering that only sym-
metric and antisymmetric vectors in an appropriate Hilbert space have a
counterpart in the physical reality [22]. But let us insist once more that
from the philosophical point of view, it should be interesting to consider in-
distinguishability right at the start, as something which is very peculiar to
the objects being supposed to exist, as it seems to be the case, in some sit-
uations, with quantum objects [21]. In other words, if we take seriously the
view that quantum objects shouldn’t have individuality, that is, that they are
to be taken as non-individuals in a sense (see [13]), can we present a ‘set
theory’ where indistinguishability is introduced right from the start? Let us
remark that the recourse of using permutation symmetries is a way of su-
perseding the apparent impossibility of such language. The usual solution
proposed by physicists by means of considering only symmetric and anti-
symmetric states is just a description concerning states, nothing else. But
quantum particles (if they are to be supposed) are not quantum states, but
are associated to quantum states. So, if we wish to talk about the particles
themselves, then we should develop a mathematical solution to the problem
of dealing with indistinguishable but not identical particles, that is, quasi-set
theory.

We could also provide still another motivation for the development of
quasi-set theory.3 According to standard textbooks on statistical mechan-
ics, we know that Maxwell-Boltzmann (MB) ‘statistics’ gives us the most
probable distribution of N distinguishable objects into, say, boxes with a
specified number of objects in each box. In this case, we can show, e.g., that
the hypothesis concerning distinguishable objects is unnecessary. Usually,
classical and quantum distribution functions are mathematically derived in a
naïve fashion; but an axiomatic framework is needed if we wish to show that
individuality is not a necessary assumption in classical statistical mechanics.
In a very interesting paper, N. Huggett [9] has shown that the occurrence
of Maxwell-Boltzmann statistics in classical mechanics does not allow us
to decide the metaphysical issue concerning molecules in a gas. In this pa-
per, we also show that Maxwell-Boltzmann statistics is not committed to a
metaphysical hypothesis concerning individuals.

3 The word ‘objects’ is used here as a neutral term, without any compromise with ‘parti-
cles’ or objects in the standard macroscopic sense; even waves or fields are can be ‘objects’
of a sort.
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2. Quasi-sets

In trying to develop a theory which deals with collections of indistinguish-
able objects in the sense mentioned in the previous section, we have taken
the route of considering Erwin Schrödinger’s idea that the concept of iden-
tity does not make sense for elementary particles. Of course this is not the
only route to follow, but it is that one we shall pursue here, for interesting it
is. In brief, this suggests that if x and y denote, say, electrons, it should be
simply meaningless to say that x is identical (or different) from y [25, 26].
So, even taking this route, the resulting quasi-set theory provides a way of
answering Manin’s problem mentioned above. The theory presented here
has some improvements if we compare it with previous versions given in
[11] and [12].

The quasi-set theory Q is based on ZFU-like axioms (Zermelo-Fraenkel
with Urelemente), but allows the existence of two sorts of atoms, termed m-
atoms (also termed micro-atoms) and M -atoms (also termed macro-atoms).
Two primitive unary predicates m and M help in expressing this idea: m(x)
says that x is an m-atom and M(x) says that x is an M -atom, where x is
a term. The language still encompasses the binary primitive predicates ≡
(indistinguishability) and ∈ (membership), one unary functional symbol qc
(quasi-cardinal) and a unary predicate letter Z (where Z(x) says that x is
a set; these ‘sets’ are collections or quasi-sets that correspond precisely to
the sets of ZFU). The basic idea is that the M -atoms shall have the proper-
ties of standard Urelemente of ZFU. Nevertheless, m-atoms do have a quite
different behavior. Two indistinguishable micro-atoms are not necessarily
identical (that is, x ≡ y does not entail x = y). So, macro-atoms seem to
be useful to describe the behavior of particles in classical particle mechanics
(where all particles are distinguishable), while micro-atoms seem to be use-
ful to describe whole collections of indistinguishable particles. Following
Erwin Schrödinger, to this last kind of entities, we suppose that the concept
of identity does not make sense, that is, x = y is not a well-formed formula
if x and y denote m-atoms ([25, pp. 17-18]).

At this point it is worth to remark that when we talk about the ‘traditional’
concept of identity, we mean the theory of identity as presented in standard
mathematics, either in first order or in higher order theories (and set theory)
[19]. In quasi-set theory we make a restriction on the concept of formula:
expressions like x = y are not meaningful (well-formed formulas) if x and
y denote m-atoms. The expression x ≡ y, which is read ‘x is indistin-
guishable from y’, makes sense for all the objects we are considering. The
equality symbol is not primitive in our theory, but a concept of extensional
identity (=E) is defined so that it has all the properties of standard identity
of ZFU. Then, the axioms allow us to distinguish between the concepts of
(extensional) identity (being the very same object) and indistinguishability
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(agreement with respect to all attributes), which cannot be done in classical
logic and set theory.

A quasi-set (qset for short) x is defined as something which is not a Ure-
lement. A qset x may have a cardinal (termed its quasi-cardinal, denoted by
qc(x)) but, in general, it has not an ordinal, since there are quasi-sets which
cannot be ordered (since their elements are indistinguishable m-atoms). The
concept of quasi-cardinal is taken as primitive, since it cannot be defined by
usual means. This fits the idea that quantum particles cannot be ordered or
counted, but only aggregated in certain amounts. Notwithstanding, due to the
concept of quasi-cardinal, there is a sense (as in orthodox quantum physics)
in saying that there may exist a certain quantity of m-atoms obeying certain
conditions, despite the fact that they cannot be named or labeled.

The primitive relation of indistinguishability (≡) is postulated to be reflex-
ive, symmetric and transitive, but in order to make it different from identity
(as ascribed by the traditional — first-order — theory of identity), the sub-
stitutivity axiom of equality does not hold in general, but only for some very
specific cases. Even so, it should be interesting that such a relation of in-
distinguishability turns to be the standard identity (here represented by the
extensional identity defined below) when the objects under consideration are
not m-atoms. Then, the concept of extensional identity fits the idea of clas-
sical identity. The first definitions (nominal definitions) and axioms are the
following:

Definition 1 :
(1) Q(x) := ¬(m(x) ∨ M(x)). We read Q(x) as “x is a quasi-set” or

“x is a qset” for short.
(2) P (x) := Q(x) ∧ ∀y(y ∈ x ⇒ m(y)) ∧ ∀y∀z(y ∈ x ∧ z ∈ x ⇒ y ≡

z). In this case we say that x is a pure qset.
(3) D(x) := M(x) ∨ Z(x). These are the ‘(classical) things’, to use

Zermelo’s original terminology. We read D(x) as “x is a Dinge”.
(4) E(x) := Q(x) ∧ ∀y(y ∈ x ⇒ Q(y)).
(5) x =E y := (Q(x) ∧ Q(y) ∧ ∀z(z ∈ x ⇔ z ∈ y)) ∨ (M(x) ∧

M(y) ∧ ∀Qz(x ∈ z ⇔ y ∈ z)). In this case we say that x and y
are extensionally identical. The symbol “=E” is called extensional
identity.

(6) x ⊆ y := ∀z(z ∈ x ⇒ z ∈ y).

The first item above says that a quasi-set is something which is not an
atom, since it is neither a micro-atom nor a macro-atom. In other words, all
terms are either atoms (micro or macro) or quasi-sets (which are collections
of a kind). The second item says that a pure quasi-set is a quasi-set whose
elements are all indistinguishable micro-atoms. The third item says that a
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Dinge is a term that behaves ‘classically’. In other words, a Dinge behaves
like a term in ZFU set theory, as shown in Corollary 1. According to the
fourth item, if E(x), then x is a quasi-set whose elements are quasi-sets.
The fifth item says when two objects are extensionally identical. The last
item is the standard definition of subset, but applied to quasi-sets.

In order to state the axioms of Q we need to remark that we use indexed
quantifiers in order to abbreviate some formulas. If A is a given formula, P
is a predicate letter and x is a variable, then the string ∀P x(A) means that
∀x(P (x) ⇒ A). Analogously, ∃P x(A) means that ∃x(P (x) ∧ A).

Here, we shall not make explicit the postulates of the underlying logic
of Q, which are similar to those of first order predicate calculus without
identity. The specific axioms of Q are:

(Q1)∀x(x ≡ x)

(Q2)∀x∀y(x ≡ y ⇒ y ≡ x)

(Q3)∀x∀y∀z(x ≡ y ∧ y ≡ z ⇒ x ≡ z)

(Q4)∀x∀y(x =E y ⇒ (A(x, x) ⇒ A(x, y))), with the usual syntactic
restrictions, i.e., A(x, x) is a formula and A(x, y) is obtained from A(x, x)
by replacing at least one of the free occurrences of x by y, if y is free for x
in A(x, x).

The first three axioms say that indistinguishability has the properties of
an equivalence relation. The fourth axiom says that substitutivity can take
place among terms that are extensionally identical. This means that x =E y
entails x ≡ y, although the converse is not always valid.

Theorem 1 : Whether Q(x) or M(x), then x =E x.

Proof. If Q(x), since ∀z(z ∈ x ⇔ z ∈ x), then x =E x by the definition
of extensional identity. If M(x), then since x ≡ x by Q1, it follows that
x =E x. �

Corollary 1 : The relation of extensional equality has all the properties of
classical equality in first order theories.

Proof. Straightforward, if we take into account the above theorem and Q4.
In other words, extensional equality is something like a binary equivalence
relation to which substitutivity holds. �

(Q5) Nothing is at the same time an m-atom and an M -atom:

∀x(¬(m(x) ∧ M(x)))
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Theorem 2 : Whether Q(x) or M(x), then ¬m(x).

Proof. If Q(x), then ¬m(x) by the definition of qset. If M(x), then ¬m(x)
by Q5. �

(Q6) The atoms are empty:

∀x∀y(x ∈ y ⇒ Q(y))

(Q7) Every set is a qset:

∀x(Z(x) ⇒ Q(x))

(Q8) Qsets whose elements are ‘classical things’ (Dinge) are sets and con-
versely:

∀Qx(∀y(y ∈ x ⇒ D(y)) ⇔ Z(x))

What is the meaning of Q8? Our aim is to characterize sets in Q so that
they can be identified with the sets of ZFU. This is supposed to be the case
if they were taken to be those qsets whose transitive closure (this concept
can be defined in the usual sense) does not contain m-atoms. The ‘⇒-part’
of Q8 gives half of the answer: if all the elements of x are Dinge (either
sets or M -atoms), then x is a set. Concerning the converse, it is not enough
to postulate that no element of a set is an m-atom, since it may be the case
that the elements of its elements have m-atoms as elements and so on. The
problem can be dealt with by taking Z(x) ⇒ ∀y(y ∈ x ⇒ D(y)), which is
precisely the ‘⇐-part’ of Q8.

(Q9)

∀x(m(x) ∧ x ≡ y ⇒ m(y)) ∧ ∀x∀y(x =E y ∧ M(x) ⇒ M(y))

∧∀x∀y(x =E y ∧ Z(x) ⇒ Z(y))

(Q10) There exists a qset denoted by ‘∅’ (the empty qset) , which does not
have elements:

∃Qx∀y(¬(y ∈ x))

Theorem 3 : The empty qset is a set.

Proof. Take x =E ∅. Since y ∈ x is false by Q10, then the antecedent of
∀y(y ∈ x ⇒ D(x)) is true, hence Z(x) by Q8. �
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(Q11) Indistinguishable Dinge are extensionally identical:

∀Dx∀Dy(x ≡ y ⇒ x =E y)

(Q12) This is the qset-theoretical version of the weak-pair axiom. For all x
and y, there exists a qset whose elements are indistinguishable from either x
or y:

∀x∀y∃Qz∀t(t ∈ z ⇔ t ≡ x ∨ t ≡ y)

We denote this qset by [x, y], and by {x, y} when x and y are Dinge, accord-
ing to standard terminology.

As we see below, after having discussed the idea of the quantity of ele-
ments of a qset (by means of the primitive concept of quasi-cardinal), the
quasi-cardinal of [x] may be different from 1, where [x] := [x, x] is the
‘weak singleton’ of x.

(Q13) The Separation Schema: by considering the usual syntactical restric-
tions on the formula A(t), the following is an axiom:

∀Qx∃Qy∀t(t ∈ y ⇔ t ∈ x ∧ A(t))

This qset is written [t ∈ x : A(t)] (we may use { and } when such a qset
is a set).

(Q14) Union

∀Qx(E(x) ⇒ ∃Qy(∀z(z ∈ y) ⇔ ∃t(z ∈ t ∧ t ∈ x)))

This qset is denoted by
⋃

t∈x t (we also use x ∪ y as usual).

(Q15) Power-qset
∀Qx∃Qy∀t(t ∈ y ⇔ t ⊆ x)

According to the standard notation, we write P(x) for this qset.

Definition 2 :
(1) 〈x, y〉 := [[x], [x, y]]
(2) x × y := [〈z, u〉 ∈ PP(x ∪ y) : z ∈ x ∧ u ∈ y]
(3) The concepts of intersection and difference of qsets are defined in the

usual way so that t ∈ x ∩ y iff t ∈ x ∧ t ∈ y and t ∈ x − y iff
t ∈ x ∧ t /∈ y. This last concept will be mentioned again later. It
is worth to note that the symbol ‘/∈’ has its usual meaning as in set
theory.
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We remark that 〈x, y〉 is a kind of ‘generalized ordered pair’, since the
first element is the qset of all elements indistinguishable from x, while the
second is the qset of all elements indistinguishable from y. We call it the
‘weak pair’.

(Q16) Infinity:

∃Qx(∅ ∈ x ∧ ∀y(y ∈ x ∧ Q(y) ⇒ y ∪ [y] ∈ x)).

(Q17) Regularity: (Qsets are well-founded):

∀Qx(E(x) ∧ x 6=E ∅ ⇒ ∃Qy(y ∈ x ∧ y ∩ x =E ∅))

2.1. Relations

Definition 3 : A qset w is a relation if it satisfies the following predicate R:

R(w) := Q(w) ∧ ∀z(z ∈ w ⇒ ∃u∃v(u ∈ x ∧ v ∈ y ∧ z =E 〈u, v〉))

Theorem 4 : No partial, total or strict order relation can be defined on a pure
qset whose elements are indistinguishable from one another.

Proof. (Sketch) Partial and total orders require antisymmetry, and this prop-
erty cannot be stated without identity. Asymmetry also cannot be supposed,
for, if x ≡ y, then for every R such that 〈x, y〉 ∈ R, it follows that 〈x, y〉 =E

[[x]] =E 〈y, x〉 ∈ R; so, xRy entails yRx. �

Theorem 5 : There exists a translation from the language of ZFU into the
language of Q such that if A is a formula of ZFU and Aq is its translation
to the language of Q, then `ZFU A iff `Q Aq. In other words, there is a
translation from one language into the other one such that all translations of
theorems of ZFU are theorems of Q.

Proof. The theory Q encompasses a ‘classical’ counterpart which can be
defined as follows: let A be a formula of the language of ZFU (which we
may admit has an unary predicate S which stands for ‘sets’). Then, call Aq

its translation to Q, defined as follows, where S(x) means that x is a set (in
ZFU):

(1) If A is S(x), then Aq is Z(x)
(2) If A is x = y, then Aq is ((M(x)∧M(y))∨(Z(y)∧Z(y))∧x =E y)
(3) If A is x ∈ y, then Aq is ((M(x) ∨ Z(x)) ∧ Z(y)) ∧ x ∈ y
(4) If A is ¬B, then Aq is ¬Bq

(5) If A is B ∨ C, then Aq is Bq ∨ Cq
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(6) If A is ∀xB, then Aq is ∀x(M(x) ∨ Z(x) ⇒ B)

Then it is easy to see that the translations of the axioms of ZFU are theo-
rems of Q. So, if Q is consistent, so is ZFU (see [3]). �

The above theorem shows that there is a copy of ZFU in Q. The existence
of such a copy of ZFU tells us that standard mathematics is a particular case
of quasi-set-theoretical mathematics. So, we can still use all the standard re-
sults of classical mathematics (grounded on ZFU) in the quasi-set-theoretical
framework. In this ‘copy’ of ZFU, we may define the following concepts:
Cd(x) for ‘x is a cardinal’; card(x) denotes ‘the cardinal of x’, and Fin(x)
says that ‘x is a finite quasi-set’ (that is, qc(x) is a natural number, these
ones defined as usual in the ‘classical part’ of the theory).

In other words, the concept of quasi-cardinal is one of the primitive notions
of Q, but the concept of cardinal is definable in the usual way, since ZFU is
copied in quasi-set theory. The details (which are straightforward) are left to
the reader.

By considering these concepts, we may present the axioms for quasi-
cardinals:

(Q18) Every object which is not a qset (that is, every Urelement) has quasi-
cardinal zero:

∀x(¬Q(x) ⇒ qc(x) =E 0)

(Q19) The quasi-cardinal of a qset is a cardinal (defined in the ‘classical
part’ of the theory and coincides with the cardinal itself when this qset is a
set:

∀Qx∃!y(Cd(y) ∧ y =E qc(x) ∧ (Z(x) ⇒ y =E card(x)))

(Q20) Every non-empty qset has a non zero quasi-cardinal:

∀Qx(x 6=E ∅ ⇒ qc(x) 6=E 0)

(Q21) ∀Qx(qc(x) =E α ⇒ ∀β(β ≤E α ⇒ ∃Qy(y ⊆ x ∧ qc(y) =E β))
(Q22) ∀Qx∀Qy∀t(y ⊆ x → qc(y) ≤E qc(x))
(Q23) ∀Qx∀Qy(Fin(x) ∧ x ⊂ y ⇒ qc(x) < qc(y))
(Q24) ∀Qx∀Qy(∀w(w /∈ x ∨ w /∈ y) ⇒ qc(x ∪ y) =E qc(x) + qc(y))

In the next axiom, 2qc(x) denotes (intuitively) the quantity of subquasi-sets
of x. Then,
(Q25) ∀Qx(qc(P(x)) =E 2qc(x))
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Axiom Q25 raises an interesting discussion that we mention below. But
first we need the concept of quasi-function.

2.2. Quasi-functions

Standard functions could not distinguish between arguments and values. So,
we have:

Definition 4 : If x and y are qsets and R is the predicate for ‘relation’ de-
fined above, we say that f is a quasi-function (qfunction) if it satisfies the
following predicate:

QF (f) := R(f) ∧ ∀u(u ∈ x ⇒ ∃v(v ∈ y ∧ 〈u, v〉 ∈ f))∧

∀u∀u′∀v∀v′(〈u, v〉 ∈ f ∧ 〈u′, v′〉 ∈ f ∧ u ≡ u′ ⇒ v ≡ v′)

f is a q-injection if f is a q-function from x to y and satisfies the additional
condition:

∀u∀u′∀v∀v′(〈u, v〉 ∈ f ∧〈u′, v′〉 ∈ f ∧v ≡ v′ ⇒ u ≡ u′)∧ qc(Dom(f))
≤E qc(Rang(f))

f is a q-surjection if it is a function from x to y such that

∀v(v ∈ y ⇒ ∃u(u ∈ x ∧ 〈u, v〉 ∈ f)) ∧ qc(Dom(f)) ≥E qc(Rang(f)).

A function f which is both a q-injection and a q-surjection is said to be a
q-bijection. In this case, qc(Dom(f)) =E qc(Rang(f)).

2.3. How many sub-quasi-sets are there?

Now we can turn to the discussion involving axiom Q25. Since the concept
of identity has no meaning for m-atoms, how can we ensure that a qset x
such that qc(x) =E α, has precisely 2α subqsets? In standard set theories
(and in the ‘classical part’ of Q, that is, those qsets which copy the sets of
ZFU), as it is well known, if card(x) denotes the cardinal of x, then by the
definition of exponentiation of cardinals, 2card(x) is defined to be the cardinal
of the set x2, which is the set of all functions from x to the Boolean algebra
2 = {0, 1} (see [4]). In Q this definition does not work. Let us explain why.

Suppose that α is the quasi-cardinal of x, which is a cardinal, by axiom
Q19. This axiom says that every qset has a unique quasi-cardinal which is
a cardinal (defined in the ‘classical part’ of the theory), and if the qset is in
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particular a set (in Q), then this quasi-cardinal is its cardinal stricto sensu.
So, every quasi-cardinal is a cardinal and the expression ‘there is a unique’
makes sense. Furthermore, from the fact that ∅ is a set, it follows that its
quasi-cardinal is 0. Then we may write

2qc(x) := qc(α2) (1)

and then, since α is a cardinal and both α and 2 are qsets, we have

2qc(x) := card(α2) (2)

So, we may take the cardinal of the qset α2 in its usual sense to mean
2qc(x). Then, equation (2) entails a meaning to axiom Q25, since it explains
what does 2qc(x) mean: it is the cardinal of the set of all the applications
from α (the quasi-cardinal of x) to 2. By considering this, the axiom may be
written as follows, where x is a qset and α is its quasi-cardinal:

AxiomQ25 (Alternative Form)

∀Qx(qc(P(x))) =E card(α2).

We remark that the second member of the equality has a precise meaning
in Q , since both α and 2 act as in classical set theories, as remarked above.
This characterization allows us to avoid another problem, which could be
thought to be derived in quasi-set theory. In order to explain this we recall
that in standard set theories we can prove that P(x) is equinumerous with
x2 by defining a one-to-one function f : P(x) →x 2 as follows: for every
y ⊆ x, let f(y) be the characteristic function of y, namely, the function
χy : x → 2 defined by

χy(t) :=

{

1 if t ∈ y
0 if t ∈ x − y

(3)

Then any function h ∈ x2 belongs to the range of f since

h = f({t ∈ x : h(t) = 1}).

Suppose now that x is a qset such that qc(x) is the natural number n and
that all elements of x are indistinguishable (the natural numbers are defined
in Q in the usual way, in the copy of ZFU that we have defined in Q). For all
we need, it is enough to consider finite qsets (this definition is also standard
by taking the concept of function given above). In this case, we cannot
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define the characteristic quasi-function χq
y for y ⊆ x, since, for instance,

if χq
y(t) =E 1 for t ∈ y, then χq

y(w) =E 1 as well as for every w ∈ x,
independently whether w belongs to y or not. This is due to the definition of
quasi-functions given above, since for every quasi-function f ,

〈a, b〉 ∈ f ∧ 〈c, d〉 ∈ f ∧ a ≡ c ⇒ b ≡ d.

In other words, if the image of a certain t by the quasi-function f is 1,
then the image of every element that is indistinguishable from t will be 1
as well. So, Q distinguishes only between two quasi-functions from x to
2, namely, that one which associates 1 to all elements of x and that one
which associates 0 to all of them. This is why we have used qc(α2) to stand
for 2qc(x), since both α and 2 may be viewed as sets (in the standard sense
of ZF). If we had used x2 instead, we would be unable to distinguish among
certain quasi-functions, so complicating the meaning of Q25, since we could
have no manner of counting the number of sub-quasi-sets of a qset. But, by
using α2, since both α and 2 behave ‘classically’, we may keep Q25 with its
usual meaning.

From these considerations, we may conclude that when x is a qset whose
elements are indistinguishable m-atoms, we cannot prove within Q that if
qc(x) =E n, it is not possible to assert that x has 2n sub-quasi-sets. Since
this is precisely what Q25 intuitively means, we may say that this axiom
cannot be proven from the remaining axioms of Q. But, since it holds for
particular qsets, namely, to those which are sets, it cannot be disproved as
well. In order to state that Q25 cannot be disproved, consider the sets in
Q; since they behave as classical sets, we can prove that what Q25 asserts
is true. Now it suffices to take a qset whose elements are indistinguishable
m-atoms and such that qc(x) = α.

2.4. The ‘weak’ extensionality

The absence of a theory of identity for m-atoms causes the necessity of a
modification in the Axiom of Extensionality, which does not hold here as
in standard set theories. In order to do so, let us introduce the following
definition:

Definition 5 : For all non empty quasi-sets x and y,
Sim(x, y) := ∀z∀t(z ∈ x ∧ t ∈ y ⇒ z ≡ t). In this case we say that x

and y are similar.

QSim(x, y) := Sim(x, y) ∧ qcard(x) =E qcard(y). That is, x and y
are q-similar iff they are similar and have the same quasi-cardinality.
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(Q26) Weak Extensionality: Qsets which have the same quantity of elements
of the same sort are indistinguishable. In symbols,

∀Qx∀Qy((∀z(z ∈ x/≡ ⇒ ∃t(t ∈ y/≡ ∧ ∧QSim(z, t))))

∧∀t(t ∈ y/≡ ⇒ ∃z(z ∈ x/≡ ∧ ∧QSim(t, z))) ⇒ x ≡ y)

Axiom Q26 allows us to make another remark about Q25. As in standard
set theories, if card(x) =E n, then are there exactly n subqsets of x which
are singletons? If not, how can we make sense to the idea that if qc(x) =E n,
then x has n elements? We recall that the main motivation of Q is the way
quantum mechanics deals with elementary particles. In this theory, although
there is a sense in saying that, say, there are k electrons in a certain level of
a certain atom, there is no way of counting them or distinguishing among
them (see [27, Chap. 12]).

If x is a qset whose elements are indistinguishable from one another (let
us suppose again that qc(x) =E n, which suffices for our purposes), then the
singletons y ⊆ x are indistinguishable, as results from the weak extension-
ality axiom Q26. So, all the singletons (in the intuitive sense) seem to fall
in just one qset. But it should be recalled that these ‘singletons’ (subqsets
whose quasi-cardinality is 1) are not identical (that is, they are not the same
object), but they are indistinguishable in the sense given by Q26. In other
words, despite the theory cannot distinguish among them, we cannot state
neither that they are the same qsets nor that their elements are identical. So,
it is consistent with Q to suppose that if qc(x) = α, then x has precisely
α ‘singletons’. So, due to Q

¯
25, the theory does not forbid the existence of

such singletons, despite the fact that in Q we cannot prove that they exist
as ‘distinct’ entities, and hence we may reason in Q as physicists do when
informally dealing with a certain number of indistinguishable elementary
particles.

By means of Q26 it is easy to prove the following theorem:

Theorem 6 :
(1) x =E ∅ ∧ y =E ∅ ⇒ x ≡ y
(2) ∀Qx∀Qy(Sim(x, y) ∧ qc(x) =E qc(y) ⇒ x ≡ y)
(3) ∀Qx∀Qy(∀z(z ∈ x ⇔ z ∈ y) ⇒ x ≡ y)
(4) x ≡ y ∧ qc([x]) =E qc([y]) ⇔ [x] ≡ [y]

2.5. Replacement axioms

To keep Q with a structure similar to ZFU, we might state Replacement
Axioms as follows, whose consequences are not explored here:
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If A(x, y) is a formula in which x and y are free variables, we say that
A(x, y) defines a y− (qfunctional) condition on the quasi-set t if ∀w(w ∈
t ⇒ ∃sA(w, s)∧∀w∀w′(w ∈ t∧w′ ∈ t ⇒ ∀s∀s′(A(w, s)∧A(w′, s′)∧w ≡
w′ ⇒ s ≡ s′)) (this is abbreviated by ∀x∃!yA(x, y)). Then, we have:

(Q27) Replacement

∀x∃!yA(x, y) ⇒ ∀Qu∃Qv(∀z(z ∈ v ⇒ ∃w(w ∈ u ∧ A(w, z)))

2.6. The concept of strong singleton

Definition 6 : A strong singleton of x is a quasi-set x′ which satisfies the
following property:

x′ ⊆ [x] ∧ qc(x′) =E 1

In words, a strong singleton of x is a qset whose only element is indistin-
guishable from x. In standard set theories, this qset is of course the singleton
whose only element is x itself, but here x may be an m-atom, and in this
case there is no way of speaking of something being identical to x. Even so,
we can prove that such a qset exists:

Theorem 7 : For all x, there exists a strong singleton of x.

Proof. The qset [x] exists according to the weak pair axiom. Since x ∈ [x]
(recall that ≡ is reflexive), we have qc([x]) ≥E 1 by Q20. But, from Q21,
there exists a subqset of [x] which has quasi-cardinal 1. Take this qset to be
x′. �

Theorem 8 : All the strong singletons of x are indistinguishable.

Proof. Immediate consequence of Q26, since all of them have the same
quasi-cardinality 1 and their elements are indistinguishable by definition.

�

We remark that, as we shall see, we cannot prove that the strong singletons
of x are extensionally identical. Intuitively, a strong singleton of x is a qset
of quasi-cardinality 1 whose ‘only element’ is indistinguishable from x. But
even if y ≡ x, we cannot get as a theorem of Q that the x and y are the same
object, for to express this we need identity.

The concept of difference of qsets is introduced in the usual way: x − y
is the qset whose elements are the elements of x which do not belong to y.
Intuitively, we can think of the electrons of a certain level inside an atom
which are not in another level, although we have no practical means to select
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an electron and say: ‘that’s the electron we are talking about’. The theory
expresses formally such idea; in other words, concerning indistinguishable
m-atoms, we cannot give ostensive definitions, say, by pointing one finger
over an m-atom and saying ‘That is Peter’. Even so, like in quantum physics,
we may reason in Q as if a certain element either belongs to the qset or does
not; the excluded middle law remains valid, even if we cannot verify what
case holds (this is a kind of non-constructive reasoning). Insisting a little bit,
we recall that also in standard mathematics there is no general effective way
of proving that, given inputs x and y, if x ∈ y or x /∈ y, although one of them
is true (since the excluded middle law holds in classical logic). This idea fits
what happens with the electrons in an atom; in general we know how many
electrons there are in certain situations, say in a specific atom, and we can
say that some of them are in that atom, but we cannot identify them: to ask
which are the electrons is a meaningless question. To speak of something
being meaningless deserves some care. But perhaps we are in a situation
which resembles Heisenberg, when he explains why, from the point of view
of modern physics, the problem posed by the ancient atomists of looking for
the ultimate parts of matter also ‘has no meaning’:

We ask, ‘What does the proton consist of?’ ‘Is the light-quantum
simple, or is it composite?’ But these questions are wrongly put,
since the words divide or consist of have largely lost their mean-
ing. It would thus be our task to adapt our language and thought,
and hence also our scientific philosophy, to this new situation en-
gendered by the experiments. ([8, p. 82])

Coming back to x− y, we will show that the quasi-cardinal of x− y is, as
expected, qc(x) − qc(y).

Theorem 9 : For all qsets x and y, if y ⊆ x, then qc(x−y) =E qc(x)−qc(y).

Proof. By definition, t ∈ x − y iff t ∈ x ∧ t /∈ y. Then (x − y) ∩ y =E ∅.
Hence, by Q24, qc((x − y) ∪ y) =E qc(x − y) + qc(y) (let us call this
expression (i)). But, since y ⊆ x, (x − y) ∪ y =E x and so, in order that (i)
be true, qc(x − y) =E qc(x) − qc(y). �

The next result may be viewed as a quasi-set-theoretical version of the
Indistinguishability Postulate used in quantum physics. Roughly speaking,
it says that permutations of indistinguishable quanta are not observable, and
constitute one of the most basic metaphysical assumptions which underlies
quantum mechanics [13]. In order to state and prove this result, we need the
following definition:
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Definition 7 : (1) Let x be a qset such that E(x), that is (according to
Definition 1), its elements are also qsets. Then,

⋂

t∈x

t := [z ∈
⋃

t∈x

t : ∀s(s ∈ x ⇒ z ∈ s)]

(2) If m(u), then Su := [s ∈ P([u]) : u ∈ s]
(3) u∗ :=

⋂

t∈Su

t

Lemma 1 : If m(u), then:
(1) u ∈

⋃

t∈Su

t
(2) ∀s(s ∈ Su ⇒ u ∈ s)
(3) z ∈ u∗ iff z ∈

⋃

t∈Su

t ∧ ∀s(s ∈ Su ⇒ z ∈ s)
(4) u ∈ u∗

(5) u∗ ⊆ [u]
(6) If s ∈ Su, then u∗ ⊆ s

Proof. (1) z ∈
⋃

t∈Su

t iff ∃t(t ∈ Su∧z ∈ t). Therefore, from the definition
given above, z ∈

⋃

t∈Su

t iff ∃t(t ∈ P([u]) ∧ u ∈ t ∧ z ∈ t). But since
[u] ∈ P([u]) and u ∈ [u], it follows that u ∈

⋃

t∈Su

t. (2) ∀s(s ∈ Su ⇔
s ∈ P([u]) ∧ u ∈ s). Therefore, ∀s(s ∈ Su ⇒ u ∈ s). (c) Immediate
consequence of the above definition. (4) Immediate consequence of (1)-(3)
above. (5) Suppose that z ∈ u∗. By (3), we have ∀s(s ∈ Su ⇒ z ∈ s).
But since [u] ∈ Su, it results that z ∈ [u]. (6) If z ∈ u∗, then, as before,
∀s(s ∈ Su ⇒ z ∈ s). But, by hypothesis, s ∈ Su; so, z ∈ s. �

Lemma 2 : If u is an m-atom and z is a qset, then if z ⊆ u∗ and qc(z) =E 1,
it results that either u ∈ u∗ − z or qc(u∗) =E 1.

Proof. Suppose that u /∈ u∗ − z. Since u ∈ u∗, it follows that u ∈ z.
But z ⊆ u∗ ⊆ [u], therefore z ∈ Su. But, by item (6) of the Lemma
given above, u∗ ⊆ z. By hypothesis, z ⊆ u∗, hence u∗ =E z, and so
qc(u∗) =E qc(z) =E 1. �

Theorem 10 : For every u, qc(u∗) =E 1.

Proof. According to item (4) of Lemma (1), u∗ 6=E ∅. So, by Q20, qc(u∗)
6=E 0, hence qc(u∗) ≥E 1. We shall show that the equality holds. Suppose
that qc(u∗) >E 1. Then, by Q21, there exists a qset w ⊆ u∗ such that
qc(w) =E 1. So, by Lemma (2), u ∈ u∗ − w. But u∗ − w ⊆ [u], since
u∗ ⊆ [u]. Therefore, u∗ − w ∈ Su. By Lemma (1), item (6), u∗ ⊆ u∗ − w.
But since u∗ − w ⊆ u∗, it follows that u∗ =E u∗ − w. Again by Q20,
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w 6=E ∅ since qc(w) =E 1. Then let be t ∈ w. So, t ∈ u∗ since w ⊆ u∗,
hence t ∈ u∗ − w (once u∗ =E u∗ − w). Then t /∈ w, a contradiction. �

Lemma 3 : For all m-atoms u and v, if u ≡ v, then u∗ ≡ v∗. Furthermore,
if u ∈ w, then u∗ ⊆ w for any qset w.

Proof. By Lemma (1), item (5), u∗ ⊆ [u] and v∗ ⊆ [v]; if u ≡ v then
Sim(u∗, v∗) (see Definition (5)). But, by Theorem (10), qc(u∗) =E 1 and
qc(v∗) =E 1 and then, by theorem (6), item (2), u∗ ≡ v∗. The last part can
be proven by noting that if u ∈ w, then u ∈ w ∩ [u], so as w ∩ [u] ⊆ [u],
therefore w ∩ [u] ∈ Su. Then, by Lemma (1), item (6), u∗ ⊆ w ∩ [u] and so
u∗ ⊆ w. �

These last results show that u∗ is, as expected, one of the strong singletons
of u. The remarkable fact, as already mentioned earlier, is that we cannot
prove that u∗ ≡ v∗ entails u∗ =E v∗. This is due to the fact that nothing
in the theory can assure that that m-atom that belongs to u∗ is the same m-
atom that belongs to v∗, since neither the expression u = v nor u =E v are
well-formed formulas. Furthermore, it is interesting to recall that the usual
Extensionality Axiom, which could be used for expressing this fact, is not an
axiom of our theory but, instead, we have the ‘weak’ axiom Q26, which talks
about indistinguishability only, but not about identity. The impossibility of
proving the mentioned result should not be regarded as a deficiency of the
theory, but rather as expressing that it is closer to what happens in some
physical domains. We shall be back to this point below.

2.7. Permutations are not observable

The next theorem states within the language of Q the intuitive idea men-
tioned above, namely, that permutations are not observable. Let us recall
that in standard set theories, if z ∈ x, then (x − {z}) ∪ {w} = x iff z = w.
So, we shall prove the following theorem:

Theorem 11 : Let x be a qset such that x 6=E [z] and z an m-atom such that
z ∈ x. If w ≡ z and w /∈ x, then there exists w′ such that

(x − z′) ∪ w′ ≡ x

Proof. Case 1: t ∈ z′ does not belong to x. In this case, x− z ′ =E x and so
we may admit the existence of w′ such that its unique element s does belong
to x (for instance, s may be z itself); then (x − z ′) ∪ w′ =E x.
Case 2: t ∈ z′ does belong to x. Then qc(x − z′) =E qc(x) − 1 by the
above Theorem. Then we take w′ such that its element is w itself, and so it
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results that (x−z′)∩w′ =E ∅. Hence, by Q25, qc((x−z′)∪w′) =E qc(x).
This intuitively says that both (x − z′) ∪ w′ and x have the same quantity
of indistinguishable elements. So, using Q27 (see above), we obtain the
theorem. �

When w /∈ x, we have the desired case according to which the theorem is
intuitively saying that we have ‘exchanged’ an element of x by an indistin-
guishable one, and that the resulting fact is that ‘nothing has occurred at all’,
a fact that in quantum physics was nicely expressed by Roger Penrose when
he said that

“according to the modern theory [QM], if a particle of a person’s
body were exchanged with a similar particle in one of the bricks of
this house then nothing would have happened at all”. ([20, p. 360])

In other words, the resulting qset (after the permutation) is indistinguish-
able from the original one. The above theorem is the quasi-set-theoretical
version of the quantum mechanical fact which expresses that permutations
of indistinguishable particles are not regarded as an observable, as expressed
by the so-called Indistinguishability Postulate. The relations between quasi-
sets and quantum objects are discussed from different points of view in
[13, 7, 15].

2.8. The Axiom of Weak Choice

Finally, we can add to the theory Q, for instance, the following axiom of
‘weak’ choice.

(Q28) The Axiom of Weak Choice

∀Qx(E(x) ∧ ∀y∀z(y ∈ x ∧ z ∈ x ⇒ y ∩ z =E ∅ ∧ y 6=E ∅) ⇒
∃Qu∀y∀v(y ∈ x∧v ∈ y ⇒ ∃Qw(w ⊆ [v]∧qc(w) =E 1∧w∩y ≡ w∩u)))

Of course this axiom is formulated only to keep Q strong enough to be
compared with standard ZFU, as we have done also with the Replacement
Axioms. In the axiom, the “choice qset” is formed by taking one indistin-
guishable from each member of the qset x. That is, we ‘weakly’ take one
element from each sub-qset of x, but without naming it. This procedure re-
sembles the use of Hilbert’s ε-symbol, and we leave open the problem of
further investigating this relationship, including the fact that, as it is well
known, Hilbert’s symbol keeps the axiom of choice a theorem of standard
set theory. It is also worth noting that since we can suppose the existence of
qsets with quasi-cardinal 2 whose elements are indistinguishable m-atoms,
we may also ask whether these qsets might act also as Fraenkel’s “cells” [5]
in order to obtain, as he did, a proof of the independence of the negation of
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the axiom of choice from the remaining axioms of Q. As it is well known,
the Urelemente of ZFU set theory are indistinguishable in the sense of be-
ing invariant under automorphisms, but even so they do obey the classical
theory of identity (so they are individuals). Our m-atoms, instead, act as
‘legitimate’ indistinguishable entities. To philosophically pursue these ques-
tions might be interesting, questions we leave to other works.

3. A closer look at identity

In this section we make some critical analysis on the foundations of equality
(identity) in first order theories from the point of view of quasi-sets. The
point of course concerns the meaning of the concept of indistinguishability
in Q, which is to be made distinct from identity. In considering this, we are
led to the study of alternative formulations of quasi-set theory. Let us begin
by recalling the axiom Q4, namely:

∀x∀y(x =E y ⇒ (A(x, x) ⇒ A(x, y))).

The question is: what would happen if we rephrase this sentence in a
somehow stronger way? One possibility is to replace x =E y by x ≡ y,
which could be a natural supposition. So,

∀x∀y(x ≡ y ⇒ (A(x, x) ⇒ A(x, y))), with the usual restrictions.

But, in this case, we can easily see that indistinguishability collapses to
identity, that is, quasi-set theory reduces to ZFU. So, we should ask whether
there is any another possible alternative for Q4, stronger than our Q4, but
such that indistinguishability does not collapse to identity. We shall argue
that there is not such a possibility and, in order to show that, we illustrate
our ideas by means of an alternative version for Q4, which we call Q4#,
where the usual restrictions are obeyed:

Q4# - ∀x∀y(¬m(x) ∧ ¬m(y) ∧ x ≡ y ⇒ (A(x, x) ⇒ A(x, y))).

We can see that Q4# is stronger than Q4 since Q4# allows substitutivity
for indistinguishable qsets which are not extensionally identical. But the new
question is: taken the axioms Q1–Q3 plus Q4#, is the resulting concept of
indistinguishability weaker than identity?

In order to discuss such a claim, we will prove some lemmas and theorems
within the scope of a variant of our quasi set theory obtained by replacing
Q4# for Q4. We call this theory Q#. Our main goal with this discussion
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is to arrive at a better understanding of identity in first order set theories. In
short, we will prove that Q# is equivalent to ZFU set theory, since indistin-
guishability, in this case, collapses to identity. In Q#, it is easy to prove the
following lemmas:

Lemma 4 : For all qsets x and y we have:
(1) If t ∈ x and x ≡ y then t ∈ y;
(2) If x ≡ y then x =E y.

Proof. (1) Since x is a qset, then ¬m(x), according to definition (1). Since
x ≡ y then ¬m(y) (Q9). Now, for all qsets u and v let At(u, v) := (t ∈
u ∧ t ∈ v). By hypothesis, t ∈ x ∧ t ∈ x, i.e., At(x, x). Since x ≡ y then,
according to Q4#, At(x, y). Hence t ∈ y. (2) If x ≡ y then, according to
item 1 of this proof, t ∈ x iff t ∈ y, which means that x =E y. �

Lemma 5 : For all m-atom x, [x] =E x∗, where x∗ is given by definition (7).

Proof. Let t ∈ [x]. According to the definition of weak singleton, t ≡ x.
According to Q9, t is an m-atom. From lemma (3), we have t∗ ≡ x∗. Note
that the proof of lemma (3) does not make any reference to Q4, so we can
use it here, although we are working in Q#. From definition (7) we know
that t∗ and x∗ are qsets. So, t∗ =E x∗, according to lemma (4). So, since
t ∈ t∗, then t ∈ x∗. Therefore [x] ⊆ x∗. From lemma (1) (which also does
not make any reference to Q4 in its proof) x∗ ⊆ [x]. So, [x] =E x∗. �

Lemma 6 : For all m-atoms x and y, the following conditions are equivalent:
(1) x ≡ y;
(2) x∗ ≡ y∗;
(3) x∗ =E y∗;
(4) [x] =E [y];
(5) [x] ≡ [y].

Proof. By lemma (3) (1)⇒(2); By Q4# (2)⇒(3); By lemma (5) (3)⇒(4); by
theorem (6), item (3), (4)⇒(5); By the same theorem, item (4), (5)⇒(1). �

Theorem 12 : For all m-atom x, qc([x]) =E 1.

Proof. Straightforward from lemma (5) and theorem (10) (which makes no
reference to Q4 in its proof). �

Lemma 7 : For all m atoms x and y and for all qset w, if x ≡ y and x ∈ w,
then y ∈ w.
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Proof. From lemma (3) x∗ ⊆ w. From lemma (6) y∗ ⊆ w. From lemma (1),
item (4), y ∈ w. �

Lemma 8 : For all m-atoms x and y and for all qset w:
(1) If x ≡ y and [x] ∈ w, then [y] ∈ w;
(2) If x ≡ y and [x] ⊆ w then [y] ⊆ w.

Proof. If x ≡ y then, from lemma (6), [x] ≡ [y]. But [x] and [y] are qsets.
Then, from Q4# we have (1) and (2). �

Lemma 9 : For all m-atoms x and y and for all λ and z:
(1) If x ≡ y and qc([x]) =E λ then qc([y]) =E λ;
(2) If x ≡ y and z ∈ [x] then z ∈ [y].

Proof. (1) Follows from theorem (12). (2) Follows from Q12 and Q2. �

Now we can state the main result of this section:

Theorem 13 : With the usual restrictions, ∀x∀y(x ≡ y ⇒ (A(x, x) ⇒
A(x, y))).

Proof. Suppose m(x). From Q9, m(y). In this case, A(x, x) is only built
from the following types of atomic formulas for some qset w: (1) x ∈ w; (2)
[x] ∈ w; (3) [x] ⊆ w; (4) qc([x]) =E λ; (5) z ∈ [x]. From lemmas (7), (8),
and (9), we have: (1) y ∈ w; (2) [y] ∈ w; (3) [y] ⊆ w; (4) qc([y]) =E λ; (5)
z ∈ [y], i.e., if A(x, x) then A(x, y). Suppose now that ¬m(x). According
to Q9 ¬m(y). By means of Q4#, if A(x, x) then A(x, y). �

This last theorem says that indistinguishability ≡ collapses into identity in
Q#. So, Q# is equivalent to standard ZFU.

This last theorem depends essentially on the Weak Axiom of Extensional-
ity Q26. It is worth to remark that axiom Q4# was used by one of us in [11].
But in that paper the Axiom of Extensionality was a little bit different, so,
some results presented here are not valid in the quasi-set theory introduced
in [11].

In the next section, we shall present some ideas relating quasi-set theory
and physics. The contents of this section are also discussed in [24].

4. Physics: The Maxwell-Boltzmann Statistics

According to usual textbooks on statistical mechanics, Maxwell-Boltzmann
(MB) statistics gives us the most probable distribution of N distinguishable
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objects into, say, boxes with a specified number of objects each. In this sec-
tion we show that the hypothesis concerning the objects being distinguish-
able is unnecessary. To do so, we need to recall some results from standard
ZF.

4.1. Some Standard Results in ZF

In Zermelo-Fraenkel set theory the following results are proven without dif-
ficulty (in order to not confuse the considered ‘sets’ with those of quasi-set
theory, we shall refer to them as ‘ZF-sets’):

Lemma 10 : If x is a finite ZF-set, then

card(P(x)) = 2card(x).

Theorem 14 : Let x be a non-empty and finite ZF-set. If we define x2 as a
set of ordered pairs 〈y1, y2〉 such that y1, y2 ∈ P(x), y1 ∪ y2 = x, and
y1 ∩ y2 = ∅ then card(x2) = 2card(x).

This theorem corresponds to say that the number of ways we can distribute
N distinguishable particles (N = card(x)) between two boxes (represented
by the ordered pair 〈y1, y2〉) is 2N .

Theorem 15 : Let x be a finite ZF-set such that card(x) = N . If we define xn

as a set of ordered n-tuples 〈y1, · · · , yn〉 such that for all i = 1, · · · , n we
have yi ∈ P(x),

⋃

i yi = x, and i 6= j ⇒ yi ∩ yj = ∅, then card(xn) = nN .

We could rewrite theorem (15) as:

Theorem 16 : Let x be a finite ZF-set such that card(x) = N . If we define xn

as a set of ordered n-tuples 〈y1, · · · , yn〉 such that for all i = 1, · · · , n we
have yi ∈ P(x),

⋃

i yi = x, and
∑

i card(yi) = card(x), then card(xn) =
nN .

Proof. Analogous to the proof of theorem (15), since
⋃

i yi = x, and i 6=
j ⇒ yi ∩ yj = ∅ iff

⋃

i yi = x, and
∑

i card(yi) = card(x). �

This theorem corresponds to say that the number of ways that we can
distribute N distinguishable particles (N = card(x)) among n boxes (rep-
resented by the ordered n-tuple 〈y1, · · · , yn〉) is nN .
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4.2. Quasi-Set-Theoretical Combinatorics

Given these results, we remark that we can obtain a perhaps more fruit-
ful quasi-set theory, which indices a ‘quasi-set-theoretical combinatorics’ by
exchanging the axiom Q25 by the following postulate, which is a general-
ization of Q25, as well as a quasi-set-theoretical version of theorem (15):

Q25′ Let x be a finite quasi-set such that qc(x) =E N . If we define zn

as the quasi-set whose elements are ordered n-tuples 〈y1, · · · , yn〉,
where, for all I =E 1, · · · , n, we have yi ∈ P(x),

⋃

i yi = x, and
∑

i qc(yi) =E qc(x), then we have the following:

qc(zn) =E nN . (4)

In the case where n =E 2, we have a sentence which is equivalent to
axiom Q25.

The aim of axiom Q25′ is to allow us to define a quasi-set theoretical
combinatorics which can be useful to cope with distribution functions. From
the mathematical point of view, it is important to show that the exchange
of axiom Q25 by Q25′ does not entail inconsistencies in quasi-set theory,
supposing this theory is consistent. This shall be proven in the Section 5.
The point, at this moment, is that Q25 is very ‘weak’ if we are interested
on a quasi-set-theoretical combinatorics with more than two physical states
or ‘boxes’, as exemplified in the Introduction. Besides, axiom Q25′ is our
quasi-set theoretical version of theorem (16).

If we recall the polynomial of Leibniz, we can rewrite equation (4) as:

qc(zn) =E nN =E

∑ N !

Πi=1,···nni!
, (5)

where the sum is over all possible combinations of nonnegative integers ni

such that
∑

i=1,··· ,n ni =E N .
Interpreting n as the number of physical states, N as the total number of

particles and ni as the number of particles associated to each physical state
i, then it is easy to see that each parcel of the summation in equation (5) is
a possible MB (Maxwell-Boltzmann) distribution of N particles in n possi-
ble states. The most probable among all these parcels is precisely the MB
distribution. So, we can add equation (5), with its respective interpretation,
as another extra-assumption (an ‘empirical axiom’) in quasi-set theory. In
other words, we are generalizing theory Q, by replacing axiom Q25 by ax-
iom Q25′. We refer to this generalized quasi-set theory as Q′. If we do not
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replace axiom Q25 by Q25′, there is no way of saying anything about a dis-
tribution of N particles among an arbitrary number n of states or boxes. In
this case, we would be confined to the very particular case of 2 states only.

It is easy to see that, for all i, we have ni =E qc(yi). Axiom Q25′ is
just another way of saying that the number of ways we can distribute N ob-
jects (either distinguishable or not) among n boxes is nN . The condition
that

⋃

i yi =E x, and
∑

i qc(yi) =E qc(x) is simply a way to guarantee
that there will be no ‘repeated occurrence’ of the same object in two boxes.
Nevertheless, it is obvious that the expression ‘repeated occurrence’, in this
quasi-set-theoretical context, is just an intuitive approach for didactic pur-
poses, since there is no sense in saying that the ‘same’ object cannot occupy
two boxes.

The reader could ask: what are the so-called “boxes”? Each yi corresponds
to a given box or physical state. There can be, of course, two indistinguish-
able boxes yi and yj . In this case, the labels i and j cannot individualize
each box. They are just different names, or labels, attributed to two indistin-
guishable objects (qsets, in this case).

4.3. One Simple Example

Now, let us exhibit an example in order to illustrate our ideas. Consider a col-
lection of three indistinguishable particles to be distributed in two possible
states or ‘boxes’. According to standard textbooks on statistical mechanics,
there are only four possibilities of distribution. On the other hand, according
to our axiomatic framework — axiom Q25′ — there are eight possibilities.
If we impose that the occupation number of each box is constant, the number
of possibilities corresponds to one parcel of the sum in equation (5).

The question now is: what about the extra four possibilities predicted by
axiom Q25′? The eight possibilities predicted by Q25′ and equation (5)
come from

23 =
3!

3!0!
+

3!

2!1!
+

3!

1!2!
+

3!

0!3!
.

So, we have one possibility with 3 particles in the first state and no particle
in the second state, plus three indistinguishable possibilities with 2 particles
in the first state and 1 particle in the second state, plus three indistinguishable
possibilities with 1 particle in the first state and 2 particles in the second state,
plus one single possibility with no particle in the first state and 3 particles
in the remaining one. The calculation of the most probable case is made for
a large number of particles, following the standard calculations of statistical
mechanics.
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Following our example, axiom Q25′ says that we can distribute 3 objects
(either indistinguishable or not) among 2 boxes in 23 ways (either indistin-
guishable or not). But this axiom does not say how can we make this distri-
bution. If we do not appeal to equation (5), we have the following: according
to Fig. 1, there are, at least, by means of axiom Q16, four possible distribu-
tions. But axiom Q25′ says that there are eight possible distributions. One
possibility is something like Fig. 2, that is, the four distributions in Fig. 1
plus four distributions which are indistinguishable from the third distribu-
tion of Fig. 1. The reader can easily imagine other possibilities. So, axiom
Q25′ by itself does not allow us to derive MB statistics. It simply says that
MB statistics is a possibility even in a collection of indiscernible objects.
Axiom Q25′ and equation (5), with its respective interpretation in the con-
text of Q25′, is a way to say that the only possibility is that one illustrated at
Fig. 3.

• • •
•• •
• ••

• • •

Figure 1. The ‘first’ four possible distributions of 3 objects
(indistinguishable or not) among 2 boxes. Each line repre-
sents one possible distribution and each bullet represents an
object.

• • •
•• •
• ••

• • •
• ••
• ••
• ••
• ••

Figure 2. One possible sequence of the eight possible dis-
tributions of 3 objects among 2 boxes according to axiom
Q25′.
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• • •
•• •
•• •
•• •
• ••
• ••
• ••

• • •

Figure 3. The only possible distribution of 3 objects among
2 boxes, if we conjugate axiom Q25′ and equation (2).

5. Quantum Statistics

Since we may have MB distribution among non-individuals, what is the dif-
ference between quantum statistics and MB, after all? In Bose-Einstein sta-
tistics, we take into account only distinguishable possibilities, among all
possibilities predicted by axiom Q25′. Fermi-Dirac statistics is derived in
the same vein, but with the additional assumption of the quasi-set theoret-
ical version of Pauli’s Exclusion Principle: qc(yi) ≤ 1 for each i in Q25′.
Putting it another way, quantum statistics may be seen as special cases of
MB statistics of a collection of indistinguishable particles.
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