
“15urbanski”
2005/7/18
page 319

i

i

i

i

i

i

i

i

Logique & Analyse 185–188 (2004), 319–333

HOW TO SYNTHESIZE A PARACONSISTENT NEGATION:
THE CASE OF CLUN

MARIUSZ URBAŃSKI∗

Abstract
The aim of this paper is to apply synthetic tableaux method (STM)
to the paraconsistent logic CLuN, developed by Diderik Batens.
Soundness and completeness of STM with respect to CLuN seman-
tics are proved. It is also shown how to interpret CLuN negation in
terms of relations represented by the square of oppositions of tradi-
tional syllogistic.

1. Introduction

The logic CLuN, developed by Diderik Batens, is a first-order paraconsistent
logic. It is obtained by dropping from the classical semantics the following
requirement for negation:

(*) if A is true, then ∼A is false;

and by keeping its converse:

(**) if A is false, then ∼A is true.

Thus, CLuN allows for gluts with respect to negation. As a result, for-
mulas of the form ∼A, and no other formulas, may be true independently
of the truth value of their subformulas. This comes to the fact that CLuN
negation is not truth-functional (cf. e.g. Batens (1986), (1989), (2003) for
more details).

Synthetic tableaux method (STM) is a semantically motivated decision
method based on direct reasoning. The main idea underlying STM is to

∗The author was supported by Foundation for Polish Science. The research for this
paper also benefited from a bilateral scientific exchange project funded by the Ministry of
the Flemish Community (project BIL01/80) and the Polish State Committee for Scientific
Research.

“15urbanski”
2005/7/18
page 320

i

i

i

i

i

i

i

i

320 MARIUSZ URBAŃSKI

solve via a tableau the following problem: which (compound) formulas are
“synthesizable” (can be derived from the simpler ones) on the basis of certain
sets of (atomic) formulas (cf. Urbański (2001a), (2002a)). The aim of this
paper is to apply STM as a proof method for CLuN (although in this paper
we restrict ourselves to its propositional part, we will be using the name
CLuN).

2. CLuN: language and semantics

The language J of CLuN is an extension of the language of Classical Propo-
sitional Calculus. We will deal here with the version with ¬ (classical nega-
tion), ∧ (classical conjunction), ∨ (classical disjunction), → (classical impli-
cation) and ∼ (paraconsistent negation) as primitive connectives. The notion
of well-formed formula (wff for short) is defined as usual. We do not restrict
the application of negation signs, thus allowing for the possibility that nega-
tion of one type occurs within the scope of the negation of the other type.
The set of all the wffs of J will be referred to as Form. We will be us-
ing p, q, r, p1, ... for propositional variables, ϕ, φ, ϕ1, ... as metavariables for
them and A, B, C, ... as metavariables for wffs.

One characteristic feature of CLuN-semantics is that the truth values of
paraconsistently negated formulas (i.e., wffs of the form ∼A) are assigned
directly. The assignment v

′ assigns 1 (Truth) or 0 (Falsehood) to proposi-
tional variables whereas the assignment v

′′ assigns 1 or 0 to the formulas of
the form ∼A. Assume that V ar is the set of all the propositional variables
of J and that Form∼ = {∼A : A ∈ Form}. The assignment functions
fulfil the following conditions:

(A.1) v
′ : V ar |→ {1, 0}

(A.2) v
′′ : Form∼ |→ {1, 0}

A function v : Form |→ {1, 0} is a CLuN-valuation iff:

(V.1) v(A) = v
′(A), if A ∈ V ar

(V.2) v(¬A) = 1 iff v(A) = 0

(V.3) v(∼A) = 1 iff v(A) = 0 or v
′′(∼A) = 1

(V.4) v(A ∧ B) = 1 iff v(A) = 1 and v(B) = 1

(V.5) v(A ∨ B) = 1 iff v(A) = 1 or v(B) = 1

(V.6) v(A → B) = 1 iff v(A) = 0 or v(B) = 1

Other semantical notions are defined as usual. In particular, a formula A is
CLuN-valid iff for every CLuN-valuation v, v(A) = 1.

“15urbanski”
2005/7/18
page 321

i

i

i

i

i

i

i

i

HOW TO SYNTHESIZE A PARACONSISTENT NEGATION: THE CASE OF CLUN 321

One can easily observe that, although the semantics for CLuN is defined
by means of two separate assignments, it is not the case that the truth values
of the formulas A, ¬A and ∼A are unrelated to each other. Not surprisingly,
they can be adequately described within the framework of Aristotle’s theory
of oppositions1 and depicted in the following CLuN-version of the square of
oppositions:

¬∼A ¬A

A ∼A�
�

�
�@

@
@
@

The relations that hold between pairs of connected formulas are exactly
the same as in the classical square of oppositions:

(CT) ¬∼A and ¬A are contrariae;
(SC) A and ∼A are subcontrariae;
(CR) A and ¬A as well as ¬∼A and ∼A are contradictoriae;
(SA) A is subalternae to ¬∼A as well as ∼A is subalternae to ¬A.

This means, in particular, that under the very same valuation:

(CT′) ¬∼A and ¬A can be both false, but cannot be both true;
(SC′) A and ∼A can both be true, but cannot be both false.

It is worth noticing that (SA) is equivalent to the following:

(SA′) A is entailed by ¬∼A as well as ∼A is entailed by ¬A.

In what follows we will be using the concept of signed formulas: where
A ∈ Form, TA and FA are signed formulas (T and F will be referred
to as truth-signs). We will refer to them as to ‘formulas’ in cases where no
ambiguity can arise. We will use &, # as variables for truth-signs, if needed.

Truth-signs do not belong to the vocabulary of the language J , so the truth
values of signed formulas are not determined by CLuN-valuations. Never-
theless, the truth value of a signed formula #A (where # is any of T, F) is
dependent upon the truth value of the formula A under a certain valuation,
so we will speak of the truth value of a formula #A with respect to that
valuation. The definition of this notion is given by the following table (in
the leftmost column there is indicated the truth value of a formula A under a

1 Cf. Bocheński (1951), or Łukasiewicz (1951).

“15urbanski”
2005/7/18
page 322

i

i

i

i

i

i

i

i

322 MARIUSZ URBAŃSKI

valuation in question):

A TA FA

1 1 0
0 0 1

Rewritten with signed formulas the above square of oppositions will look
like this:

F∼A FA

TA T∼A�
�

�
�@

@
@
@

This version makes the relations between a formula and its CLuN-negation
more explicit.

3. Synthetic Tableaux

We will make use of the following notion of a subformula of a given wff.
If A is a propositional variable, then it has no proper subformulas at all. If
A is a formula of the form ‘¬B’ or of the form ‘∼B’, then B is a proper
subformula of A and, at the same moment, the only immediate subformula
of A. If A is of the form ‘B∗C’ (where ‘∗’ stands for any of the binary
connectives), then both B, C are proper subformulas of A and the only
immediate subformulas of A. If C is a proper subformula of B and B is
a proper subformula of A, then C is a proper subformula of A. A formula B
is a subformula of a formula A iff B is a proper subformula of A or A = B.

Definition 1 : A finite sequence s = s1, ..., sn of signed wffs is a synthetic
inference of #A iff:

(1) every term of s is a signed subformula of A;
(2) s1 is a signed propositional variable;
(3) sn is #A;
(4) for every sg (where g = 1, ..., n), either sg is a signed propositional

variable, or sg is derivable via CLuN-rules on the basis of a certain
set of wffs such that each element of this set precedes sg in s;

(5) for every sg (where g = 1, ..., n) of s the following holds:
(a) if sg is a signed propositional variable, then none of Tϕ, Fϕ

occurs at any other place in s;

“15urbanski”
2005/7/18
page 323

i

i

i

i

i

i

i

i

HOW TO SYNTHESIZE A PARACONSISTENT NEGATION: THE CASE OF CLUN 323

(b) if sg is a signed paraconsistently negated wff (that is, a wff of the
form ∼B, preceded by a truth sign), then none of T∼B, F∼B
occurs at any other place in s;

Thus a synthetic inference of a signed formula #A is a finite sequence
of signed subformulas of it, which begins with some signed propositional
variable and ends with #A itself. Moreover, every (signed) propositional
variable occurs as a term in s only once, no matter of truth-signs (the same
pertains to the (signed) paraconsistently negated wffs in s), and every for-
mula which is not a (signed) propositional variable is derivable form some
earlier formula(s) of s by means of CLuN-rules.

We define the set of CLuN-rules as the union of the following sets of CL-
rules and of N-rules:

CL-rules:
TA/F¬A FA/T¬A

TA/TA ∨ B TB/TA ∨ B FA, FB/FA ∨ B

FA/FA ∧ B FB/FA ∧ B TA, TB/TA ∧ B

FA/TA → B TB/TA → B TA, FB/FA → B

N-rules:
rule NT1 rule NT2 rule NF
TA/T∼A TA/F∼A FA/T∼A

All the CL-rules are obviously sound, as well as the rule NF (recall, that
the subalternation relation that holds between the premise and the conclusion
of this rule is, in fact, entailment). The rules NT1 and NT2, however, are not.

Our main notion is given by the following definition:

Definition 2 : Let A be an unsigned wff and let #, & be distinct truth-signs.
A family Ω of finite sequences of signed formulas is a synthetic tableau for
A iff every element of Ω is a synthetic inference of TA or of FA, there exists
a propositional variable ϕ such that the first element of every sequence in Ω
is Tϕ or Fϕ, and for every sequence s = s1, ..., sn in Ω the following hold:

(1) if si (where i = 1, ..., n) is a signed propositional variable #ϕ, then:
(a) there exists in Ω a sequence s

∗ such that s∗i is &ϕ and, if i > 1,
then s and s

∗ do not differ to the level of their i − 1th terms;

“15urbanski”
2005/7/18
page 324

i

i

i

i

i

i

i

i

324 MARIUSZ URBAŃSKI

(b) if i > 1, then for every sequence s
∗ in Ω such that s and s

∗ do
not differ to the level of their i − 1th terms, s∗i is Tϕ or Fϕ;

(2) if si (where i = 2, ..., n) is of the form #∼B and there exists sh

(h < i) such that sh is of the form TB, then:
(a) Ω contains a sequence s

∗ such that s and s
∗ do not differ to the

level of their i − 1th terms and s∗i is &∼B;
(b) for every sequence s

∗ in Ω such that s and s
∗ do not differ to the

level of their i − 1th terms, s∗i is #∼B or &∼B.

Thus, a synthetic tableau Ω for a formula A is a set of interconnected syn-
thetic inferences (we will refer to them as to branches of Ω) of TA or of FA.
Every sequence in Ω begins with a fixed propositional variable, preceded
with a truth-sign.

The clause (1) of the above definition expresses a ‘fair branching’ condi-
tion of a synthetic tableau with respect to propositional variables. If the i-th
element of a certain synthetic inference s in Ω is a signed propositional vari-
able #φ, then Ω contains synthetic inference s

∗ such that it does not differ
from s to the level of their i − 1th terms and whose i-th term is &φ. More-
over, if a synthetic inference s in Ω has a signed propositional variable #φ
as its i-th term (i > 1), then each synthetic inference in Ω which is identical
with s to the level of their i− 1th terms has as its i-th term either Tφ, or Fφ.

The clause (2), in turn, expresses a ‘fair branching’ condition with respect
to the formulas of the form #∼B in presence of TB. According to this
clause, any application of the rule NT1 (resp. NT2) is accompanied by an
application of the rule NT2 (resp. NT1). Thus as soon as #∼B is derived
as i-th term of a branch s (by NT1 or NT2) the tableau is splitted into s and
s
∗ such that s and s

∗ do not differ to the level of their i − 1th terms and s
∗

i
is &∼B. Moreover, if a synthetic inference s in Ω has #∼B as its i-th term
(i > 1), then each synthetic inference in Ω which is identical with s to the
level of their i − 1th terms has as its i-th term either T∼B, or F∼B.

Clauses (1) and (2) taken together warrant the soundness of the method.
Signed propositional variables are the only formulas that are introduced into
synthetic inferences not as derived ones; on the other hand, formulas of the
form #∼B may be introduced by means of unsound rules. Fair branch-
ing guarantees that in both cases splitting of a tableau preserves soundness.
These clauses form a kind of a cut rule. It is, of course, not an inferen-
tial rule; it is a tree-construction rule. Moreover, this cut is very restricted:
it can be applied only to propositional variables or to the paraconsistently
negated formulas (provided that they are subformulas of the initial formula).
Therefore, the restrictions here are even stronger than in case of Smullyan’s
analytic cut.

Another point is, that if a formula A is of one of the ‘branching-forcing’
type (that is, it is either a propositional variable or it is of the form ∼B), the

“15urbanski”
2005/7/18
page 325

i

i

i

i

i

i

i

i

HOW TO SYNTHESIZE A PARACONSISTENT NEGATION: THE CASE OF CLUN 325

splitting of a tableau on TA and FA can be done only once (cf. clause (5)
of definition 1). Thus, no branch of a tableau can contain the very same wff
preceded with T at one place and with F at another.

Intuitively, a synthetic inference of a formula #A is a derivation of #A
on the basis of a certain set of signed propositional variables. It can be
proved (and we will prove this in the next section) that if X is a set made
up off all the terms of a certain synthetic inference s, then there exists a
CLuN-valuation v such that all the elements of X are true with respect to v

(we use the phrase “true with respect to v” (and not just “true under v”) as
all the terms of s (and thus all the elements of X) are signed formulas). In
view of ‘fair branching’ conditions, one can expect the following soundness-
completeness theorem: a formula A is CLuN-valid iff there exists a synthetic
tableau for A such that every path of this tableau leads to TA. We will prove
this theorem as well.

4. Soundness and completeness

By a degree of a formula A (in symbols: deg(A)) we mean the number of
occurrences of connectives in A. Thus the degree of a propositional variable
is 0, the degree of ∼A as well as of ¬A is deg(A) + 1, the degree of A∗B
(where ∗ stands for any of the binary connectives) is deg(A) + deg(B) + 1.

In order to proceed we need the following lemma:

Lemma 1 : Let s be a synthetic inference of a formula #A. Let X be the set
made up of all the terms of s. Let Θ be a subset of X made up of all the
signed propositional variables in X . Then every formula in X is derivable
via CLuN-rules on the basis of the set Θ.

The proof is similar to that in Urbański (2002b). We will implicitly use
this lemma to prove the following:

Theorem 1 : Let s be a synthetic inference of a (signed) formula A. Let X
be the set made up of all the terms of s. Then there exists a valuation v such
that all the elements of X are true with respect to v.

Note, that by the definition of the synthetic inference, the following hold:
(1) if Tϕ ∈ X , then Fϕ /∈ X and if Fϕ ∈ X , then Tϕ /∈ X;
(2) if F∼A ∈ X , then TA ∈ X and FA /∈ X

“15urbanski”
2005/7/18
page 326

i

i

i

i

i

i

i

i

326 MARIUSZ URBAŃSKI

Proof:
Let v be a valuation that is determined by the assignments v

′, v
′′ such that

they fulfil the following conditions:

(*) for every propositional variable ϕ:
(i) if Tϕ ∈ X , then v

′(ϕ) = 1

(ii) if Fϕ ∈ X , then v
′(ϕ) = 0

(iii) if neither Tϕ nor Fϕ is an element of X then v
′(ϕ) = 0

(**) for every formula of the form ∼A:
(i) if T∼A ∈ X , then v

′′(∼A) = 1

(ii) if F∼A ∈ X , then v
′′(∼A) = 0

(iii) if neither T∼A nor F∼A is an element of X , then v
′′(∼A) = 02

Consider the truth value of a formula #B in X with respect to v.

1. If deg(B) = 0, then B is a propositional variable, and, by condition (*),
#B is true with respect to v.

Suppose that theorem holds for all the formulas in X of the degree k < n.
We will show that it holds for the formulas of the degree n as well.

2. Suppose that deg(B) = n (n > 0). In this case #B is a derived com-
pound formula. There are the following possibilities:
(a) B = ¬C
In this case:
- if T¬C ∈ X , then also FC ∈ X; as deg(C) < deg(¬C), FC is true with
respect to v; this means that v(C) = 0; thus v(¬C) = 1 and T¬C is true
with respect to v;
- if F¬C ∈ X , then also TC ∈ X; as deg(C) < deg(¬C), TC is true with
respect to v; this means that v(C) = 1; thus v(¬C) = 0 and F¬C is true
with respect to v;
(b) B = ∼C
- if T∼C ∈ X , then v

′′(∼C) = 1; this means that v(∼C) = 1 and thus
T∼C is true with respect to v

3 ;

2 Obviously, the only role of the clause (iii) of condition (*) and the clause (iii) of condi-
tion (**) is to make the valuation v, in a sense, “complete”.

3 There are, in fact, two possibilities. If T∼C is introduced via rule NT1, we reason as
above. If, in turn, T∼C is introduced via rule NF, then, as FC is true with respect to v,
v(C) = 0, v(∼C) = 1 and T∼C is true with respect to v (thus in this case T∼C receives
its truth-value because of both v

′ and v
′′).

“15urbanski”
2005/7/18
page 327

i

i

i

i

i

i

i

i

HOW TO SYNTHESIZE A PARACONSISTENT NEGATION: THE CASE OF CLUN 327

- if F∼C ∈ X , then also TC ∈ X; as deg(C) < deg(∼C), TC is true with
respect to v; this means that v(C) = 1; as v

′′(∼C) = 0, then v(∼C) = 0
and F∼C is true with respect to v;
(c) B = C ∧ D
- if TC ∧ D ∈ X , then also TC ∈ X and TD ∈ X; as deg(C), deg(D) <
deg(C ∧D), TC and TD are true with respect to v; this means that v(C) =
v(D) = 1; thus v(C ∧ D) = 1 and TC ∧ D is true with respect to v;
- if FC ∧ D ∈ X , then either FC ∈ X or FD ∈ X; as deg(C), deg(D) <
deg(C ∧ D), either FC or FD are true with respect to v; this means that
v(C) = 0 or v(D) = 0; thus v(C ∧D) = 0 and FC ∧D is true with respect
to v;
In the remaining cases the reasoning is similar.�

Theorem 2 : There exists a valuation v such that the signed formula #A is
true with respect to v iff there exists a synthetic inference of #A.

Proof:
(⇒) The proof of this part of theorem 2 consists in describing a method of
construction of a synthetic inference of #A and is analogous to the one that
can be found in Urbański (2002b).

(⇐) By theorem 1.�

One can also prove the following:

Lemma 2 : For every formula A of the language J , there exists a synthetic
tableau for A.

In the completeness proof of STM for CLuN, we will use the notion of a
minimal error point of a synthetic inference:

Lemma 3 : Let a sequence s = s1, ..., sn be a synthetic inference of a certain
formula #A and let v be a valuation such that not all the terms of s are true
with respect to v. Then there exists an index k (k = 1, ..., n) such that:

(i) sk = &B, where B is a propositional variable or B = ∼C;
(ii) sk is false with respect to v;

(iii) there is no i < k such that si is false with respect to v.
We call k the minimal error point4 of s with respect to v.

4 This notion is due to A. Wiśniewski (cf. Wiśniewski (2003)).

“15urbanski”
2005/7/18
page 328

i

i

i

i

i

i

i

i

328 MARIUSZ URBAŃSKI

Proof:
If not all the terms of the sequence s are true with respect to v, then one of
them must occur in s with the lowest index — let it be k. Thus k is an index
such that sk is false with respect to v and there is no i < k such that si is
false with respect to v. Therefore, all the terms that precede sk in s (if any)
are true with respect to v. Moreover, one of the following holds:

(a) sk is a signed propositional variable, or
(b) sk is obtained by means of the CLuN-rules; there are two possibili-

ties:
- sk is obtained by application of one of the CL-rules or by the rule
NF; as these rules are sound and all the terms that precede sk in s are
true with respect to v, sk must be true with respect to v as well;
- sk is obtained by application of the rule NT1 or NT2; in this case
sk is of the form &∼C.�

Now we are in a position to prove:

Theorem 3 : A formula A is CLuN-valid iff there exists a synthetic tableau
for A such that every path of it leads to TA.

Proof:
(⇒) Let A be a CLuN-valid formula and let Ω be a synthetic tableau for A
such that at least one path s of Ω leads to FA. Let X be the set made up of
all the terms of s. By the theorem 1 there exists a valuation v such that all
the elements of X (FA included) are true with respect to v. Thus v(A) = 0
and A is not CLuN-valid. We arrive at a contradiction.

(⇐)5 Assume that there exists a synthetic tableau Ω for a formula A such
that every path of Ω leads to TA. Moreover, assume (for an indirect proof)
that A is not CLuN-valid. All the terms of paths of Ω are signed subformulas
of A, and hence Ω is a finite set.
Since A is not CLuN-valid, there exists a certain valuation v such that A is
false under v, that is, FA is true with respect to v. Since every path of Ω
leads to TA, then for every path the set made up of all of its terms must
contain some signed formulas that are false with respect to v. Therefore, by
lemma 3, for every path of Ω there exists a minimal error point with respect
to the valuation v. Let ω be the set of all the minimal error points of the paths
of Ω with respect to the valuation v (so, ω is a set of indices, i.e. positive
integers).
The set ω is finite and thus must have a maximal element, that is, there exists

5 This part of the proof is based on the idea that comes from Wiśniewski (2003).

“15urbanski”
2005/7/18
page 329

i

i

i

i

i

i

i

i

HOW TO SYNTHESIZE A PARACONSISTENT NEGATION: THE CASE OF CLUN 329

an index k such that for any j in ω, j ≤ k. Let s be a path of Ω such that its
minimal error point is the maximal one, that is, k. By lemma 3, sk is either a
signed propositional variable or is of the form &∼C, sk is false with respect
to v and either sk is the first term of s, or every term that precedes sk in s is
true with respect to v.

Let #, & be distinct truth-signs. If sk is the first term of s, then there is a
path s

∗ of Ω such that, if sk = #φ, then s∗k = &φ. Therefore, s∗k is bound to
be true with respect to v.
If sk is not the first term of s, then there exists path s

∗ of Ω such that for every
sd which precedes sk in s, sd = s∗d (remember that every term of s which
precedes sk is true with respect to the valuation v) and, either, if sk = #φ,
then s∗k = &φ, or, if sk = #∼C, then s∗k = &∼C. Therefore, s∗k is bound
to be true with respect to v.
By lemma 3, for every path of Ω there exists a minimal error point with
respect to the valuation v, so there exists also such a minimal error point of
the path s

∗. According to what has been shown above, the minimal error
point of s

∗ must be greater than the minimal error point of s, that is, it must
be greater than the maximal element of ω. We arrive at a contradiction.
Therefore for at least one path in Ωthe set made up of all of its terms must
contain signed formulas that are all true with respect to v. Since every path
of Ω leads to TA, then TA is true with respect to v and thus A itself is true
under v.�

5. Some examples

Consider the following variants of the law of contradiction6 and the problem
of their CLuN-validity.

The formula ‘p∧¬p’ expresses classical inconsistency (p and ‘¬p’ are con-
tradictoriae) and is false under every CLuN-valuation. Thus ‘∼(p ∧ ¬p)’ is
a CLuN-valid formula (cf. example 1).

6 We call all the formulas of examples 1–4 “variants of the law of contradiction”, although
for some of them a better name can be devised in view of the abovementioned CLuN-version
of the square of oppositions.

“15urbanski”
2005/7/18
page 330

i

i

i

i

i

i

i

i

330 MARIUSZ URBAŃSKI

Example 1: a synthetic tableau for ‘∼(p ∧ ¬p)’7

Tp Fp
F¬p Fp ∧ ¬p
Fp ∧ ¬p T∼(p ∧ ¬p)
T∼(p ∧ ¬p)

The meaning of the formula ‘¬(p∧∼p)’ is that p and ‘∼p’ cannot be both
true. As these formulas are subcontrariae, ‘¬(p ∧ ∼p)’ is not CLuN-valid
(cf. example 2).

Example 2: a synthetic tableau for ‘¬(p ∧ ∼p)’

Tp Fp
Fp ∧ ¬p

T∼p F∼p T¬(p ∧ ∼p)
Tp ∧ ∼p Fp ∧ ∼p
F¬(p ∧ ∼p) T¬(p ∧ ∼p)

����PPPP

The formulas ‘¬∼p’ and ‘¬p’ are contrariae and cannot be both true. Thus
the formula ‘¬(¬∼p ∧ ¬p)’ is CLuN-valid (cf. example 3).

Example 3: a synthetic tableau for ‘¬(¬∼p ∧ ¬p)’

Tp Fp
F¬p T∼p
F(¬∼p ∧ ∼p) F¬∼p
T¬(¬∼p ∧ ∼p) F(¬∼p ∧ ∼p)

T¬(¬∼p ∧ ∼p)

Example 4: a synthetic tableau for ‘∼(p ∧ ∼p)’

Tp Fp
Fp ∧ ∼p

T∼p F∼p T∼(p ∧ ∼p)
Tp ∧ ∼p F(p ∧ ∼p)

T∼(p ∧ ∼p)
T∼(p ∧ ∼p) F∼(p ∧ ∼p)

�����XXXXX

���PPP

7 Synthetic tableaux are defined as sets of sequences of wffs. Nevertheless, as in the
examples here, it is convenient to represent them in a tree-like form, where every branch of a
tree represents a certain synthetic inference of the tableau in question. The last formula of a
synthetic inference is indicated by underlining.

“15urbanski”
2005/7/18
page 331

i

i

i

i

i

i

i

i

HOW TO SYNTHESIZE A PARACONSISTENT NEGATION: THE CASE OF CLUN 331

On the other hand, law of excluded middle holds for subcontrariae formu-
las and its paraconsistent version (that is, the formula ‘p∨∼p’) is CLuN-valid
(cf. example 5).

Example 5: a synthetic tableau for ‘p ∨ ∼p’

Tp Fp
Tp ∨ ∼p T∼p

Tp ∨ ∼p

Example 6: a synthetic tableau for ‘(p → ∼p) → ∼p’

Tp Fp
T∼p

T∼p F∼p T(p → ∼p) → ∼p
T(p → ∼p) → ∼p Fp → ∼p

T(p → ∼p → ∼p

�����XXXXX

In the axiomatic setting, the formula ‘p∨∼p’ (or, alternatively, the formula
‘(p → ∼p) → ∼p’) is the only axiom that should be added to full positive
classical logic in order to obtain CLuN.

Our final example is Modus Tollendo Tollens. This is one of the interest-
ing features of CLuN: it invalidates MTT, while Modus Ponendo Ponens is
CLuN-valid.

Example 7: a synthetic tableau for ‘((p → q) ∧ ∼q) → ∼p’

Tp Fp
T∼p

Tq Fq T((p → q) ∧ ∼q) → ∼p
Tp → q Fp → q

F(p → q) ∧ ∼q
T∼q F∼q T((p → q) ∧ ∼q) → ∼p
T(p → q) ∧ ∼q F(p → q) ∧ ∼q

T((p → q) ∧ ∼q) → ∼p

T∼p F∼p
T((p → q) ∧ ∼q) → ∼p F((p → q) ∧ ∼q) → ∼p

�����XXXXX

����PPPP

����```````

“15urbanski”
2005/7/18
page 332

i

i

i

i

i

i

i

i

332 MARIUSZ URBAŃSKI

6. Further applications

Finally, let us shortly address the problem of further applications of STM in
the CLuN-related contexts. There are two obvious possibilities. First one is
that STM can be applied to other non-classical logics, that are related in a
sense to CLuN, as, e.g. the logic ClaN, which allows for gaps with respect to
negation8 , or the logic CluNs (cf. Batens (2003)). Second one is that STM
can be applied as a direct method for some adaptive logics, especially for
inconsistency-adaptive logics.

Section of Logic and Cognitive Science
Institute of Psychology

Adam Mickiewicz University in Poznań
Szamarzewskiego 89

60-589 Poznań, Poland
E-mail: Mariusz.Urbanski@ifil.uz.zgora.pl

murbansk@wp.pl

REFERENCES

Batens, D. (1986), Dialectical dynamics within formal logic, Logique et
Analyse, 114, pp. 161–173.

Batens, D. (1989), Dynamic dialectical logics, in G. Priest, R. Routley,
J. Norman (eds.), Paraconsistent Logic. Essays on the Inconsistent,
Philosophia Verlag, Munich, pp. 187–217.

Batens, D. (1996), Functioning and teachings of adaptive logics, in J. van
Benthem, F.H. van Eemeren, R. Grootendorst en F. Veltman (eds.),
Logic and Argumentation, North Holland Publ., Amsterdam, pp. 241–
254.

Batens, D. (1998), Inconsistency-adaptive logics, in: E. Orłowska (ed.),
Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa,
Springer Verlag, Heidelberg/New York, pp. 445–472.

Batens, D. (2001), A General Characterization of Adaptive Logics, Logique
et Analyse, 173–174–175, pp. 45–68.

Batens, D. (2003), Criteria Causing Inconsistencies. General Gluts as Op-
posed to Negation Gluts, Logic and Logical Philosophy 11/12, pp. 5–37.

Bocheński, I.M. (1951), Ancient Formal Logic, North Holland Publ., Ams-
terdam.

Łukasiewicz, J. (1951), Aristotle’s Syllogistic from the Standpoint of Modern
Formal Logic, Oxford UP.

8 In Batens (1996) this logic is called paracomplete.

“15urbanski”
2005/7/18
page 333

i

i

i

i

i

i

i

i

HOW TO SYNTHESIZE A PARACONSISTENT NEGATION: THE CASE OF CLUN 333

Urbański, M. (2001a), Remarks on Synthetic Tableaux for Classical Proposi-
tional Calculus, Bulletin of the Section of Logic 30, No. 4, pp. 194–204.

Urbański, M. (2001b), Synthetic Tableaux and Erotetic Search Scenarios:
Extension and Extraction, Logique et Analyse, 173–174–175, pp. 69–
91.

Urbański, M. (2002a), Tabele syntetyczne a logika pytań [Synthetic Tableaux
and the Logic of Questions], Maria Curie-Skłodowska University Press,
Lublin.

Urbański, M. (2002b), Synthetic Tableaux for Łukasiewicz’s Calculus Ł3,
Logique et Analyse 177–178, pp. 155–173.

Wiśniewski, A. (2001), Questions and Inferences, Logique et Analyse, 173–
174–175, pp. 5–43.

Wiśniewski, A. (2003), Erotetic Search Scenarios, Synthese, vol. 134(3),
pp. 389–427.

