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SOCRATIC PROOFS FOR SOME NORMAL MODAL
PROPOSITIONAL LOGICS∗

DOROTA LESZCZYŃSKA

Abstract
Our aim is to adjust the method of Socratic proofs to propositional
parts of normal modal logics: K, D, K4, T, KB, S4 and S5. We give
a proof of soundness of the method.

0. Introduction

In Wiśniewski (2004) the method of Socratic proofs (SP) for Classical Propo-
sitional Calculus (CPC) is presented. The method is based on the idea of
solving logical problems by pure questioning. The turnstyle `, interpreted
as referring to CPC-derivability/entailment, is regarded as an expression of
a certain object-level language. This language is built upon the language
of CPC and comprises, int. al, questions and their answers. A calculus of
questions, E∗, is developed. The rules of E∗ transform questions into ques-
tions. A transformation of this kind starts with a question about CPC-validity
of a formula, or about CPC-derivability (CPC-entailment) of a formula. A
Socratic proof is a successful transformation, that is, a transformation that
leads to a question whose affirmative answer is, in a sense, evident. The
calculus E∗ is sound and complete with respect to CPC. The SP-method
provides a decision procedure for CPC. Moreover, any Socratic proof may
be transformed into a Gentzen-style proof or an analytic tableau.

∗Research for this paper was supported by the Foundation For Polish Science and by
a bilateral scientific exchange project funded by the Ministry of the Flemish Community
(project BIL 01/80) and the State Committee for Scientific Research, Poland.
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260 DOROTA LESZCZYŃSKA

So far the SP-method has been applied to first-order logic (Wiśniewski and
Shangin (forthcoming)), to some propositional paraconsistent logics (Wiś-
niewski, Vanackere and Leszczyńska (2005)) and to intuitionistic logic (Sku-
ra (forthcoming)). Some theorem provers based on the SP-method are avail-
able on the Web.1 The aim of this paper is to adjust the SP-method to propo-
sitional parts of the modal logics: K, D, K4, T, KB, S4 and S5. Our plan is
the following. Section 1 is devoted to a more detailed description of the SP-
method for CPC. In Section 2 we characterize an extension of the language
M of modal propositional logics. This extension is an object-level language,
in which questions about validity of formulas of M can be asked. We call it
M∗. Language M∗ can be extended further so that questions of derivability
would be expressible. We will not do it here, however. In Section 3 we give
an intuitive description of the SP-method for modal logics. Then we de-
velop some “erotetic” modal calculi of questions. The problem of soundness
is addressed in Section 4.

1. The Calculus of Questions E∗

From a proof-theoretical perspective, the SP-method for CPC is a variant of
a sequent-calculus method. What is transformed when a rule is applied, is a
question containing one or more sequents which are: (a) single-conclusioned
(there is always a single formula right of the turnstyle) and (b) both-sided (a
non-empty sequence of formulas may occur left of the turnstyle). In the
schemas of rules presented below the α, β-notation (after Smullyan (1968))
is used, according to the following table:

α α1 α2 β β1 β2 β∗1
A ∧B A B ¬(A ∧B) ¬A ¬B A

¬(A ∨B) ¬A ¬B A ∨B A B ¬A

¬(A→ B) A ¬B A→ B ¬A B A

The rules of calculus E∗ are the following:2

1 See http://logica.ugent.be/albrecht/socratic.html and
http://logica.ugent.be.albrecht/socratic-modal.htm.

2 We present the complete list of rules of E
∗ without using the α, β-notation in Appen-

dix 1.
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SOCRATIC PROOFS FOR SOME NORMAL MODAL PROPOSITIONAL LOGICS 261

Lα: ?(Φ;S′α′T`C;Ψ)
?(Φ;S′α1

′α2
′T`C;Ψ) Rα: ?(Φ;S`α;Ψ)

?(Φ;S`α1;S`α2;Ψ)

Lβ: ?(Φ;S′β′T`C;Ψ)
?(Φ;S′β1

′T`C;S′β2
′T`C;Ψ) Rβ : ?(Φ;S`β;Ψ)

?(Φ;S′β∗

1`β2;Ψ)

L¬¬: ?(Φ;S′¬¬A′T`C;Ψ)
?(Φ;S′A′T`C;Ψ) R¬¬: ?(Φ;S`¬¬A;Ψ)

?(Φ;S`A;Ψ)

where Φ, Ψ stand for finite (possibly empty) sequences of sequents, S, T
stand for finite (possibly empty) sequences of CPC-formulas, and A repre-
sents a single CPC-formula. The semicolon ‘;’ is a concatenation-sign for
sequences of sequents, and the sign ′ is the concatenation-sign for sequences
of CPC-formulas. An application of a rule amounts to the elimination of
a connective or a double negation. The method proceeds by transforming
questions into questions. A transformation terminates when either: (1) each
sequent contained in the last question is of one of the following forms:

(a) T ′B′U ` B
(b) T ′B′U ′¬B′W ` C
(c) T ′¬B′U ′B′W ` C

or (2) no rule can be applied to the last question. A Socratic proof of sequent
S ` A in E∗ is a finite sequence of questions < Q1, Q2, ..., Qn > such that:
Q1 =?(S ` A), each question results from the previous one by a rule of E∗,
and each sequent contained in the last question is of the form (a), (b) or (c).

For example, the following is a Socratic proof of ` ((p→ q) ∧ p) → q:

1. ?(` ((p→ q) ∧ p) → q)
2. ?((p→ q) ∧ p ` q) by rule R→

3. ?((p→ q), p ` q) by rule L∧

4. ?(¬p, p ` q; q, p ` q) by rule L→

It can be shown that a sequent S ` A has a proof in E∗ if and only if
the formula A is CPC-derivable from S (is CPC-entailed by S). Similarly,
a sequent of the form ` A is provable in E∗ if and only if A is CPC-valid.
Thus Socratic proofs in E∗ are formal devices by means of which both CPC-
derivability/entailment and CPC-validity can be established.

In the case of modal logics, however, we are interested mainly in validity.
For that reason we shall restrict ourselves to questions based on right-sided
sequents, that is, sequents of the form ` T , where T is a finite and non-empty
sequence of indexed formulas of the language of a modal propositional logic.
These questions are expressions of a certain object-level language M∗, which
we will construct in the next section.
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262 DOROTA LESZCZYŃSKA

2. The Object-level Language M∗

2.1. Syntax of M∗

Let us designate by M the language of modal propositional calculus with ∧
(conjunction), ∨ (disjunction), → (implication), ¬ (negation), � (necessity
operator), ♦ (possibility operator) as primitives. (For simplicity we do not
consider equivalence, strict implication and strict equivalence.) We use p, q,
r, ... for propositional variables of M, and A, B, C, ... as metavariables for
formulas of M. The expression “iff” is an abbreviation of “if and only if”.
We use the standard set-theoretic terminology and notation.

Language M is our first object-level language. In order to adjust the
method of Socratic proofs to modal logics we have to extend the language M

to a language M∗, in which questions about logical properties may be asked.
The vocabulary of M∗ includes the vocabulary of M as well as symbols: `,
?, and the numerals 1, 2, ... . Sequences of numerals will be called indices.
First we give some definitions and then we will comment on them.

If A is a formula of M and < i1, ..., in > is a finite, non-empty sequence
of numerals (that is an index), then an expression of the form:

(1.1.) (A)i1,...,in

is an indexed formula of M∗.
By an indexed literal we shall mean an indexed variable or an indexed

negation of a variable. Indices do not occur inside indexed formulas of M∗.
We shall write S, T , ... for finite sequences of indexed formulas. For conve-
nience, we adopt the following convention:

In a metalinguistic expression of the form:

(1.2.) (A)φ(in)

symbol φ(in) represents a finite sequence of numerals which has numeral in
as its last term. Thus the expression (A)φ(in) represents any indexed formula
of the form: (A)i1,...,in , where n ≥ 1. For example, indexed formulas: (p)3,
(p → q)1,2,3 and (� p)1,3 are represented by the metalinguistic expression
(A)φ(3).

The role of the indices is twofold. First, we use numerals as ‘indicators’ of
possible worlds of a Kripke frame. Second, the order in which the numerals
occur in an index gives us a partial description of the accessibility relation
in the frame.
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SOCRATIC PROOFS FOR SOME NORMAL MODAL PROPOSITIONAL LOGICS 263

Now we give a full description of the language M∗. In order to avoid
possible misunderstandings, we will be applying the word ‘formula’ to well-
formed expressions of language M, and the abbreviation ‘wff’ to well-formed
expressions of language M∗. The wffs of M∗ are: indexed formulas, declar-
ative wffs (d-wffs) and questions.

By a (right-sided) sequent of M∗ we mean an expression of the form:

(1.3.) ` T

where T is a finite and non-empty sequence of indexed formulas. We distin-
guish the class of atomic sequents of M∗, that is, expressions of the form:

(1.4.) ` (A)1

Atomic d-wffs of M∗ are sequents of M∗. Compound d-wffs of M∗ are
sequences of sequents of M∗. We shall use Greek lower-case letters ϕ, ψ
as metalinguistic variables for atomic d-wffs of M∗, and Greek upper-case
letters Φ, Ψ as metavariables for compound d-wffs of M∗. For simplicity,
we use notions of a one-sequent question and a many-sequent question. A
one-sequent question of M∗ is an expression of the form:

(1.5.) ?(` T )

where ` T is a sequent of M∗. A many-sequent question of M∗ is an ex-
pression of the form:

(1.6.) ?(` S, ...,` T )

where ` S, ...,` T are sequents of M∗. We shall say that sequents ϕ, ..., ψ
are contained in a question ?(ϕ, ..., ψ). Questions of M∗ are one-sequent
questions and many-sequent questions, exclusively. We use Q,Q′, Q1, ...
for questions of M∗.

2.2. Semantics of M∗

In what follows the letter L will stay for any of the logics: K, D, K4, T, S4,
KB, S5. An expression ‘L-properties’ refers to properties of the accessibility
relation that are characteristic to a given logic L. These are listed below.3

3 We use here the terminology of Priest (2001) and Hughes and Cresswell (1996).
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264 DOROTA LESZCZYŃSKA

Logic L: L-properties:

K no properties
D extendability
K4 transitivity
T reflexivity
KB symmetry
S4 transitivity and reflexivity
S5 transitivity, reflexivity and symmetry

In the case of language M we make use of standard notions of Kripke’s
semantics. By a frame we mean an ordered pair < W,R >, where W is
a non-empty set (intuitively, of possible worlds) and R is a dyadic relation
defined over W (and called the accessibility relation). A valuation on a
frame < W,R > is a function satisfying the standard conditions. A model
< W,R, V > is a frame < W,R > together with a valuation V on it.

We shall say that a formulaA is true in a world w of a model< W,R, V >
(or that it holds in w) iff V (A,w) = 1. A formula A is valid in a model
< W,R, V > iff for every w ∈W , V (A,w) = 1. A formula A is K− valid
iff A is valid in every model. The notions of D-, K4-, T-, KB-, S4-, S5-
validity of a formula of M are defined as usual. Generally, a formula A of
M is L-valid iff A is valid in every model < W,R, V > in which R has the
L-properties.

Before we introduce the notion of validity of a sequent of M∗, we need to
‘interpret’ sequents in frames. In order to do this we have to define some
auxiliary notions.

Let S = (A1)
φ(i1), ..., (An)φ(in). The sets I{S} and I[S] are defined as

follows:

• I{S} = {j : j is a term of some φ(ik), where 1 ≤ k ≤ n}
• I[S] = {< j, j ′ >:< j, j′ > is a subsequence of some φ(ik) (where

1 ≤ k ≤ n) and j immediately precedes j ′ in φ(ik)}

Thus, if S is a finite sequence of indexed formulas, then I{S} is the set of
all the numerals that occur in indices of terms of S, and I[S] is the set of all
the ordered pairs < j, j ′ > that are subsequences of indices of terms of S,
but with the restriction that j immediately precedes j ′ in an index. The idea
is simple. For a sequent ` S and a frame < W,R > we are going to map
the set I{S} into W , and, analogously, the set I[S] — into R. We shall call
such a mapping an interpretation of sequent ` S in frame < W,R >. More
formally:
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Definition 2.1 : Let S = (A1)
φ(i1), ..., (An)φ(in). By an interpretation of

sequent ` S in a frame < W,R > we mean a function f : I{S} |→ W
satisfying the following condition:

(*) if < i, j >∈ I[S], then < f(i), f(j) >∈ R.

We say that a sequent ϕ is interpretable in a frame < W,R > iff there
exists an interpretation of ϕ in < W,R >.

For clarity, let us note a few facts about sequents and their interpretations.

Fact 1 : There usually exists more than one interpretation of a sequent in
a given frame. For example, let ` S be ` (p)1,2, (p → q)2,3 , and let
< W,R > be such that: W = {w,w′, w′′, w′′′}, and R = {< w,w′ >,
< w′, w′′ >,< w′′, w′′′ >,< w′′′, w >}. We have I{S} = {1, 2, 3} and
I[S] = {< 1, 2 >,< 2, 3 >}. There are exactly four interpretations of ` S
in < W,R >, namely:

f : f(1) = w, f(2) = w′, f(3) = w′′

g: g(1) = w′, g(2) = w′′, g(3) = w′′′

h: h(1) = w′′, h(2) = w′′′, h(3) = w
k: k(1) = w′′′, k(2) = w, k(3) = w′

Fact 2 : For every sequent ϕ there exists a frame < W,R > such that ϕ is
interpretable in < W,R >.

As an illustration we give a ‘recipe’ for constructing, for a given sequent ϕ:
(i) a certain frame < W,R >, and (ii) an interpretation of ϕ in < W,R >.
Let ϕ =` S. We put: (i) W = I{S} and R = I[S], and (ii) the identity
function f : I{S} |→W as the interpretation of ` S in < W,R >.

A frame constructed for a sequent ϕ according to (i) will be called a
canonical frame for ϕ, and an interpretation of ϕ in its canonical frame,
constructed according to (ii), will be called the canonical interpretation of
ϕ in its canonical frame.

Fact 3 : Every sequent is interpretable in more than one frame. Indeed, for
a given sequent ϕ, it is enough to consider its canonical frame < W,R >
and any frame < W ′, R′ > such that W is included in W ′, R is included
in R′, and the inclusion is proper in at least one case. The identity function
remains an interpretation of sequent ϕ in any such frame.

Fact 4 : It may be the case that a sequent is not interpretable in some frames.
Here are two examples: sequent ϕ =` (p)1,2 is not interpretable in any
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266 DOROTA LESZCZYŃSKA

frame < W,R > such that R is empty; sequent ϕ =` (p)1,2,3 is not inter-
pretable in any frame < W,R > such that R = {< w,w′ >} and w 6= w′.

Fact 5 : Every sequent ` S such that I[S] is empty is interpretable in every
frame < W,R >, as the (*) condition is vacuously satisfied. Indeed, in such
a case any function f : I{S} |→W is an interpretation of ` S in< W,R >.

The notion of validity of a sequent is relativized both to a frame and to
an interpretation of the sequent in that frame. In order to define this notion,
we shall start with a more elementary notion of satisfaction of a sequent in
a model. This notion is also relativized to an interpretation of a sequent.
Roughly speaking, a sequent ϕ =` (A1)

φ(i1), ..., (An)φ(in) is satisfied in a
model < W,R, V > (under an interpretation f of ϕ in < W,R >), if at
least one formula Ak (1 ≤ k ≤ n) is true in the world assigned to numeral
ik by interpretation f . More formally:

Definition 2.2 : Let < W,R > be a frame and let V be a valuation on
< W,R >. A sequent ϕ =` (A1)

φ(i1), ..., (An)φ(in) is satisfied in a model
< W,R, V > under an interpretation f of ϕ in frame < W,R > iff for some
k (1 ≤ k ≤ n) : V (Ak, f(ik)) = 1.

Definition 2.3 : A sequent ϕ is valid in a frame < W,R > under an interpre-
tation f of ϕ in < W,R > iff for every valuation V on frame < W,R >, the
sequent ϕ is satisfied in a model < W,R, V > under interpretation f of ϕ
in frame < W,R >.

Definition 2.4 : A sequent ϕ is valid in a frame < W,R > iff ϕ is valid in
< W,R > under every interpretation f of ϕ in < W,R >.

Observe that, according to the above definition, sequent ϕ is not valid in a
frame < W,R > iff there exists an interpretation f of ϕ in < W,R > such
that ϕ is not valid in < W,R > under f . Therefore we have:

Corollary 2.1 : If a sequent ϕ is not interpretable in a frame< W,R >, then
ϕ is valid in < W,R >.

Definition 2.5 : A sequent ϕ is K-valid iff ϕ is valid in every frame.

The notion of K-validity of a d-wff of M∗ may be adjusted easily to any L.

Definition 2.6 : A sequent ϕ is L-valid iff ϕ is valid in every frame< W,R >
such that R has the L-properties.
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The following corollary immediately follows from the above definitions:

Corollary 2.2 : A sequent ϕ is not L-valid iff for some model < W,R, V >,
where R has the L-properties, and for some interpretation f of ϕ in frame
< W,R >, the sequent ϕ is not satisfied in the model < W,R, V > under
f .

Definition 2.7 : A compound d-wff Φ = ϕ1, ..., ϕn of M∗ is L-valid iff each
term ϕi (1 ≤ i ≤ n) of Φ is L-valid.

The notion of validity defined for d-wffs of M∗ (i.e. for sequences of
sequents) generalizes the notion of validity of formulas of the underlying
modal language M. In the sequel we will be using two notions of L-validity
(i.e. L-validity of a formula of M and L-validity of a d-wff of M∗), but the
context should prevent any ambiguities. Now we shall prove:

Theorem 2.1 : An atomic sequent ` (A)1 is L-valid iff the formula A of
language M is L-valid.

Proof. Let us observe, first, that the set I[(A)1] is empty, and thus the sequent
` (A)1 is interpretable in every frame (cf. Fact 5). We will show that the
lack of L-validity of sequent ` (A)1 is tantamount to the lack of L-validity
of formula A.

1. Suppose that ` (A)1 is not L-valid. Then, by Corollary 2.2, for some
frame < W,R > (with R having the L-properties) and for some interpreta-
tion f of sequent ` (A)1 in < W,R >, there is a valuation V on < W,R >
such that sequent ` (A)1 is not satisfied in model < W,R, V > under f .
But this means that V (A, f(1)) = 0. Therefore formula A is not valid in the
model < W,R, V >. Hence A is not L-valid.

2. Assume that formula A is not L-valid. Therefore for some frame
< W,R > (with the L-properties imposed on R) and some valuation V
on it there is w ∈ W such that V (A,w) = 0. We define a function
f : I{(A)1} |→ W such that f(1) = w. The function f is an interpreta-
tion of ` (A)1 in < W,R > (cf. Fact 5) and, obviously, the sequent ` (A)1

is not valid in < W,R > under f , and hence it is not L-valid. �

Theorem 2.1 shows that a one-sequent question of the form ?(` (A)1)
may be interpreted as a question about L-validity of the formula A. One
may wonder whether this result may be generalized to non-atomic sequents
of M∗. Unfortunately, the answer comes to the negative. There is no straight-
forward correspondence between L-validity of a non-atomic sequent and L-
validity of formulas of M that occur in the sequent, as the following examples
show. The formula ‘p∨¬p’ is obviously L-valid. On the other hand, sequent
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268 DOROTA LESZCZYŃSKA

` (p)φ(i), (¬p)φ(j) is L-valid iff i = j. Sequent ` (♦p)1, (¬p)1,2 is K-valid
but formula ‘♦p ∨ ¬p’ is not K-valid.

However, this lack of correspondence between L-validity of non-atomic
sequents and L-validity of formulas that occur in them should not worry us.
A Socratic proof, as we shall define it in section 3.2, starts with a question
of the form ?(` (A)1). Hence the SP-method allows us to answer questions
about validity of formulas of M. As to non-atomic questions, we may say
that a non-atomic, one-sequent question asks about L-validity of the sequent
contained in it, and that a many-sequent question asks about joint L-validity
of the sequents contained in it.

3. Calculi EL

3.1. Some examples

The aim of this section is to give an intuitive account of the SP-method. We
do it in a semi-formal way; the appropriate rules will be introduced in the se-
quel. As we shall see, a transformation of an initial question may be viewed
as an attempt to find a Kripke model falsifying the formula considered in our
initial question.

Example 1: �(p→ q) → (�p→ �q)

Suppose that one considers whether axiom K is valid in every Kripke
model. Alternatively, one may ask if it is the case that in some model there is
a world, let us designate it by w1, in which �(p → q) → (�p → �q) does
not hold. The last question may be expressed in M∗ in the following way:

(1) ?(` (�(p→ q) → (�p→ �q))1)

The analyzed formula gets value 0 iff value 1 is assigned to its antecedent
(and thus 0 to its negation), and value 0 is assigned to the consequent. The
same pertains to formula �p→ �q, so one arrives at:

(2) ?(` (¬�(p→ q))1, (¬�p)1, (�q)1)

But formula �q does not hold in w1 iff propositional variable q is assigned
value 0 in some world, say w2, which is accessible from w1. Thus one may
ask the question:

(3) ?(` (¬�(p→ q))1, (¬�p)1, (q)1,2)
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Placing numeral 2 next to 1 indicates that w2 is accessible from w1. Ob-
viously, formulas of the form: ¬�A and ♦¬A have equal values in any
world, so we arrive at:

(4) ?(` (♦¬(p→ q))1, (♦¬p)1, (q)1,2)

Now observe that a formula of the form ♦A is assigned value 0 in world
w1 iff formula A is assigned value 0 in every world accessible from w1.
Thus we may ask:

(5) ?(` (♦¬(p→ q))1, (¬(p→ q))1,2, (♦¬p)1, (¬p)1,2, (q)1,2)

Again, placing numeral 2 next to 1 indicates that w2 is accessible from w1.
Formula ¬(p→ q) is false at w2 iff p is false at w2 or q is true at w2. Hence
we have two possibilities:

(6) ?(` (♦¬(p→ q))1, (p)1,2, (♦¬p)1, (¬p)1,2, (q)1,2; and
` (♦¬(p→ q))1, (¬q)1,2, (♦¬p)1, (¬p)1,2, (q)1,2)

and an evident answer to our initial question.

Example 2: ��p→ �p

The transformation starts with the question: is it the case that formula
‘��p → �p’ does not hold in some world of some Kripke model? We ex-
press this question as follows:

(1) ?(` (��p→ �p)1)

As above, we may eliminate the implication:

(2) ?(` (¬��p)1, (�p)1)

and the necessity operator:

(3) ?(` (¬��p)1, (p)1,2)

Next, the negation sign is introduced in the scope of modality:

(4) ?(` (♦¬�p)1, (p)1,2)
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and, as in case of step (5) of the previous example, we arrive at a conclu-
sion that the formula in the scope of possibility operator must be assigned
value 0 in w2, hence:

(5) ?(` (♦¬�p)1, (¬�p)1,2, (p)1,2)
(6) ?(` (♦¬�p)1, (♦¬p)1,2, (p)1,2)

The only transformation that may be carried out at that moment is to repeat
the reasoning that lead us to step (5) and to ‘introduce’ formula (¬�p)1,2

once again. In fact, this step may be repeated infinitely many times, but it
is obvious that such transformations would be useless. Instead, one may
regard that the consideration has been finished and, moreover, one may
construct a counter-model using the sequent contained in the last question.
What one needs is to consider a canonical frame < W,R > for sequent
` (♦¬�p)1, (♦¬p)1,2, (p)1,2, namely: W = {1, 2}, R = {< 1, 2 >}, its
canonical interpretation in this frame and a valuation assigning to literal p
value 0 in world f(2). Thus we have: V (�p, 1) = 0 (as world 2 is accessi-
ble from world 1), V (�p, 2) = 1 (as there is no world accessible from 2 in
this frame) and V (��p, 1) = 1 (as 2 is the only world accessible from 1).
Thus (��p→ �p) does not hold in world 1.

Note that in order to construct a counter-model it was enough to consider
only the value of indexed literals — in this example the sole p in 2 — the
values of �p and ��p were calculated. It does not have to be the case in
general, consider for example the formula ‘�p → ♦p’. The transformation
will stop at a question ?(` (♦¬p)1, (♦p)1), but in this case the information
that there is only one world under consideration will be sufficient to con-
struct a counter-model.

Example 3: �p→ ��p

We shall omit the first three steps and go directly to:

(1) ?(` (♦¬p)1, (�p)1,2)

Similarly as above, one may regard formula ¬p as false in w2 and formula p
as false in some w3:

(2) ?(` (♦¬p)1, (¬p)1,2, (p)1,2,3)

The transformation stops at this point. There is no possibility to introduce
(p)1,3, as w3 is supposed to stand in accessibility relation to w2, but not
necessarily to w1. The construction of a counter-model is straightforward.



“12leszczynska”
2005/7/19
page 271

i

i

i

i

i

i

i

i

SOCRATIC PROOFS FOR SOME NORMAL MODAL PROPOSITIONAL LOGICS 271

Suppose, however, that one considers the question ?(` (�p → ��p)1)
once again, but this time one wonders whether formula �p → ��p is
false in some world of a model < W,R, V >, where R is transitive. If
R is transitive, then, since world w2 is accessible from world w1 and world
w3 is accessible from world w2, world w3 is accessible from w1 as well.
If so, from the fact that ♦¬p is false at w1 one arrives at the conclusion
that ¬p is false at w3. Thus question (2) can be transformed into question
?(` (♦¬p)1, (¬p)1,3, (¬p)1,2, (p)1,2,3). We shall generalize this observation
in section 3.3.

3.2. The Calculus EK

In this section we present rules of calculus of questions pertaining to logic
K. We term it calculus EK (“E” after “erotetic”). The calculus has only rules;
there are no axioms.

Recall that Φ and Ψ stand for finite (possibly empty) sequences of se-
quents, and letters S and T represent finite (possibly empty) sequences of in-
dexed formulas. Two concatenation-signs are used below: the sign ′ is used
as a concatenation-sign for sequences of indexed formulas, and the semi-
colon ‘;’ is used as a concatenation-sign for sequences of sequents. Here are
the rules of EK.

Rα: ?(Φ;`S′(α)φ(i)′T ;Ψ)

?(Φ;`S′(α1)φ(i)′T ;`S′(α2)φ(i)′T ;Ψ)
Rβ : ?(Φ;`S′(β)φ(i)′T ;Ψ)

?(Φ;`S′(β1)φ(i)′(β2)φ(i)′T ;Ψ)

R¬¬: ?(Φ;`S′(¬¬A)φ(i)′T ;Ψ)

?(Φ;`S′(A)φ(i)′T ;Ψ)

R¬�: ?(Φ;`S′(¬�A)φ(i)′T ;Ψ)

?(Φ;`S′(♦¬A)φ(i)′T ;Ψ)
R¬♦: ?(Φ;`S′(¬♦A)φ(i)′T ;Ψ)

?(Φ;`S′(�¬A)φ(i)′T ;Ψ)

Rules Rα and Rβ are, actually, schemas of rules. Instantiations of schemas
Rα and Rβ are given in Appendix 2. An application of any of the rules: Rα,
Rβ or R¬¬, results in the elimination of a CPC-connective (in case of Rα and
Rβ) or of a double negation (in case of R¬¬). Rules R¬� and R¬♦ allow for
introducing negation in the scope of modality. Indices of formulas are not
operated on in case of rules: Rα, Rβ , R¬¬, R¬� and R¬♦. Any modification
of indices during the transformation is due to an application of rule R� or of
rule R♦. The schemas of these rules are the following:

R�: ?(Φ;`S′(�A)φ(i)′T ;Ψ)

?(Φ;`S′(A)φ(i),j ′T ;Ψ)
R♦: ?(Φ;`S′(♦A)φ(i)′T ;Ψ)

?(Φ;`S′(♦A)φ(i)′(A)i,j ′T ;Ψ)
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with the following provisos of applicability of these rules:

rule R� may be applied pro-
vided that numeral j does not
occur in the upper question,
that is: j /∈ I{S ′(�A)φ(i)′T}

rule R♦ may be applied pro-
vided that the ordered pair
< i, j > already occurs in
the upper question, that is:
< i, j >∈ I[S′(♦A)φ(i)′T ]

Let us now repeat the transformation of question ?(` (�(p → q) →
(�p → �q))1) (example 1 from the previous section). Every question (ex-
cept for the first one) of the sequence of questions presented below has been
obtained from the previous one by an application of a rule of EK; for trans-
parency, we highlight the indexed formula acted upon.

?(` (�(p→ q) → (�p→ �q))1 )

?(` (¬�(p→ q))1, (�p→ �q)1 ) by Rβ

?(` (¬�(p→ q))1, (¬�p)1, (�q)1 ) by Rβ

?(` (¬�(p→ q))1 , (¬�p)1, (q)1,2) by R�

?(` (♦¬(p→ q))1, (¬�p)1 , (q)1,2) by R¬�

?(` (♦¬(p→ q))1 , (♦¬p)1, (q)1,2) by R¬�

?(` (♦¬(p→ q))1, (¬(p→ q))1,2, (♦¬p)1 , (q)1,2) by R♦

?(` (♦¬(p→ q))1, (¬(p→ q))1,2 , (♦¬p)1, (¬p)1,2, (q)1,2) by R♦

?(` (♦¬(p→ q))1, (p)1,2, (♦¬p)1, (¬p)1,2, (q)1,2;
` (♦¬(p→ q))1, (¬q)1,2, (♦¬p)1, (¬p)1,2, (q)1,2)

by Rα

We introduce the notions of a Socratic transformation of a question and a
Socratic proof of an atomic sequent in EK:

Definition 3.1 : A Socratic transformation of a question Q via the rules of
EK is a sequence s = Q1, Q2, ... (possibly infinite) of questions such that:
Q1 = Q, and for each n > 1, question Qn results from question Qn−1 by
an application of one of the rules of EK.

Definition 3.2 : Let ` (A)1 be an atomic sequent of M∗. A Socratic proof of
` (A)1 in EK is a finite Socratic transformation s of the question ?(` (A)1)
via the rules of EK such that for each sequent ϕ contained in the last question
of s the following holds:

(a) ϕ is of the form ` S ′(C)φ(i)′T ′(¬C)φ∗(i)′U , or
(b) ϕ is of the form ` S ′(¬C)φ∗(i)′T ′(C)φ(i)′U .
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Let us emphasize that the symbols φ(i) and φ∗(i) in (a) or (b) may not
stand for occurrences of the same index. However, the sequences φ(i) and
φ∗(i) end with the same numeral, and this is the crucial point. Recall that
when we deal with an indexed formula (A)i1,...,in , it is only the numeral
in that ‘indicates’ the world in which the value of A is relevant. The role of
the remaining part of an index (if there is any) is to determine conditions that
must be fulfilled by the accessibility relation in the purported counter-model.

Before we present the rules of other calculi, let us make one more remark.
By an analogy to tableau methods (Priest (2001) or Fitting (1983)), it may
seem that the rule for eliminating possibility operator ♦ should have been:

R♦: ?(Φ;`S′(♦A)φ(i)′T ;Ψ)
?(Φ;`S′(A)j ′T ;Ψ)

with the proviso that it may be applied provided that numeral j is new. But it
may be shown easily that such a rule would not warrant transmission of joint
L-validity. Moreover, if the old proviso, namely < i, j >∈ I[S ′(♦A)φ(i)′T ],
were put, the transmission of joint L-validity from top to bottom would not
hold. The situation is similar in the case of the necessity operator.

This difference of the presented method with respect to tableau methods
for modal logics is due to the fact that a ‘Socratic proof procedure’ remains a
direct procedure. It does not start with the negation of an initial assumption
and, hence, it is not an indirect proof method. However, a Socratic proof
may still be interpreted as an unsuccessful attempt to find a counter-model,
as the examples in section 3.1. have shown.

3.3. Calculi EL

In this section L will vary through the following proper extensions of K: D,
K4, T, KB, S4, S5. Each calculus EL has, first, rules Rα, Rβ , R¬¬, R¬�,
R¬♦, R� (in the form presented above) and, second, a rule R♦ with a proviso
of its applicability varying from a calculus to a calculus. The form of the
proviso depends on the properties of the accessibility relation specific to L.

For each modal logic Lwe give a description of the proviso on rule R♦ and
examples of transformations. We shall use ‘PL’ for proviso of applicability
of rule R♦ of calculus EL.

Rule R♦:

?(Φ;`S′(♦A)φ(i)′T ;Ψ)

?(Φ;`S′(♦A)φ(i)′(A)i,j ′T ;Ψ)
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Calculus ED, PD: < i, j >∈ I[S ′(♦A)φ(i)′T ] or j /∈ I{S ′(♦A)φ(i)′T}

In the case of calculus ED rule R♦ may be applied provided that numeral
i immediately precedes numeral j in an index of some formula or numeral j
does not occur in the sequent. The second part of the proviso corresponds to
extendability of the accessibility relation in D.

Let us stress that in the case of a single application of rule R♦ only one part
of the proviso should be satisfied. (Indeed, it is easy to observe that only one
part, not both, of the proviso can be satisfied in a given case.)

We have already discussed formula ‘�p → ♦p’. The transformation via
the rules of ED is the following:

1. ?(` (�p→ ♦p)1 )

2. ?(` (¬�p)1 , (♦p)1) by Rβ

3. ?(` (♦¬p)1 , (♦p)1) by R¬�

4. ?(` (♦¬p)1, (¬p)1,2, (♦p)1 ) by R♦

5. ?(` (♦¬p)1, (¬p)1,2, (♦p)1, (p)1,2) by R♦

Questions (4) and (5) are obtained by R♦, but on different parts of the pro-
viso. In the case of question (4) numeral 2 satisfies condition PD, as 2 is not
an element of I{(♦¬p)1, (♦p)1}. In the case of question (5), the ordered pair
< 1, 2 > is already an element of I[(♦¬p)1, (¬p)1,2, (♦p)1].

Calculus EK4, PK4: < i, j >∈ I[S ′(♦A)φ(i)′T ] or for some numeral k
both < i, k > and < k, j > are the elements of
I[S′(♦A)φ(i)′T ]

The second part of the proviso corresponds to transitivity of the accessibility
relation. Formula ‘�p → ��p’ has also been discussed above. We repeat
the transformation:

1. ?(` (�p→ ��p)1 )

2. ?(` (¬�p)1 , (��p)1) by Rβ

3. ?(` (♦¬p)1, (��p)1 ) by R¬�

4. ?(` (♦¬p)1, (�p)1,2 ) by R�

5. ?(` (♦¬p)1 , (p)1,2,3) by R�

6. ?(` (♦¬p)1, (¬p)1,3, (p)1,2,3) by R♦
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Question (6) is obtained from question (5) by R♦, as the second part of the
proviso is satisfied. For numeral 3 there is a numeral k, namely 2, such that
both: < 1, k > and < k, 3 > are the elements of I[(♦¬p)1, (p)1,2,3].

Calculus ET, PT: < i, j >∈ I[S ′(♦A)φ(i)′T ] or j = i

where the second part of the proviso corresponds to reflexivity.

1. ?(` (�p→ p)1 )

2. ?(` (¬�p)1 , (p)1) by Rβ

3. ?(` (♦¬p)1 , (p)1) by R¬�

4. ?(` (♦¬p)1, (¬p)1,1, (p)1) by R♦

Question (4) is obtained from the previous one by R♦, on the second part of
the proviso, where j = i = 1.

Calculus EKB, PKB: <i, j>∈ I[S ′(♦A)φ(i)′T ] or <j, i>∈ I[S ′(♦A)φ(i)′T ]

where < j, i >∈ I[S ′(♦A)φ(i)′T ] corresponds to symmetry.

1. ?(` (p→ �♦p)1 )

2. ?(` (¬p)1, (�♦p)1 ) by Rβ

3. ?(` (¬p)1, (♦p)1,2 ) by R�

4. ?(` (¬p)1, (♦p)1,2, (p)2,1) by R♦

The last question results from the previous one by R♦, on the second part of
the proviso: we put i = 2 and j = 1.

Calculus ES4, PS4: < i, j >∈ I[S ′(♦A)φ(i)′T ] or for some numeral k:
< i, k >,< k, j >∈ I[S ′(♦A)φ(i)′T ] or j = i

The transformations of questions ?(` (�p→ ��p)1) and ?(` (�p→ p)1)
remain as in the calculi EK4 and ET. We present another example. Formula
‘�♦♦p→ ♦p’ is a thesis of S4.

1. ?(` (�♦♦p→ ♦p)1 )

2. ?(` (¬�♦♦p)1 , (♦p)1) by Rβ

3. ?(` (♦¬♦♦p)1 , (♦p)1) by R¬�
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4. ?(` (♦¬♦♦p)1, (¬♦♦p)1,1 , (♦p)1) by R♦

5. ?(` (♦¬♦♦p)1, (�¬♦p)1,1 , (♦p)1) by R¬♦

6. ?(` (♦¬♦♦p)1, (¬♦p)1,1,2 , (♦p)1) by R�

7. ?(` (♦¬♦♦p)1, (�¬p)1,1,2 , (♦p)1) by R¬♦

8. ?(` (♦¬♦♦p)1, (¬p)1,1,2,3, (♦p)1 ) by R�

9. ?(` (♦¬♦♦p)1, (¬p)1,1,2,3, (♦p)1, (p)1,3) by R♦

Question (4) results from the previous one by rule R♦, on the third part of
the proviso. Question (9) results from question (8) by the same rule, but on
the second part of the proviso.

Calculus ES5, PS5: < i, j >∈ I[S ′(♦A)φ(i)′T ] or for some numeral k:
< i, k >,< k, j >∈ I[S ′(♦A)φ(i)′T ] or < j, i >∈

I[S′(♦A)φ(i)′T ] or j = i

The transformation of question ?(` (�p→ p)1) is the same as in the calcu-
lus ET. Here is another example.

1. ?(` (♦p→ �♦p)1 )

2. ?(` (¬♦p)1 , (�♦p)1) by Rβ

3. ?(` (�¬p)1 , (�♦p)1) by R¬♦

4. ?(` (¬p)1,2, (�♦p)1 ) by R�

5. ?(` (¬p)1,2, (♦p)1,3 ) by R�

6. ?(` (¬p)1,2, (♦p)1,3 , (p)3,1) by R♦

7. ?(` (¬p)1,2, (♦p)1,3, (p)3,2, (p)3,1) by R♦

In case of the first application of rule R♦ the third part of the proviso is sat-
isfied. The second part of the proviso holds with respect to the last step.

We generalize the notions of a Socratic transformation of a question and
of a Socratic proof of a sequent for the case of any calculus EL:

Definition 3.3 : A Socratic transformation of a question Q via the rules of
EL is a sequence s = Q1, Q2, ... (possibly infinite) of questions such that
Q1 = Q and for each n > 1, question Qn results from question Qn−1 by an
application of one of the rules of EL.
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Definition 3.4 : Let ` (A)1 be an atomic sequent of M∗. A Socratic proof of
` (A)1 in EL is a finite Socratic transformation s of the question ?(` (A)1)
via the rules of EL such that for each sequent ϕ contained in the last question
of s the following holds:

(a) ϕ is of the form ` S ′(C)φ(i)′T ′(¬C)φ∗(i)′U , or
(b) ϕ is of the form ` S ′(¬C)φ∗(i)′T ′(C)φ(i)′U .

4. Soundness

In this section we address the problem of soundness of the SP-method. L
stands, again, for any of: K, D, K4, T, KB, S4, S5. First, we prove that the
rules of EL warrant transmission of L-validity of sequents in both directions.

Theorem 4.1 : If question Q′ =?(Φ′) results from question Q =?(Φ) by one
of the rules: Rα, Rβ , R¬¬ , R¬� or R¬♦ of EL, then each term of Φ is L-valid
iff each term of Φ′ is L-valid.

Proof. We shall consider case Rα only.
Assume that question Q′ =?(Φ′) results from question Q =?(Φ) by rule

Rα. Then Φ = Ψ;ϕ; Ψ1 and Φ′ = Ψ;ψ;ψ′; Ψ1, where ϕ =` S ′(α)φ(i)′T ,
ψ =` S′(α1)

φ(i)′T and ψ′ =` S′(α2)
φ(i)′T . It suffices to show that the

lack of L-validity of ϕ is tantamount to the lack of L-validity of at least one
of the sequents: ψ, ψ′.

Observe that when rule Rα is applied, no operation is performed on the
indices of formulas in sequent ϕ (and this pertains to every rule listed). This
means that sets I{S ′(α)φ(i)′T}, I{S′(α1)

φ(i)′T} and I{S ′(α2)
φ(i)′T} are

equal. Consequently, sets I[S ′(α)φ(i)′T ], I[S′(α1)
φ(i)′T ] and I[S′(α2)

φ(i)′T ]
are also equal. If this is the case, then any interpretation of one of the se-
quents: ϕ, ψ or ψ′ in a frame < W,R > is also an interpretation of any of
the other two sequents in the same frame. Hence, in what follows, we are
allowed to consider one interpretation of sequents ϕ, ψ and ψ ′ in a specified
frame.

Suppose that sequent ϕ =` S ′(α)φ(i)′T is notL-valid. Then, by Corollary
2.2, for some frame < W,R > (with R having the L-properties), for an
interpretation f of sequent ϕ in frame < W,R >, and for some valuation V
on < W,R >, the sequent ϕ is not satisfied in model < W,R, V > under f .
This means that V (An, f(in)) = 0 for each term (An)φ(in) of S and T , and
also that V (α, f(i)) = 0. Hence either V (α1, f(i)) = 0 or V (α2, f(i)) = 0.
If the first possibility holds then sequent ψ =` S ′(α1)

φ(i)′T is not satisfied
in model < W,R, V > under interpretation f of ψ in < W,R >. But then,
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by Corollary 2.2, ψ is not L-valid. If the second possibility holds then, by
the same reasoning, ψ′ is not L-valid. Hence, if sequent ϕ is not L-valid,
then at least one of the sequents: ψ or ψ′, is not L-valid.

Similarly, if one of the sequents: ` S ′(α1)
φ(i)′T or ` S′(α2)

φ(i)′T is not
L-valid, then the sequent ` S ′(α)φ(i)′T is not L-valid.

For other rules the details of the proof concerning interpretation functions
remain unchanged. And this is only the definition of a valuation function
that really counts. �

Now we shall prove that rules R� and R♦ of EL warrant transmission of
joint L-validity of sequents in both directions.

Theorem 4.2 : If question Q′ =?(Φ1) results from question Q =?(Φ) by one
of the rules R�, R♦ of EL, then each term of Φ is L-valid iff each term of Φ1

is L-valid.

Proof. Suppose that question Q′ =?(Φ1) results from question Q =?(Φ) by
one of the rules R�, R♦ of EL. Then Φ = Ψ;ϕ; Ψ1, and Φ1 = Ψ;ϕ1; Ψ1,
where either ϕ =` S ′(�A)φ(i)′T and ϕ1 =` S′(A)φ(i),j ′T (in the case of
rule R�), or ϕ =` S′(♦A)φ(i)′T and ϕ1 =` S′(♦A)φ(i)′(A)i,j ′T (in the
case of rule R♦). As the terms of d-wffs Ψ and Ψ1 (if there are any) remain
unchanged, for the proof it is enough to show that L-validity of sequent ϕ
entails L-validity of sequent ϕ1 and vice versa, or, alternatively, that non-L-
validity of any of the two sequents entails non-L-validity of the other one.
Moreover, in view of Corollary 2.2, it suffices to prove that there is a model
in which one of the two sequents is not satisfied (under some interpretation)
iff there is a model in which the other sequent is not satisfied (under some
interpretation). This is the line we are going to follow.

As the shape of rule R� does not depend on the choice of L, we will give
only a proof that rule R� preserves K-validity in both directions. In a case of
L other than K appropriate conditions should be imposed on the accessibility
relation in models we consider, but it is easy to observe that the modification
is not essential for our proof. Things are different, however, in the case of
rule R♦. Thus we will consider the applications of R♦ separately for each EL.

EK, rule R�:
We show that non-K-validity of sequent ϕ1 =` S′(A)φ(i),j ′T entails non-

K-validity of sequent ϕ =` S ′(�A)φ(i)′T and vice versa. From the proviso
on rule R� we have: j /∈ I{S ′(�A)φ(i)′T}.

1. Suppose that sequent ϕ1 is not K-valid. Hence there must be a frame
< W,R >, an interpretation f of sequent ϕ1 in < W,R > and a valu-
ation V on < W,R > such that sequent ϕ1 is not satisfied in the model
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< W,R, V >. In particular, V (A, f(j)) = 0. We shall construct an inter-
pretation f∗ of sequent ϕ in < W,R > such that ϕ is not satisfied in model
< W,R, V > under f∗.

First, observe that the set of numerals I{S ′(�A)φ(i)′T} is a (proper) subset
of the set I{S ′(A)φ(i),j ′T}, and analogously for sets I[S ′(�A)φ(i)′T ] and
I[S′(A)φ(i),j ′T ]. Let f∗ : I{S ′(�A)φ(i)′T} |→ W be a function such that
f∗ and f assign the same values (possible worlds) to the numerals from the
set I{S′(�A)φ(i)′T}. Assume that < k, k′ > is a pair of numerals such that
< k, k′ >∈ I[S′(�A)φ(i)′T ]. Then we have < k, k′ >∈ I[S′(A)φ(i),j ′T ],
and f ∗(k) = f(k) as well as f ∗(k′) = f(k′). Since f is an interpretation of
` S′(A)φ(i),j ′T in < W,R >, it must be the case that < f(k), f(k′) >∈ R,
and, thus, < f ∗ (k), f ∗ (k′) >∈ R. We have established that if < k, k′ >∈

I[S′(�A)φ(i)′T ], then< f ∗(k), f ∗(k′) >∈ R. Hence f∗ is an interpretation
of the sequent ` S ′(�A)φ(i)′T in < W,R >.

Second, observe that numeral i immediately precedes numeral j in the
index of the wff (A)φ(i),j . Thus the ordered pair<i, j> is an element of the set
I[S′(A)φ(i),j ′T ]. Asf is an interpretation of sequentϕ1 in<W,R>, the world
f(j) must be accessible from world f(i). Hence, in view of V (A, f(j)) = 0,
it follows that V (�A, f(i)) = 0 and also V (�A, f ∗ (i)) = 0. Therefore
the sequent ϕ =` S ′(�A)φ(i)′T is not satisfied in model <W,R, V > under
f∗.

2. Suppose that the sequent ϕ is not K-valid. As above, we will con-
sider an arbitrary frame < W,R >, an interpretation f of sequent ϕ =
` S′(�A)φ(i)′T in < W,R >, and a valuation V on < W,R > such that ϕ
is not satisfied in the model < W,R, V >. Since V (�A, f(i)) = 0, there
must be a world w in W accessible from f(i) and such that V (A,w) = 0.
Now we shall define an interpretation f∗ of sequent ϕ1 in < W,R > and
show that ϕ1 is not satisfied in < W,R, V > under f∗.

Let function f∗ be an extension of f such that f ∗ (k) = f(k) for each
k 6= j and f ∗ (j) = w. Assume that < k, k′ > is an arbitrary ordered
pair such that < k, k′ >∈ I[S′(A)φ(i),j ′T ]. If k′ 6= j, then < k, k′ >∈

I[S′(�A)φ(i)′T ]. Hence < f(k), f(k′) >∈ R (because f is an interpretation
of ` S′(�A)φ(i)′T in < W,R >) and thus also < f ∗ (k), f ∗ (k′) >∈ R. If
k′ = j, then < k, k′ >=< i, j > (this follows from the proviso on rule R�).
Therefore, on the basis of< f(i), w >∈ R, we have< f ∗(i), f ∗(j) >∈ R.
Thus f∗ is an interpretation of ` S ′(A)φ(i),j ′T in < W,R >.

For every term (Bn)φ(in) of S and T : V (Bn, f ∗ (in)) = V (Bn, f(in)) =
0. Since V (A,w) = 0 and w = f ∗ (j), we get V (A, f ∗ (j)) = 0. Hence
the sequent ` S ′(A)φ(i),j ′T is not valid in < W,R > under f∗.
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EK, rule R♦:
We will show that the lack of K-validity of sequent ϕ1 =` S′(♦A)φ(i)′

(A)i,j ′T is tantamount to the lack of K-validity of sequent ϕ =` S ′(♦A)φ(i)′

T . From the proviso on rule R♦ we have: < i, j >∈ I[S ′(♦A)φ(i)′T ]. Ob-
serve that since j is not new in sequent ϕ1, the sets: I{S ′(♦A)φ(i)′T} and
I{S′(♦A)φ(i)′(A)i,j ′T}, as well as the sets: I[S ′(♦A)φ(i)′T ] and I[S′(♦A)φ(i)′

(A)i,j ′T ], are equal. Hence any interpretation of one of the sequents in an ar-
bitrary frame is also an interpretation of the other sequent in the same frame.

1. Assume that sequent ϕ1 =` S′(♦A)φ(i)′(A)i,j ′T is not K-valid. Then
there exist: a frame < W,R >, an interpretation f of sequent ϕ1 in this
frame, and a valuation V on < W,R > such that for each term (Bn)φ(in)

of S or T : V (Bn, f(in)) = 0 as well as V (♦A, f(i)) = 0. It follows that
the sequent ϕ =` S ′(♦A)φ(i)′T is not satisfied in the model < W,R, V >
under f .

2. Suppose that sequent ϕ =` S ′(♦A)φ(i)′T is not K-valid. Then for
some frame < W,R >, some interpretation f of ` S ′(♦A)φ(i)′T in
< W,R >, and some V on < W,R >, the sequent ϕ is not satisfied in
< W,R, V > under f . In particular, V (♦A, f(i)) = 0. The interpretation f
of sequent ϕ in < W,R > is, as we have observed, also an interpretation of
sequent ϕ1 =` S′(♦A)φ(i)′(A)i,j ′T in < W,R >. From the proviso on rule
R♦ we get < i, j >∈ I[S ′(♦A)φ(i)′T ]. Therefore world f(j) is accessible
from f(i) in frame < W,R >. Thus V (A, f(j)) = 0. Hence the sequent
` S′(♦A)φ(i)′(A)i,j ′T is not K-valid. This ends the proof for EK.

ED, rule R♦:
We shall prove that the lack of D-validity of sequent ϕ1 =` S′(♦A)φ(i)′

(A)i,j ′T yields the lack of D-validity of sequent ϕ =` S ′(♦A)φ(i)′T and
vice versa. From the proviso on rule R♦ of the calculus ED we have:
< i, j >∈ I[S′(♦A)φ(i)′T ] or j /∈ I{S ′(♦A)φ(i)′T}. If < i, j >∈ I[S ′

(♦A)φ(i)′T ], then the reasoning goes as for K, with the exception that the ac-
cessibility relation is now extendable. We assume that j /∈ I{S ′(♦A)φ(i)′T}.

1. Suppose that ϕ1 =` S′(♦A)φ(i)′(A)i,j ′T is not D-valid. Again, there
exist: a frame < W,R > (where R is extendable), an interpretation f of ϕ1

in that frame, and a valuation V on < W,R > such that ϕ1 is not satisfied
in < W,R, V > under f . Now we need to define an interpretation f∗ of
sequent ϕ =` S ′(♦A)φ(i)′T in < W,R >. For that purpose it is enough
to assume that f∗ and f assign the same values (i.e. possible worlds) to
the numerals from I{S ′(♦A)φ(i)′T}. Under this assignment, for each term
(Bn)φ(in) of S or T we have V (Bn, f ∗ (in)) = V (Bn, f(in)) = 0, and also
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V (♦A, f ∗ (j)) = V (♦A, f(j)) = 0. Hence sequent ` S ′(♦A)φ(i)′T is not
satisfied in < W,R, V > under f∗.

2. Suppose that sequent ϕ =` S ′(♦A)φ(i)′T is not D-valid. Again, for a
certain frame < W,R > (where R is extendable), some interpretation f of
` S′(♦A)φ(i)′T in < W,R >, and some V on < W,R >, the sequent ϕ
is not satisfied in < W,R, V > under f . In particular, V (♦A, f(i)) = 0.
As R is extendable, there must be w ∈ W such that < f(i), w >∈ R and,
obviously, V (A,w) = 0. Now we need an interpretation f∗ of the sequent
ϕ1 =` S′(♦A)φ(i)′(A)i,j ′T in < W,R > such that ϕ1 is not satisfied in
< W,R, V > under f∗. We define f∗ similarly as in the case EK, rule R�,
and put f ∗ (j) = w.

EK4, rule R♦:
We prove that the lack of K4-validity of sequent ϕ1 =` S′(♦A)φ(i)′(A)i,j ′

T yields the lack of K4-validity of sequent ϕ =` S ′(♦A)φ(i)′T , and con-
versely. From the proviso on rule R♦ of the calculus EK4 we have: < i, j >∈
I[S′(♦A)φ(i)′T ] or, for some numeral k, both < i, k > and < k, j > are the
elements of I[S ′(♦A)φ(i)′T ]. If < i, j >∈ I[S ′(♦A)φ(i)′T ], then the rea-
soning goes as for K, with the exception that the accessibility relation in the
frames we consider is transitive. Suppose that the second possibility holds,
that is for some numeral k both < i, k > and < k, j > are the elements of
I[S′(♦A)φ(i)′T ].

Since no new numeral occurs in sequent ϕ1 the sets: I{S ′(♦A)φ(i)′T}

and I{S′(♦A)φ(i)′(A)i,j ′T} are equal, whereas the sets: I[S ′(♦A)φ(i)′T ] and
I[S′(♦A)φ(i)′(A)i,j ′T ] differ at most with respect to pair < i, j >. It is easy
to observe that if sequent ϕ1 results from sequent ϕ on the second part of the
proviso (as we have assumed) then any interpretation of one of the sequents
in a transitive frame is also an interpretation of the other sequent in the same
frame.

1. Suppose that sequent ϕ1 =` S′(♦A)φ(i)′(A)i,j ′T is not K4-valid.
Again, there exist: a frame < W,R > (where R is transitive), an inter-
pretation f of sequent ϕ1 in this frame, and a valuation V on < W,R >
such that for each term (Bn)φ(in) of S and T : V (Bn, f(in)) = 0, as well
as V (♦A, f(i)) = 0. It follows that the sequent ϕ =` S ′(♦A)φ(i)′T is not
satisfied in model < W,R, V > under f .

2. Suppose that sequent ϕ =` S ′(♦A)φ(i)′T is not K4-valid. Hence for
some frame < W,R > such that R is transitive, for some interpretation f of
` S′(♦A)φ(i)′T in < W,R >, and for some V on < W,R >, the sequent
ϕ is not satisfied in < W,R, V > under f . In particular, V (♦A, f(i)) = 0.
By the proviso on rule R♦, there is a numeral k such that both < i, k > and
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< k, j > are the elements of I[S ′(♦A)φ(i)′T ]. Thus, in view of transitivity of
R, we have V (A, f(j)) = 0. Therefore the sequent ` S ′(♦A)φ(i)′(A)i,j ′T
is not valid in < W,R > under f .

ET, rule R♦:
We shall prove that the lack of T-validity of sequent ϕ1 =` S′(♦A)φ(i)′

(A)i,j ′T is tantamount to the lack of T-validity of sequent ϕ =` S ′(♦A)φ(i)′

T . From the proviso on rule R♦ of calculus ET we have: < i, j >∈
I[S′(♦A)φ(i)′T ] or j = i. We suppose that the second possibility holds
and observe, as in the previous case, that under this assumption any interpre-
tation of one of the sequents in a reflexive frame is also an interpretation of
the other sequent in the same frame.

1. Suppose that sequent ϕ1 =` S′(♦A)φ(i)′(A)i,j ′T is not T-valid. Then
there exist: a frame < W,R > (where R is reflexive), an interpretation f of
ϕ1 in < W,R >, and a valuation V on < W,R > such that for each term
(Bn)φ(in) of S or T , V (Bn, f(in)) = 0 as well as V (♦A, f(i)) = 0. Hence
sequent ϕ =` S ′(♦A)φ(i)′T is not satisfied in < W,R, V > under f .

2. Suppose that sequent ϕ =` S ′(♦A)φ(i)′T is not T-valid. Then there
exist: a frame < W,R >, where R is reflexive, an interpretation f of ϕ
in < W,R >, and a valuation V on < W,R > such that ϕ is not sat-
isfied in model < W,R, V > under f . In particular, V (♦A, f(i)) = 0.
Since j = i and R is reflexive, we have V (A, f(j)) = 0. Thus the sequent
ϕ1 =` S′(♦A)φ(i)′(A)i,j ′T is not satisfied in < W,R, V > under f .

EKB, rule R♦:
Again, we shall prove that non-KB-validity of sequent ϕ1 =` S′(♦A)φ(i)′

(A)i,j ′T is equivalent to non-KB-validity of sequent ϕ =` S ′(♦A)φ(i)′T .
From the proviso on rule R♦ of the calculus EKB we have: < i, j >∈ I[S ′

(♦A)φ(i)′T ] or < j, i >∈ I[S ′(♦A)φ(i)′T ]. We suppose that the second pos-
sibility holds. As in previous cases, we may observe that each interpretation
of one of the sequents in a symmetric frame is an interpretation of the second
sequent in the same frame.

1. For the first implication the reasoning is the same as that for rule R♦ of
calculus EK4 or ET (with the exception that R is symmetric).

2. For the second one suppose that sequent ϕ =` S ′(♦A)φ(i)′T is not
KB-valid. It follows that there are: a frame < W,R >, where R is symmet-
ric, an interpretation f of ϕ in < W,R >, and a valuation V on < W,R >
such that, first, Bn is false in f(in) for each term (Bn)φ(in) of S or T , and
second, V (♦A, f(i)) = 0. Since the ordered pair < j, i > is an element of
I[S′(♦A)φ(i)′T ] and R is symmetric, formula A is false in f(j). Therefore
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the sequent ϕ1 =` S′(♦A)φ(i)′(A)i,j ′T is not satisfied in < W,R, V > un-
der f .

ES4, rule R♦:
The reasoning goes as for EK if < i, j >∈ I[S ′(♦A)φ(i)′T ]; as for EK4 if

for some numeral k: < i, k >, < k, j >∈ I[S ′(♦A)φ(i)′T ]; and as for ET if
j = i.

ES5, rule R♦:
The reasoning is a combination of those for calculi EK, EK4, ET and EKB.

�

It is clear that from Theorem 4.1 and Theorem 4.2 we get:

Corollary 4.1 : If question Q′ =?(Φ′) results from question Q =?(Φ) by a
rule of EL, then each term of Φ is L-valid iff each term of Φ′ is L-valid.

Lemma 4.1 : If ϕ is a sequent of the form: ` S ′(C)φ(i)′T ′(¬C)φ∗(i)′U , or of
the form: ` S ′(¬C)φ∗(i)′T ′(C)φ(i)′U , then ϕ is L-valid.

Proof. Let < W,R > stand for an arbitrary frame. Suppose that ϕ is of one
of the forms specified above. If ϕ is not interpretable in frame < W,R >
then, by Corollary 2.1, ϕ is valid in < W,R >. Suppose that there exists an
interpretation f of ϕ in< W,R >. Let V be a valuation on< W,R >. Then
either V (C, f(i)) = 1 or V (¬C, f(i)) = 1. As V was an arbitrary valuation,
the sequent ϕ is valid in frame< W,R > under f . But, as< W,R >was an
arbitrary frame and f was an arbitrary interpretation of ϕ in < W,R >, the
sequent ϕ is valid in every frame, independently of the properties of R. �

Theorem 4.3 : (soundness) If there exists a Socratic proof of a sequent
` (A)1 in EL, then the formula A is L-valid.

Proof. Let s = s1, s2, ..., sn be a Socratic proof of ` (A)1 in EL. Thus s1 =
?(` (A)1) and sn =?(Φ), where each term of Φ is of the form
` S′(C)φ(i)′T ′(¬C)φ∗(i)′U , or of the form ` S ′(¬C)φ∗(i)′T ′(C)φ(i)′U .
By Lemma 4.1 each term of Φ is L-valid. By Corollary 4.1, if question
si+1 =?(Φi+1) results from question si =?(Φi) (where 1 ≤ i < n) and
each term of Φi+1 is L-valid, then each term of Φi is L-valid. Hence (by
induction), the sequent ` (A)1 is L-valid. Therefore, in view of Theorem
2.1, the formula A of language M is L-valid. �
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APPENDIX 1

The list of inferential rules of the calculus E∗ written down without using the
α, β-notation:

L∧: ?(Φ;S′A∧B′T`C;Ψ)
?(Φ;S′A′B′T`C;Ψ) R∧: ?(Φ;S`A∧B;Ψ)

?(Φ;S`A;S`B;Ψ)

L¬∨: ?(Φ;S′¬(A∨B)′T`C;Ψ)
?(Φ;S′¬A′¬B′T`C;Ψ) R¬∨: ?(Φ;S`¬(A∨B);Ψ)

?(Φ;S`¬A;S`¬B;Ψ)

L→: ?(Φ;S′A→B′T`C;Ψ)
?(Φ;S′¬A′T`C;S′B′T`C;Ψ) R→: ?(Φ;S`A→B;Ψ)

?(Φ;S′A`B;Ψ)

L¬→: ?(Φ;S′¬(A→B)′T`C;Ψ)
?(Φ;S′A′¬B′T`C;Ψ) R¬→: ?(Φ;S`¬(A→B);Ψ)

?(Φ;S`A;S`¬B;Ψ)

L¬∧: ?(Φ;S′¬(A∧B)′T`C;Ψ)
?(Φ;S′¬A′T`C;S′¬B′T`C;Ψ) R¬∧: ?(Φ;S`¬(A∧B);Ψ)

?(Φ;S′A`¬B;Ψ)

L∨: ?(Φ;S′A∨B′T`C;Ψ)
?(Φ;S′A′T`C;S′B′T`C;Ψ) R∨: ?(Φ;S`A∨B;Ψ)

?(Φ;S′¬A`B;Ψ)

L¬¬: ?(Φ;S′¬¬A′T`C;Ψ)
?(Φ;SA′T`C;Ψ) R¬¬: ?(Φ;S`¬¬A;Ψ)

?(Φ;S`A;Ψ)

APPENDIX 2

The list of inferential rules of calculi EL written down without using the α, β-
notation:

R∧: ?(Φ;`S′(A∧B)φ(i)′T ;Ψ)

?(Φ;`S′(A)φ(i)′T ;`S′(B)φ(i)′T ;Ψ)
R¬∧: ?(Φ;`S′(¬(A∧B))φ(i)′T ;Ψ)

?(Φ;`S′(¬A)φ(i)′(¬B)φ(i)′T ;Ψ)

R¬∨: ?(Φ;`S′(¬(A∨B))φ(i)′T ;Ψ)

?(Φ;`S′(¬A)φ(i)′T ;`S′(¬B)φ(i)′T ;Ψ)
R∨: ?(Φ;`S′(A∨B)φ(i)′T ;Ψ)

?(Φ;`S′(A)φ(i)′(B)φ(i)′T ;Ψ)

R¬→: ?(Φ;`S′(¬(A→B))φ(i)′T ;Ψ)

?(Φ;`S′(A)φ(i)′T ;`S′(¬B)φ(i)′T ;Ψ)
R→: ?(Φ;`S′(A→B)φ(i)′T ;Ψ)

?(Φ;`S′(¬A)φ(i)′(B)φ(i)′T ;Ψ)

R¬¬: ?(Φ;`S′(¬¬A)φ(i)′T ;Ψ)

?(Φ;`S′(A)φ(i)′T ;Ψ)

R¬�: ?(Φ;`S′(¬�A)φ(i)′T ;Ψ)

?(Φ;`S′(♦¬A)φ(i)′T ;Ψ)
R¬♦: ?(Φ;`S′(¬♦A)φ(i)′T ;Ψ)

?(Φ;`S′(�¬A)φ(i)′T ;Ψ)

R�: ?(Φ;`S′(�A)φ(i)′T ;Ψ)

?(Φ;`S′(A)φ(i),j ′T ;Ψ)
R♦: ?(Φ;`S′(♦A)φ(i)′T ;Ψ)

?(Φ;`S′(♦A)φ(i)′(A)i,j ′T ;Ψ)
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proviso of applicability of rule R� in each EL: j /∈ I{S′(�A)φ(i)′T}

provisos of applicability of rule R♦:
calculus: proviso:

EK < i, j >∈ I[S′(♦A)φ(i)′T ]
ED < i, j >∈ I[S′(♦A)φ(i)′T ] orj /∈ I{S ′(♦A)φ(i)′T}
EK4 < i, j >∈ I[S′(♦A)φ(i)′T ]

or for some k :< i, k >,< k, j >∈ I[S ′(♦A)φ(i)′T ]
ET < i, j >∈ I[S′(♦A)φ(i)′T ] orj = i
EKB < i, j >∈ I[S′(♦A)φ(i)′T ] or < j, i >∈ I[S ′(♦A)φ(i)′T ]
ES4 < i, j >∈ I[S′(♦A)φ(i)′T ]

or for some k :< i, k >,< k, j >∈ I[S ′(♦A)φ(i)′T ] orj = i
ES5 < i, j >∈ I[S′(♦A)φ(i)′T ]

or for some k :< i, k >,< k, j >∈ I[S ′(♦A)φ(i)′T ]

or < j, i >∈ I[S ′(♦A)φ(i)′T ] orj = i
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