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CONSTRUCTIVE NEGATION DEFINED WITH A FALSITY
CONSTANT FOR POSITIVE LOGICS WITH THE CAP DEFINED

WITH A TRUTH CONSTANT

GEMMA ROBLES AND JOSÉ M. MÉNDEZ

1. Introduction

Consider a propositional logic L with negation defined with a propositional
falsity constant. L has the Ackermann Property if Ackermann’s theorem ([1],
p. 127), which we quote below, is predicable of L (f is "das Absurde", [1],
p. 124).

Eine formel U → (B → C) is nicht beweisbar, falls U, →
noch f enhalt.

According to Anderson and Belnap, the Ackermann Property (AP) is a
necessary property of any logic of entailment. Intuitively, and roughly speak-
ing, the AP is the non-derivability of necessitive propositions from pure non-
necessitive ones (see [2], §22.1) (A is necessitive if A is of the form NB).

Consider now a propositional logic L with truth and falsity propositional
constants t and F . The Converse Ackermann Property (CAP) will be pred-
icable of L if all the formulas of the form (A → B) → C are unprovable
whenever C does not contain →, t or F . The CAP can intuitively be in-
terpreted as the non-derivability of non-necessitive propositions from pure
necessitive ones.

The question about which systems do posses the CAP is first posed in
[2], §8.12 and it is answered for implicative logics and for possitive logics
in [4]. Syntactically speaking, the solution roughly consists in restricting
Contraction

[A → (A → B)] → (A → B)

and Assertion

A → [(A → B) → B]
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88 GEMMA ROBLES AND JOSÉ M. MÉNDEZ

to the case in which B is an implicative formula (A is implicative iff A is
of the form B → C). Thus, logics with the CAP are contractionless logics.
Actually, they are the natural bridge between strict contractionless logis and
logics with contraction.

Positive logics with the CAP have been endowed with different kinds of
negation. In [5] a sort of semiclassical negation and in [3], a strong negation
are added to the positive logics in [4]. And in [8], an intuitionistic negation
is added to positive intuitionistic logic with the CAP, Io+. The aim of this
paper is now to add a constructive negation to the positive logics in [4].
This constructive negation can intuitively be described by the presence of
the weak contraposition axioms, e.g.,

(A → B) → (¬B → ¬A)

(A → ¬B) → (B → ¬A)

the weak reductio axioms,e.g.,

(A → ¬A) → ¬A

(A → B) → [(A → ¬B) → ¬A]

and the absence of "e contradictione quodlibet" (ECQ)

(A ∧ ¬A) → B

A → (¬A → B)

The structure of the paper is as follows. In §2, 3, we recall the positive
logics of [4]. In §4, 5, the logics with the CAP and constructive negation
are syntactically defined. In §6, it is proved that the CAP is a property of
each one of them. In §7-10, we define semantics for the positive logics with
constructive negation and prove semantic consistency and completeness.
Finally, in §11, 12, we define alternative syntactic and semantic formulations
of the logics in §7-10.

We assume acquaintance of the reader with the ternary relational semantics
and most of all, with the logic TW+ (Ticket Entailment without the contrac-
tion axiom. See, e.g., [2] or [9]). The models we employ are reduced models
with a designated world in the set of all possible worlds (see [9]). As it was
shown in [4] and will be shown in this paper, these models are especially ad-
equate here for two reasons: (a) the presence of the truth constant t and (b)
the fact that all logics in the paper have the disjunctive intuitionistic property
(see Lemma 3 below).
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2. Positive logics with the CAP

The sentential language has the truth constant t and the binary connectives
→, ∧, ∨ as primitive. The biconditional ↔ is introduced by definition in the
customary way. The logics we are concerned with here are defined from the
following set of axiom schemes and rules of inference:

A1. A → A
A2. (B → C) → [(A → B) → (A → C)]
A3. (A → B) → [(B → C) → (A → C)]
A4. [A → [A → (B → C)]] → [A → (B → C)]
A5. [t → (B → C)] → (B → C)
A6. A → [[A → (B → C)] → (B → C)]
A7. A → (A → A)
A8. A → t
A9. A → (B → A)
A10. (A ∧ B) → A / (A ∧ B) → B
A11. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]
A12. A → (A ∨ B) / B → (A ∨ B)
A13. [(A → C) ∧ (B → C)] → [(A ∨ B) → C]
A14. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ C]
A15. t

The rules are adjunction (adj) (if ` A and ` B, then ` A ∧ B), modus
ponens (MP) (if ` A → B and ` A, then ` B) and necessitation (nec.) (if
` A, then ` t → A).

The logics are defined as follows. The logic To
+ (positive Ticket entailment

-cfr. [2]- with the CAP) is formulated with A1-A4, A10-A15, adj., MP and
nec. Other logics are defined as follows:

Eo
+: To

+ plus A5
Ro

+: To
+ plus A6

RMOo
+: Ro

+ plus A7
S4o

+: Eo
+ plus A8

Io+: Ro
+ plus A9

If in all foregoing formulations we change A4, A5 and A6, whenever
present, for contraction

A4’. [A → (A → B)] → (A → B)

specialized assertion

A5’. (t → A) → A
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90 GEMMA ROBLES AND JOSÉ M. MÉNDEZ

and assertion

A6’. A → [(A → B) → B]

respectively, we get the formulations of the positive logics Ticket Entail-
ment (T+), Entailment (E+), Relevance logics (R+), Relevance logic plus
the mingle axiom (RMO+), modal logic S4 (S4+) and Intuitionistic logic
(I+), respectively. So, To

+, Eo
+, Ro

+, RMOo
+, S4o

+ and Io+ are the restriction
with the CAP of the precedently mentioned logics (see [2], [4]).

The deductive relations these logics maintain to each other (which are ex-
actly those maintained by their unrestricted counterparts) are summarized in
the following diagram where the arrow stands for set inclusion:

Figure 1

3. Semantics for positive logics

Given a triple < O, K, R > where O ∈ K and R is a ternary relation on K,
let us define the binary relation ≤, the quartenary relation R2 and the five
element relation R3 in this way:

For every a, b, c, d ∈ K ,
d1. a ≤ b iff ROab
d2. R2abcd iff (∃x ∈ K) (Rabx and Rxcd)
d3. R3abcde iff (∃x∃y ∈ K) (Rabx and Rxcy and Ryde)

A To
+ model is a quadruple < O, K, R, � > where O ∈ K, R is a ternary

relation on K satisfying the following conditions: for every a, b, c, d ∈ K,

P1. ROaa
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P2a. R2Oabc ⇒ Rabc
P2b. a ≤ b & b ≤ c ⇒ a ≤ c
P3. R2abcd ⇒ (∃x ∈ K) (Rbcx and Raxd)
P4. R2abcd ⇒ (∃x ∈ K) (Racx and Rbxd)
P5. R2abcd ⇒ R3abbcd

Finally, � is a valuation relation from K to the sentences of To
+ satisfying

the following conditions for all formulas p, A, B and point a in K:

(i) a � p and a ≤ b ⇒ b � p
(ii) a � A ∧ B iff a � A and a � B
(iii) a � A ∨ B iff a � A or a � B
(iv) a � A → B iff for all b, c ∈ K, Rabc and b � A ⇒ c � B
(v) a � t iff O ≤ a

A is valid (�T o
+

A) iff O � A in all models.

Semantics for the remainig logics are defined from the following set of
postulates:

P6. Rabc ⇒ R2aObc
P7. R2abcd ⇒ R2bacd
P8. Rabc ⇒ a ≤ c or b ≤ c
P9. O ≤ a
P10. Rabc ⇒ a ≤ c

In particular, we have (in correspondence to the axiomatic systems in §2):
Eo

+ models, Ro
+ models, RMOo

+ models, S4o
+ models and Io+ models are just

like To
+ models but with the addition of the postulates P6, P7, P8, P9 and

P10, respectively. Validity is similarly defined as in To
+. Now, in [4], it is

proved that A is valid iff A is a theorem for each one of these logics.

4. The logic To
c,t,F

We add the propositional falsity constant F together with the definition ¬A
= df A → F to the sentential language of §2. We also add the axiom

A16. A → [(A → F ) → F ]

Then, To
c,t,F (Ticket Entailment with constructive negation and defined

with the constants t and F ) is To
+ plus A16. That is, To

c,t,F is formulated with
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92 GEMMA ROBLES AND JOSÉ M. MÉNDEZ

A1-A4, A10-A16, adj., MP, and nec. We note that the following theorems
are derivable in To

c,t,F :

T1. F → F A1
T2. (B → F ) → [(A → B) → (A → F )] A2
T3. (A → B) → [(B → F ) → (A → F )] A3
T4. [A → (B → F )] → [B → (A → F )] By A3, A16
T5. (t → F ) → F By A15, A16
T6. t → (F → F ) T1, nec.
T7. F → (t → F ) T4, T6
T8. [A → (A → F )] → (A → F ) By A1, A4, A16
T9. [A → (B → F )] → [(A → B) → (A → F )] By A2, A4, T4

T10. (A → B) → [[A → (B → F )] → (A → F )] By A3, T4, T9
T11. B → [[A → (B → F )] → (A → F )] By A2, A16
T12. [A → (B → F )] → [(A ∧ B) → F ] By T10
T13. (A → B) → [[A ∧ (B → F )] → F ] By T9
T14. [A ∧ (B → F )] → [(A → B) → F ] By T4, T13
T15. (A ∧ B) → [[A → (B → F )] → F ] By T4, T12
T16. [A ∧ (A → F )] → F By A1, T13
T17. [(A → F ) ∧ (B → F )] ↔ [(A ∨ B) → F ] By To

+

T18. [(A → F ) ∨ (B → F )] ↔ [(A ∧ B) → F ] By To
+

Thus, we have by definition:
a) Weak contraposition

¬B → [(A → B) → ¬A] (T2)
(A → B) → (¬B → ¬A) (T3)
(A → ¬B) → (B → ¬A) (T4)
B → [(A → ¬B) → ¬A] (T11)

b) Weak double negation

A → ¬¬A (A16)
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c) Weak reductio

(A → ¬A) → ¬A (T8)
(A → ¬B) → [(A → B) → ¬A] (T9)
(A → B) → [(A → ¬B) → ¬A] (T10)

d) Weak interdefinition between → and ∧

(A → ¬B) → ¬ (A ∧ B) (T12)
(A ∧ ¬B) → ¬ (A → B) (T14)
(A ∧ B) → ¬ (A → ¬B) (T15)
(A → B) → ¬ (A ∧ ¬B) (T13)

e) Weak De Morgan laws

(¬A ∧ ¬B) ↔ ¬ (A ∨ B) (T17)
(¬A ∨ ¬B) → ¬ (A ∧ B) (T18)

f) Non contradiction

¬ (A ∧ ¬A) (T16)

g) Some theorems on t and F

¬F (T1)
F ↔ ¬t (T5, T7)
t → ¬F (T6)
(A ∧ ¬A) → F (T16)

The constant t can intuitively be interpreted as the conjuction of all truths
( see [2], §27, 12 ), the constant F is equivalent to ¬t ( T5, T7 ), and so, it
can be interpreted as the disjunction of all falsehoods.

5. The logics Eo
c,t,F , Ro

c,t,F , RMOo
c,t,F , S4o

c,t,F
, and Ioc,t,F

The logics Eo
c,t,F , Ro

c,t,F , RMOo
c,t,F , S4o

c,t,F
, and Ioc,t,F are the result of adding

A16 to Eo
+, Ro

+, RMOo
+, S4o

+, and Io+, respectively. We note that in addition
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to T1-T18, that belong to To
c,t,F , we have the following theoremes in Ioc,t,F :

T19. ¬A → (A → ¬B) By A9
T20. A → (¬A → ¬B) By A9
T21. (A ∧ ¬A) → ¬B By A9, T16
T22. (¬A ∨ ¬B) → (A → ¬B) By A9, T19
T23. (A ∨ ¬B) → (¬A → ¬B) By A9, T20
T24. [(A ∨ ¬B) ∧ ¬A] → ¬B By T23
T25. ¬ (A ∧ B) → (A → ¬B) By Io+
T26. ¬ (A ∧ B) ↔ (A → ¬B) T12, T25
T27. ¬¬ (A ∨ ¬A) By T16
T28. F → ¬A By A9
T29. ¬F → t A9, A15
T30. t ↔ ¬F T6, T29

6. Converse Ackermann Property

Consider the following set of matrices where F is asssigned the value 0 and
t the designated value 2

→ 0 1 2
0 2 0 2
1 2 2 2
2 0 0 2

∧ 0 1 2
0 0 1 0
1 1 1 1
2 0 1 2

∨ 0 1 2
0 0 0 2
1 0 1 2
2 2 2 2

This set verifies Ioc,t,F . However, if (A → B) → C is a formula in which
C contains neither → nor t nor F , assign all the variables in C the value 1,
thus falsifying (A → B) → C. This same set can be used to asses that the
contradiction and assertion axioms are not verified, as required and neither
are verified such intuitionistic theorems as ¬A → (A → B). Finally, note
that A16 is not derivable from A1-A15, adj., MP and nec: assign A the value
2 and F the value 1.

7. Semantics for To
c,t,F

A To
c,t,F model is a quintuple < O, K, S, R, � > where S is a non-empty

subset of K, O ∈ S and < O, K, R, � > is a To
+ model such that the
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following postulate

P11. Rabc and c ∈ S ⇒ (∃x ∈ S) (Rbax)

holds (in addition to P1-P5), and the relation � satisfies (in addition to (i)-(v))
the clauses

(vi) a ≤ b and a � F ⇒ b � F
(vii) a � F iff a /∈ S

A formula A is T O
c,t,F valid iff O � A in all models.

We sketch a proof of semantic consistency (semantic soundness of To
c,t,F ,

relative to the semantics of To
c,t,F models).

First we prove

Lemma 1 : a ≤ b and a � A ⇒ b � A

Proof. Induction on the length of A using P2a in the case of the conditional,
clause (v) and P2b in the case of t and clause (vi) in the case of F .

Lemma 2 : �T O
c,t,F

A → B iff for all a ∈ K in all models, a � A ⇒ a � B

�

Proof. By P1, d1 and lemma 1 �

We can now prove

Theorem 1 : (Semantic consistency of To
c,t,F - Soundeness of To

c,t,F ) If
`T o

c,t,F
A then �T o

c,t,F
A

Proof. A1, A10-A14 are immediate by lemma 2, and A15 by O ≤ O (P1,
d1). Adj. is trivial and nec. is immediate by Lemma 1 and definitions; MP
is proved by ROOO (P1). Now, A2, A3 and A4 are proved with P3, P4 and
P5, respectively. Finally, A16 is proved valid with P11. Note that, as S is
not empty, F is not valid. �

8. Completeness of TO
c,t,F

We begin with some definitions. A theory is a set of formulas closed under
adjunction and provable entailment (that is, a is a theory iff (i) if A, B ∈ a,
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then A∧B ∈ a (ii) if `
To

c,t,F
A → B and A ∈ a, then B ∈ a). Let KT be the

set of all theories, and RT the ternary relation on KT defined as follows: For
every a, b, c ∈ KT , RT abc iff for all formulas A, B such that A → B ∈ a
and A ∈ b, it holds that B ∈ c. A theory b is prime just in case A ∈ b
or B ∈ b whenever A ∨ B ∈ b, and consistent iff F does not belong to b.
A theory is regular iff it contains all To

c,t,F theorems and null if no formula
belongs to it. Now, let KC be the set of all prime theories, SC the set of all
consistent theories and RC the restriction of RT to KC . Further, let �

Cbe
defined for any wff A and a ∈ KC as follows: a �

C A iff A ∈ a. Finally,
let TO

c,t,F be the set of all To
c,t,F theorems. Then, the structure <To

c,t,F , OC ,
KC , SC , RC , �

C> is called the canonical model.
We note

Lemma 3 : To
c,t,F is prime, i.e., if `T o

c,t,F
A ∨ B, then `T o

c,t,F
A or `T o

c,t,F
B

Proof. By the method of the canonical metavaluations in [6], TO
c,t,F and in

fact, Eo
c,t,F , Ro

c,t,F , RMOo
c,t,F , S4o

c,t,F and Ioc,t,F are proved to have the intu-
itionistic disjunctive property. �

Then, given the completeness of TW+, it is clear that we just have to
prove that clauses (vi) and (vii) and postulate P11 hold canonically. Now,
clause (vi) is trivial, clause (vii) follows by definition of SC and P11 is im-
mediate from the following

Lemma 4 : Let a, b ∈ KT , c ∈ SC and RT abc. Then, there is some x in SC

such that c ⊆ x and RT bax

Proof. Define the theory y = {B : ∃A [A → B ∈ b and A ∈ a]} such that
RT bay. We prove y consistent. Suppose it is not. Then, F ∈ y. By definition
of y, A → F ∈ b for some wff A ∈ a. By A16, (A → F ) → F ∈ a. Given
that RT abc, F ∈ c contradicting the hypothesis. Finally, x is extended to a
prime consistent theory x such that RT bax. �

It is obvious that the canonical postulate P11, i.e., RCabc & c ∈ SC ⇒
(

∃x ∈ SC
)

RCbax is a special case of Lemma 4.

9. Semantics for Eo
c,t,F , Ro

c,t,F and RMOo
c,t,F

Eo
c,t,F models (Ro

c,t,F models, RMOo
c,t,F models) are similarly defined from

Eo
+ (Ro

+ models, RMOo
+ models) as To

c,t,F models were defined from To
+



“07robles-mendez”
2005/11/15
page 97

i

i

i

i

i

i

i

i

CONSTRUCTIVE NEGATION 97

models. Then, to prove semantic consistency, it suffices to prove that A5
(A6, A7) are valid: use P6 (P7, P8). On the other hand, the completeness
proof is similar to that of To

c,t,F . In fact, once the Eo
c,t,F canonical model

(<Eo
c,t,F , KC , SC , RC , �

C> where KC , SC , RC and �
C are as in To

c,t,F

models) is defined, we just have to prove that the canonical postulate P6
holds in the canonical model in order to prove the completeness of Eo

c,t,F .
We proceed in a similar way with respect to Ro

c,t,F and RMOo
c,t,F

10. Semantics for S4o
c,t,F and Ioc,t,F

S4o
c,t,F models (Ioc,t,F models) are similarly defined from S4o

+ models (Io+
models) as To

c,t,F models were defined from To
+ models.

Semantic consistency follows proving that A8 (A9) are valid: use P9
(P10).

Regarding completeness, we recall that theories must be non-null in the
S4o

+ and Io+ models. So, given the completeness of S4o
+ and Io+, we only

have to prove the following modification of Lemma 4

Lemma 5 : Let a, b be non-null theories in KT , c a non-null prime consistent
theory and RT abc. Then, there is some non-null prime consistent theory x
such that c ⊆ x and RT bax.

Proof. The proof is exactly like that of Lemma 4 once we recall that if a
and b are non-null theories, the set x = {B : A → B ∈ a and A ∈ b} is a
non-null theory such that RT abx. �

11. Alternative models for To
c,t,F , Eo

c,t,F , Ro
c,t,F , RMOo

c,t,F and S4o
c,t,F

We propose in this and the next section alternative semantic postulates for
the logics discussed in this paper. We leave to the reader the proof of the
following lemmas

Lemma 6 : A16 and T4 are mutually derivable in the presence of To
+

Lemma 7 : A16, T4 and T11 are mutually derivable in the presence of S4o
+

or Ro
+

Lemma 8 : Given Ro
+, A16 is derivable from T5 and T7.
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Facts in Lemmas 6, 7 and 8 mean that A16 can be replaced by T4 in To
c,t,F ,

Eo
c,t,F , by T4 or T11 in Ro

c,t,F , RMOo
c,t,F and S4o

c,t,F and by T5 and T7 in
Ro

c,t,F and RMOo
c,t,F . Next, we have

Lemma 9 : The corresponding semantical postulates for T4, T5, T7 and T11
are:

PT4. R2abcd & d ∈ S ⇒ (∃x ∈ K) (∃y ∈ S) R2acby
PT5. a ∈ S ⇒ (∃x ∈ S) RaOx
PT7. a /∈ S & O ≤ b & Rabc ⇒ c /∈ S
PT11. R2abcd & d ∈ S ⇒ (∃x ∈ K) (∃y ∈ S) R2bcay

The proof of this lemma is left to the reader as well.
In consequence, we can alternatively define To

c,t,F , Eo
c,t,F models dropping

P11 and adding PT4, S4o
c,t,F , Ro

c,t,F and RMOo
c,t,F models by changing P11

for PT4 or PT11 and finally, Ro
c,t,F and RMOo

c,t,F models are equivalently
defined by deleting P11 and adding PT5 and PT7. Then, completeness in re-
spect of the new models immediately follows, of course, from completeness
in respect of the old ones.

12. Alternative models for Ioc,t,F

We prove

Lemma 10 : T4, T5, T8, T9, T10, T11, T12, T13, T14, T15 and T16 are
mutually derivable in the presence of Io+.

Proof. First prove that A16 is derivable given Io+ plus T8. Then, show that T8
is derivable given Io+ plus T9 (T10, T12). Next, prove that A16 is derivable
given Io+ and T13 (T16). By Lemma 7, A16 is derivable from T4 (T11); by
Lemma 8, A16 is derivable from T5 (because T7 is provable by A9). Finally
we show that T5 is derivable from T14 (T15). �

We end this section with the Lemma

Lemma 11 : The corresponding semantic postulates for T4, T5, T8, T9, T10,
T11, T12, T13, T14, T15 and T16 are (see in Lemma 9 PT4, PT5 and PT11):

PT8. Rabc & c ∈ S ⇒ (∃x ∈ S) R2abbx
PT9. R2abcd & d ∈ S ⇒ (∃x, y ∈ K) (∃z ∈ S) [Racx & Rbcy & Ryxz]
PT10. R2abcd & d ∈ S ⇒ (∃x, y ∈ K) (∃z ∈ S) [Racx & Rbcy & Rxyz]
PT12. Rabc & c ∈ S ⇒ (∃x ∈ S) R2abbx (It is PT8)
PT13. Rabc & c ∈ S ⇒ (∃x ∈ K) (∃y ∈ S) [Rabx & Rbxy]
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PT14. Rabc & c ∈ S ⇒ (∃x ∈ K) (∃y ∈ S) [Rbax & Raxy]
PT15. Rabc & c ∈ S ⇒ (∃y ∈ S) R2baay
PT16. a ∈ S ⇒ (∃x ∈ S) Raax

The proof of this lemma is left to the reader.
Consequently, we can alternatively define Ioc,t,F models deleting P11 and

adding one of these postulates: PT4, PT5, PT8, PT9, PT10, PT11, PT12,
PT13, PT14, PT15 or PT16. Then, completeness in respect of the new mod-
els immediately follows, of course, from completeness in respect of the old
ones.
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