
“09fallis”
2004/6/16
page 373

i

i

i

i

i

i

i

i

Logique & Analyse 179–180 (2002), 373–388

WHAT DO MATHEMATICIANS WANT?
PROBABILISTIC PROOFS AND THE EPISTEMIC GOALS OF

MATHEMATICIANS

DON FALLIS

Abstract
Several philosophers have used the framework of means/ends rea-
soning to explain the methodological choices made by scientists and
mathematicians (see, e.g., Goldman 1999, Levi 1962, Maddy 1997).
In particular, they have tried to identify the epistemic objectives
of scientists and mathematicians that will explain these choices.
In this paper, the framework of means/ends reasoning is used to
study an important methodological choice made by mathematicians.
Namely, mathematicians will only use deductive proofs to establish
the truth of mathematical claims. In this paper, I argue that none of
the epistemic objectives of mathematicians that are currently on the
table provide a satisfactory explanation of this rejection of proba-
bilistic proofs.

1. Introduction

People have objectives that they want to achieve — students want to pass
their exams and athletes want to win their races. In order to achieve their ob-
jectives, people engage in activities that they believe to be means to achiev-
ing those objectives — students study and athletes train. These are examples
of people engaging in means/ends reasoning.

Unfortunately, in most cases, we cannot directly observe the objectives
that other people have.1 We can only observe the activities that they engage
in. As a result, we are sometimes left wondering why people choose to
engage in the activities that they do. For example, we might wonder why
a particular person chooses to spend so much time studying or training. In
order to explain why people choose to engage in the activities that they do,

1 In fact, people (including mathematicians) may not always have a clear idea of what
their own objectives are (see Maddy 1997, 197–198).
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374 DON FALLIS

we have to identify the objectives (e.g., passing the exam or winning the
race) that they want to achieve.

Several philosophers have used this framework of means/ends reasoning to
explain the methodological choices made by scientists and mathematicians.
That is, they have tried to identify the objectives that lead scientists and
mathematicians to make these choices. For example, Isaac Levi (1962) and
Alvin Goldman (1999) have tried to show that the epistemic objectives of
acquiring true beliefs and avoiding error can be used to explain many of
the methodological choices of scientists.2 Penelope Maddy (1997) has tried
to identify the epistemic objectives that explain why mathematicians have
adopted particular set theoretic axioms (e.g., the axiom of choice).

In this paper, I use the framework of means/ends reasoning to study the
definitive methodological choice made by mathematicians. Namely, mathe-
maticians will only use deductive proofs to establish the truth of mathemat-
ical claims. This particular methodological choice is in line with the stan-
dard preference (e.g., among philosophers such as Descartes) for deductive
arguments over inductive arguments. Thus, an explanation of why mathe-
maticians reject probabilistic proofs should help to explain why deductive
arguments are considered superior to inductive arguments.

The project of this paper is to identify epistemic objectives that will ex-
plain this rejection of probabilistic proofs. Along the way, I identify several
important epistemic objectives of mathematicians. Also, I defend using the
framework of means/ends reasoning to explain the methodological choices
of mathematicians. However, I conclude that none of the epistemic objec-
tives of mathematicians that are currently on the table provide a satisfactory
explanation of this rejection of probabilistic proofs. Thus, there may not be
a good epistemic reason for this methodological choice.

2. Deductive Proofs and Probabilistic Proofs

Mathematicians only use deductive proofs to establish the truth of mathemat-
ical claims. A deductive proof of a mathematical claim is a procedure which,
if carried out correctly, insures that the claim is true.3 By contrast, a proba-
bilistic proof of a mathematical claim is a procedure which, even if carried

2 K. Brad Wray (2002, 155) uses this framework to explain why scientists engage in
collaborative research.

3 Strictly speaking, a deductive proof of a mathematical claim only insures that this claim
is a logical consequence of some other mathematical claims (e.g., the axioms of set theory).
However, for the sake of simplicity, I will ignore this complication.



“09fallis”
2004/6/16
page 375

i

i

i

i

i

i

i

i

WHAT DO MATHEMATICIANS WANT? 375

out correctly, does not insure that the claim is true. Even so, a probabilistic
proof can provide very good evidence that the claim is true.

Despite the reliability of certain probabilistic proofs, mathematicians will
not use them to establish that mathematical claims are true. For example,
according to the mathematician David Harel (1989, 295), “as long as we
use probabilistic algorithms only for petty, down-to-earth matters such as
wealth, health, and survival, we can easily make do with very-likely-to-be-
correct answers to our questions. The same, it seems, cannot be said for our
quest for absolute mathematical truth.”

Of course, as a number of philosophers have argued, deductive proof is not
the only way to acquire mathematical knowledge (see, e.g., Steiner 1975,
102–106, Coady 1992, 249–261, Folina 1999, 428).4 In fact, mathemati-
cians do accept that mathematical claims are likely to be true on the basis
of inductive evidence, testimony, picture proofs, etc.5 However, they do not
use any of these methods to definitively establish that a mathematical claim
is true. For example, as Mark Steiner (1975, 93) himself points out, “jour-
nals of mathematics will not publish anything less than a proof of a scholarly
result.”

According to David Sherry (1997, 405), mathematicians distinguish “de-
monstrative from heuristic reasoning and require demonstrative reasoning
for a finished piece of mathematics.” This distinction is analogous to that
commonly made in medieval courts (see Laudan 2001, 282). Circumstan-
tial evidence (e.g., blood on the clothes of the accused) could be used to
determine who is likely to be guilty. However, only the testimony of two
eyewitnesses or a confession counted as “full proof of guilt.” Such full proof
of guilt was required in order to convict an individual of a capital crime.
Similarly, according to mathematicians, deductive proof is needed in order
to establish the truth of a mathematical claim. Probabilistic proof is not suf-
ficient.

Finally, it should be noted that mathematicians have been making this
same methodological choice for centuries.6 For example, according to the
eighteenth-century mathematician Leonhard Euler, “we should take great

4 Some philosophers do disagree. Bernard Williams (1972, 9), for example, claims that
“access to mathematical truth must necessarily lie through proof, and that therefore the notion
of non-accidental true belief in mathematics essentially involves the notion of mathematical
proof.”

5 There are circumstances (e.g., when establishing that a computer program does what
it is supposed to) where inductive evidence is actually preferred to deductive proof (cf. De
Millo et al. 1979). In fact, Donald Knuth (1999) famously wrote “beware of bugs in the
above code; I have only proved it correct, not tried it.”

6 In the past, mathematicians initially rejected many other methods — such as non-
constructive proofs, proofs that appeal to the axiom of choice, and computer proofs — of
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care not to accept as true such properties of the numbers which we have dis-
covered by observation and which are supported by induction alone” (quoted
in Polya 1954, 3).

3. Explaining the Rejection of Probabilistic Proofs

In the framework of means/ends reasoning, there are three possible expla-
nations for why a person (or a group of people) might refuse to engage in a
particular activity (e.g., using a probabilistic proof to establish that a mathe-
matical claim is true). First, the activity might not be a means to achieving
her objectives.7 Second, she might not recognize that the activity is a means
to achieving her objectives. Third, she might not be rational.

Any of these three options might explain why mathematicians will not use
probabilistic proofs to establish that mathematical claims are true. However,
the second and third options would — for obvious reasons — be somewhat
unsatisfying explanations. It would certainly be preferable to show that prob-
abilistic proofs are simply not a means to the objectives of mathematicians.

Most mathematicians (and philosophers) certainly believe that probabilis-
tic proofs are not a means to the objectives of mathematicians. For exam-
ple, according to the mathematician Carl Pomerance (1982, 142), there is
“a qualitative difference between probabilistic verification and mathematical
proof that is important to mathematicians.” However, Don Fallis (1997) and
Catherine Womack and Martin Farach (2003) have argued that there is no
such difference. And, unless there is such a difference, it is difficult to see
how deductive proofs could be a means to the objectives of mathematicians
while probabilistic proofs are not.

It should be noted, however, that there are actually many possible objec-
tives that might lead mathematicians not to use probabilistic proofs. For
example, they might consider deductive proofs more aesthetically pleasing
than probabilistic proofs. Also, they might only be able to get NSF funding
for their research if they use deductive proofs. However, the project of this
paper is to determine, in particular, if there are any epistemic objectives of
mathematicians that will explain the rejection of probabilistic proofs.

Admittedly, there are a few mathematicians who think that probabilistic
proofs should be used to establish the truth of mathematical claims (see, e.g.,

establishing that a mathematical claim is true. However, mathematicians now commonly use
these methods (cf. Hersh 1997, 54–56).

7 That is, it might not be a means to achieving her objectives all things considered. For
example, taking performance enhancing drugs is a means to winning the race. But it may not
be a means to achieving an athlete’s objectives because she may also want to compete fairly.
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Zeilberger 1993, Hersh 1997, 59, Chaitin 1982, 942). These mathematicians
point out that it is just not possible to establish the truth of many mathemati-
cal claims unless we are willing to use probabilistic proofs.8 This is because
any deductive proof of certain mathematical claims would be far too long for
any human being (or computer) to produce whereas a probabilistic proof of
the same claim would be considerably shorter.

Zeilberger, Hersh, and Chaitin, however, are clearly arguing that math-
ematicians should change their practice.9 But the project of this paper is
to identify epistemic objectives that will explain the current practice of re-
jecting probabilistic proofs. Along the lines suggested by Hilary Kornblith
(1999, 166), “what we need to do is look at the knowledge gathering en-
terprise and see what goals are embedded in it, what goals make sense of
[mathematicians’ actual] practice.”

4. Probabilistic Proofs of Primality

In order to focus the discussion, this paper will look at why mathematicians
refuse to use probabilistic proofs to establish the truth of a particular type of
mathematical claim: viz., that a number is prime. Admittedly, the fact that
a particular number is prime is not a terribly exciting mathematical claim.10

Even so, it is a legitimate mathematical claim. For example, mathematicians
keep track of the largest numbers whose primality has been established (see,
e.g., Ribenboim 1996, 158).11 Of course, in order for a number to get on
this list of largest known primes, its primality must be established with a
deductive proof (see, e.g., Pomerance 1982).

There are a number of procedures that yield deductive proofs of primality
(see, e.g., Pomerance 1981, Ribenboim 1996, 19–178). For example, we can
try dividing n by all of the numbers less than or equal to

√

n. If none of these
numbers divide evenly into n, we conclude that n is prime. I will refer to

8 The argument is reminiscent of William James’ (1979, 31–32) claim that “a rule of
thinking which would absolutely prevent me from acknowledging certain kinds of truth if
those kinds of truth were really there, would be an irrational rule.”

9 It is not completely clear whether Zeilberger, Hersh, and Chaitin think that this change
in practice should occur simply because mathematicians have not realized that probabilistic
proofs are a means to their epistemic objectives or because mathematicians currently have
the wrong epistemic objectives.

10 It is not even a claim about an infinite number of cases.

11 See http://www.utm.edu/research/primes/largest.html for the latest news on large
primes.
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378 DON FALLIS

this particular procedure as the trial division test. If this procedure is carried
out correctly, n must be prime.

There are also a number of procedures that yield probabilistic proofs of
primality. For example, Michael Rabin (1980) developed the following pro-
cedure: We pick a whole bunch of numbers less than n at random and test
to see if any of them are witnesses to the compositeness of n.12 A witness to
the compositeness of n is a number that has a special property that implies
that n is composite (i.e., that n is not prime). This property can be tested for
very quickly. Also, if n is composite, then over three-quarters of the num-
bers less than n have this property. Thus, if none of the numbers that we
test are witnesses, we conclude that n is prime. I will refer to this particular
procedure as the Rabin test. Even if this procedure is carried out correctly,
n might not be prime. In particular, we might have gotten very unlucky and
missed all the witnesses when we picked numbers at random. However, if
this procedure is carried out correctly, the overwhelming odds are that n is
prime.13

I have claimed that mathematicians will not use probabilistic proofs to
establish that a number is prime. However, mathematicians are willing to
use probabilistic proofs of primality for other purposes. Mathematicians do
recognize that a number is very likely to be prime if there is a probabilistic
proof of its primality. As a result, they are happy to use such probable primes
for practical applications that require prime numbers (e.g., secure encryption
schemes, see Rivest et al. 1978). In addition, probabilistic proofs can be used
to identify likely candidates whose primality can then be established using
deductive proofs.14

12 Robert Solovay and V. Strassen (1977) developed a similar procedure that differs only
with respect to the precise definition of a witness.

13 Another inductive procedure for identifying prime numbers uses the fact that certain
species such as cicadas always reappear after a prime number of years (see Markus and Goles
2002). Additionally, it is not yet known how certain autistic savants are able to quickly iden-
tify large primes. However, given their inability to perform simple arithmetic calculations, it
seems unlikely that their procedure is purely deductive (cf. Welling 1994, 203–205).

14 Analogously, circumstantial evidence in medieval courts was used to determine who
should be investigated and tried. George Polya (1954) has famously promoted this kind of
use of inductive evidence in mathematics. Even so, Polya (1954, 50) is careful to point out
that “verification in many well-chosen instances may be very helpful as an encouragement,
but can never prove a conjectural law in the mathematical sciences.”
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5. Epistemic Objectives that Do Not Explain

The two epistemic objectives most commonly discussed by epistemologists
are (a) the objective of acquiring more true beliefs and (b) the objective of
avoiding error (see, e.g., Levi 1962). Mathematicians certainly have both of
these objectives. Unfortunately, that fact alone is not sufficient to explain
their rejection of probabilistic proofs. After all, all scientists have both of
these objectives. However, most scientists are happy to use inductive argu-
ments in their inquiries.

Of course, mathematicians are different from other scientists with regard
to the relative importance that they assign to these two epistemic objectives.
As Levi (1962, 64) points out, there are “differences in the degrees of cau-
tion normally exercised in different [scientific] disciplines.” In particular, the
Harel quote above suggests that, for mathematicians, the objective of avoid-
ing error trumps the objective of acquiring new true beliefs. In other words,
mathematicians are much more (epistemically) risk averse in their inquiries
than other scientists.

Unfortunately, their higher degree of caution is not sufficient to explain
their rejection of probabilistic proofs (and only probabilistic proofs). As
I will argue below, some probabilistic proofs of primality (e.g., the Rabin
test) are more reliable than some deductive proofs of primality (e.g., the
trial division test). Thus, even if mathematicians are extremely risk averse,
they should still prefer using certain probabilistic proofs to using certain
deductive proofs.

In order to see this, we need to look at the reasons why a mathematician
might mistakenly conclude that a number is prime in both cases. First of
all, even though they use only deductive proofs, mathematicians sometimes
make mistakes.15 As David Hume (1967, Book I, Part IV, Section I) has
pointed out, “in all demonstrative sciences the rules are certain and infallible;
but when we apply them, our fallible and uncertain faculties are very apt to
depart from them, and fall into error.” In the trial division test, for example,
a mistake might be made when we test to see if a particular number divides
evenly into n. A mathematician might mistakenly conclude that n is prime
because of such a mistake.

Of course, probabilistic proofs are also subject to mistakes. In the Rabin
test, for example, a mistake might be made when we test to see if a particular
number is a witness to the compositeness of n. A mathematician might
mistakenly conclude that n is prime because of such a mistake. However,

15 The mathematician Philip Davis (1972, 260–262) has compiled an entertaining list of
deductive proofs that have turned out to be incorrect. In fact, Davis (1972, 260) concludes that
“the authenticity of a mathematical proof is not absolute, but only probabilistic” (emphasis
added).
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there is another reason why a mathematician might mistakenly conclude that
a number is prime on the basis of the Rabin test. Even if the test is carried
out correctly, n might not be prime. In particular, we might have gotten very
unlucky and missed all the witnesses when we picked numbers at random.16

Even so, since the Rabin test requires significantly fewer calculations than
the trial division test, the probability of making a mistake in a calculation
is significantly smaller with the Rabin test. In addition, the probability of
getting unlucky and missing all the witnesses can be made arbitrarily small
simply by picking more numbers at random (and testing to see if any of them
are witnesses). Thus, the overall probability of mistakenly concluding that n

is prime on the basis of the Rabin test can be less than the overall probability
of mistakenly concluding that n is prime on the basis of the trial division test
(cf. Pomerance 1981, 100).17

It should be noted that this argument that the Rabin test is more reliable
than the trial division test relies on the fact that the trial division test takes
exponential time while the Rabin test takes only polynomial time. Interest-
ingly, Agarwal et al. (2002) have just recently discovered the first polyno-
mial time procedure that yields a deductive proof of primality.18 It is possible
that this procedure, unlike the trial division test, will always be more reliable
than the Rabin test. However, even if this turns out to be the case, mathemati-
cians’ concern for reliability still cannot be used to explain their rejection of
probabilistic proofs. Even if faster (and, thus, more reliable) procedures are
available, as Pomerance (1981, 97) notes, the trial division test still provides
a “proof of primality for prime n.” Thus, an explanation of the rejection
of probabilistic proofs must be consistent with the acceptability of the trial
division test.19

So far, I have been discussing the reliability of the trial division test and
the Rabin test when they are initially performed. However, mathematicians

16 There is also a very slim chance that there is a mistake in Rabin’s proof that over three-
quarters of the numbers less than a composite n are witnesses to its compositeness.

17 An important reason why deductive proofs are so reliable is that mathematicians are
extensively trained in using deductive proofs to establish that mathematical claims are true.
Probabilistic proofs might be less reliable in actual practice simply because mathematicians
do not have nearly as much experience with using probabilistic proofs. However, this concern
could presumably be eliminated by giving mathematicians appropriate training.

18 Vaughan Pratt (1975) had already shown that it is always possible to deductively prove
that a number is prime in polynomial time. However, until now, we were not always able to
find the proof in polynomial time.

19 This is so even if no one outside of elementary school ever uses the trial division test to
establish that a number is prime (because it takes too long).
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are not only concerned with getting to the truth right off the bat (cf. Azzouni
2000, 136). It might be suggested that the objective of avoiding errors in the
long run explains the rejection of probabilistic proofs. After all, if we are
worried that a mistake may have crept into a deductive proof, we know just
what to do. We carefully survey the proof. By contrast, if we are worried
that we have mistakenly concluded that a number is prime on the basis of the
Rabin test, we have no proof to survey. We just know that several randomly
chosen numbers are not witnesses.

Even so, it is not clear that we are really in a better position with regard
to avoiding errors in the long run if we only use deductive proofs. First of
all, if we are worried that a mistake may have crept into a deductive proof,
there is no guarantee we will be able to find it. For example, Richard De
Millo, Richard Lipton, and Alan Perlis (1979, 272) describe a case where
two groups of topologists claimed to have proved results that turned out to
be contradictory. In order to resolve the situation, both proofs were carefully
surveyed, but mathematicians were not able to find a mistake in either proof.
Also, even when mathematicians do find the mistake in a deductive proof, it
can take a very long time (see, e.g., Davis 1972, 262, Anglin 1997, 87–88).
For example, it took eleven years for mathematicians to discover the error in
Kempe’s “proof” of the four-color conjecture (see Sipka 2002, 21).

Furthermore, if we are worried that we have mistakenly concluded that
a number is prime on the basis of the Rabin test, we do know what to do.
We simply pick more numbers at random and test to see if any of them are
witnesses. If the number really is composite, then — even though we got
unlucky with the initial test — we are very likely to find a witness very
quickly.

So far, I have been discussing the probability of mistakenly concluding
that a single mathematical claim is true. However, mathematicians typically
use mathematical results to derive further results. It might be suggested that
this consideration explains the rejection of probabilistic proofs. As Ivars Pe-
terson (1990, 15) notes, “mathematics is constructed like a giant house of
cards: one theorem piled on top of another ... if one element were faulty,
then the whole structure could come tumbling down.” In fact, even if several
results that are highly probable are used to derive a further result (e.g., their
conjunction), this further result may not be highly probable. As a result,
mathematicians might like to have a method of establishing that mathemati-
cal claims are true that provides absolute certainty. However, since deductive
proofs do not provide absolute certainty either, it is not clear that this con-
sideration explains the rejection of probabilistic proofs.20

20 Of course, whether mathematicians use deductive proofs or probabilistic proofs, they
can gather independent corroborating evidence to try to insure that things will not “come tum-
bling down.” For example, the fact that no more finite simple groups have been discovered
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Finally, as Michael Detlefsen and Mark Luker (1980, 819) note in their
brief discussion of the Rabin test, “there may be reasons other than the de-
sire for a high degree of certitude for restricting the methods of proof to
purely deductive techniques.” For example, mathematicians clearly prefer
proofs that do not just establish that a mathematical claim is true, but that
allow them to understand why this claim is true (see, e.g., Rota 1997). If
mathematicians required that proofs provide understanding, this epistemic
objective might explain the rejection of probabilistic proofs. After all, the
Rabin test does not provide us with much understanding of why a number is
prime.

However, many deductive proofs (e.g., the trial division test) do not pro-
vide us with much understanding of why the mathematical claim in question
is true either. Understanding is an example (along with simplicity, clarity,
beauty, fruitfulness, etc.) of something that is valuable to mathematicians,
but it is not something that they require of a proof technique.21 Thus, it
is not an epistemic objective that will explain the rejection of probabilistic
proofs.22

6. Epistemic Objectives that Do Explain but that are Not Satisfying

Even so, there are at least a few possible epistemic objectives of mathemati-
cians that might explain the rejection of probabilistic proofs. Unfortunately,
the available explanations are, for a variety of reasons, somewhat unsatisfy-
ing.

First, using deductive proofs might be something that is simply intrinsi-
cally valuable to mathematicians. After all, mathematics is, almost by defi-
nition, a deductive science (cf. Steiner 1975, 93, Tymoczko 1979, 63). Such
an epistemic objective would clearly explain the rejection of probabilistic
proofs. However, deductive proof simply being an end in itself is a somewhat
unsatisfying explanation. We might have hoped that mathematicians restrict
themselves to using deductive proofs because doing so is the most effective

since the proof of the classification theorem suggests that the proof is correct (cf. Peterson
1990, 280).

21 W. S. Anglin (1997, 85–127) provides a fairly comprehensive list of mathematical val-
ues. However, all of these values arguably fall into this category.

22 Fallis (1997) argues that several other epistemic objectives (e.g., having an a priori
justification) also fail to explain the rejection of probabilistic proofs.
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means to achieving some further epistemic objective (such as avoiding errors
and finding errors that have already been made).23

Second, even though mathematicians will sometimes be mistaken about
the truth of mathematical claims — even when they use deductive proofs,
they might not want to be mistaken simply because they got unlucky (i.e.,
mistaken through no fault of their own). Since we might simply get unlucky
if we choose to use probabilistic proofs, such an epistemic objective would
explain the rejection of probabilistic proofs. However, it is not clear why it
would be so important for mathematicians to avoid being mistaken for this
particular reason. It is especially unclear given that the overall probability
of being mistaken can be less if a mathematician uses a probabilistic proof
such as the Rabin test.

Third, mathematicians might value using proof techniques that in prin-
ciple (i.e., if they are carried out correctly) insure that they will not be mis-
taken about the truth of mathematical claims.24 In practice, neither deductive
proofs nor probabilistic proofs provide a guarantee that mathematicians will
not be mistaken. However, in principle, deductive proofs, unlike probabilis-
tic proofs, do guarantee that mathematicians will not be mistaken about the
truth of mathematical claims. Thus, such an epistemic objective would ex-
plain the rejection of probabilistic proofs. However, we would have hoped
that mathematicians use deductive proofs exclusively because of some ac-
tual epistemic benefit that they derive.

Fourth, mathematicians might only want to use proof techniques that are
widely applicable. For example, deductive proofs can be used to (reliably)
establish the truth of facts in all areas of mathematics. By contrast, most of
the probabilistic proof techniques that are known to be reliable can only be
used to establish the truth of simple combinatorial facts (e.g., that a number
is prime).25 Thus, such an epistemic objective would explain the rejection
of probabilistic proofs. However, it is not clear why mathematicians should
refuse to use probabilistic proofs in those areas of mathematics where they
are available (and are known to be reliable).

Finally, mathematicians might only want to use proof techniques that are
means to at least one of several possible epistemic objectives (e.g., a proof

23 Jonathan Kvanvig (1998, 433–434) critiques the view that justification is intrinsically
valuable along similar lines. Also, Goldman (1999, 78) critiques Helen Longino for assigning
“fundamental epistemic value to impartiality and nonarbitrariness” in science when we would
have thought that they were valuable only because they “foster accuracy and truth.”

24 This is essentially just another way of expressing the epistemic objective discussed in
the previous paragraph.

25 Of course, it should be noted that the proofs of a number of important mathematical
theorems utilize simple combinatorial facts (see, e.g., Tymoczko 1979).
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technique might have to be very reliable or be very explanatory). In this
paper, I have been considering epistemic objectives one at a time. However,
it is conceivable that some disjunction of these epistemic objectives might
explain the rejection of probabilistic proofs.26 Unfortunately, it is not imme-
diately clear what this disjunction could be or that such a disjunction would
provide a satisfying explanation. After all, the Pomerance quote above sug-
gests that we are looking for a single qualitative difference between deduc-
tive proofs and probabilistic proofs.

7. Rejecting Epistemic Consequentialism

So far, we have not been able to find an epistemic objective of mathemati-
cians that explains the rejection of probabilistic proofs in a satisfying way. It
might be suggested that our failure to find a satisfying explanation is simply
a result of the theoretical framework that we are using. The framework of
means/ends reasoning is essentially a consequentialist framework. Accord-
ing to consequentialism, the right action is solely determined by what has
the best consequences (cf. Smart and Williams 1973, 4). Epistemic conse-
quentialism, in particular, says that the right action is solely determined by
what has the best epistemic consequences (cf. Goldman 1999, 87). However,
many theorists claim that consequences are not all that matter.27

In many contexts, it is also important how those consequences are brought
about. For example, according to virtue ethics, the right action is one that is
performed in a virtuous way or with good motives (cf. Oakley 1996, 129–
130). This sort of idea has recently been applied to epistemology (see, e.g.,
Zagzebski 2003, 17–18). Along these lines, it might be suggested that only
by using a deductive proof can we come to know that a mathematical claim
is true in an intellectually virtuous way. This would arguably explain the
rejection of probabilistic proofs.

However, there are a couple of problems with this sort of non-consequentia-
list strategy. First, it requires that we reject “the deeply plausible-sounding
feature [of consequentialist theories] that one may always do what would
lead to the best available outcome overall” (Scheffler 1982, 4). It is very

26 It is very unlikely that a conjunction of these epistemic objectives could explain the
rejection of probabilistic proofs. Since a proof technique is not required to be a means to any
of the epistemic objectives discussed in the last section, it follows that a proof technique is
not required to be a means to a conjunction of these objectives.

27 Of course, even if non-consequentialist considerations can explain the rejection of prob-
abilistic proofs, it is still interesting to determine if anything can be said to defend the rejec-
tion on consequentialist grounds.
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strange that mathematicians should not be able to use probabilistic proofs
when doing so would have the best epistemic consequences (e.g., in those
areas where they are known to be reliable).

Second, traditionally non-consequentialist considerations are not actually
excluded from the framework of means/ends reasoning (cf. Dreier 1993, 23).
People often have objectives with respect to how desirable consequences are
brought about (cf. the athlete that wants to win fairly). In fact, we have
already countenanced such an objective by considering the possibility that
using deductive proofs is intrinsically valuable. However, as noted above, it
is mysterious exactly why using deductive proofs is intrinsically valuable. In
other words, it is not clear why using probabilistic proofs does not also count
as being intellectually virtuous.

Of course, even if a purely non-consequentialist strategy is not successful,
there is room for a more modest rejection of consequentialism. In particular,
several philosophers have pointed out that an individual who tries to bring
about the best consequences on every occasion will often fail to do so (see,
e.g., Railton 1984, 154). As a result, an individual can often do better by
deciding once and for all to simply follow a rule that has good consequences
overall. Along these lines, it might be suggested that, while using prob-
abilistic proofs might have better epistemic consequences in a few cases,
following the rule of using only deductive proofs will have better epistemic
consequences overall.

However, this suggestion is open to one of the standard objections to rule
consequentialism (cf. Smart and Williams 1973, 10–12). Namely, we can
always bring about better consequences overall by following a more elabo-
rate rule. For example, instead of following the rule of using only deductive
proofs, why not follow the rule of using deductive proofs except when us-
ing probabilistic proofs would have better epistemic consequences? In fact,
why not just follow the rule of doing whatever has the best epistemic conse-
quences (which would arguably mean using probabilistic proofs where they
are known to be reliable)?

Of course, there are limits to the degree that humans can build exceptions
into their rules. In particular, we typically have to make decisions about what
to do under fairly tight time constraints (cf. Smart and Williams 1973, 42,
Railton 1984, 153). As a result, we have to follow relatively simple rules
(e.g., without extensive exceptions) that can be applied quickly to particular
cases. However, it is not clear that we are under such tight time constraints
when deciding how to establish that a mathematical claim is true. Math-
ematicians can just wait until they know that they have a reliable method,
such as the trial division test or the Rabin test.
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8. Conclusion

The framework of means/ends reasoning can be used to explain the method-
ological choices of mathematicians. In particular, we can identify epistemic
objectives that might have led them to reject probabilistic proofs. For a
variety of reasons, however, the explanations that are currently available
are unsatisfying. If there really is an important epistemic “difference be-
tween probabilistic verification and mathematical proof,” more work cer-
tainly needs to be done to clarify exactly what this difference is. However,
if it turns out that there is no such difference, this finding will have great
significance well beyond mathematics. In particular, it will suggest that de-
ductive arguments in general do not have any (actual) epistemic advantage
that is not shared by at least some inductive arguments.28
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