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SYNTHETIC TABLEAUX FOR ŁUKASIEWICZ’S CALCULUS Ł3

MARIUSZ URBAŃSKI∗

Abstract
In this paper synthetic tableaux for Łukasiewicz’s calculus Ł3 are
presented in detail. Basic properties of synthetic tableaux are de-
scribed as well as a systematic procedure for constructing a tableau
for any given formula of Ł3.

1. Synthetic tableaux

Synthetic tableaux method (STM) is a semantically-motivated proof method
based on direct reasoning1 . The main idea underlying STM is to solve via a
tableau the following problem: which (compound) formulas are “synthetiz-
able” (can be derived from the simpler ones) on the basis of certain sets of
(atomic) formulas. In the case of Ł3 a synthetic tableau for a formula A is
defined as a set of derivations (synthetic inferences) of certain expressions,
describing truth-functional features of A, on the basis of consistent sets of
expressions, describing truth-functional features of propositional variables
of A. These expressions, describing the truth-functional features of formu-
las, will be obtained by the application of the so-called truth-signs and will
be called signed formulas (see section 3).
One of the most distinctive features of STM is that this proof method is well
grounded in the logic of questions. Synthetic tableaux were originally devel-
oped as so-called declarative parts of erotetic search scenarios (see [8] and
[9] for more details), thus they can be interpreted as formal representations
of systematic procedures aimed at searching for possible answers to certain
kinds of questions.

∗The author was supported by Foundation for Polish Science. The research for this
paper also benefited from a bilateral scientific exchange project funded by the Ministry of
the Flemish Community (project BIL01/80) and the Polish State Committee for Scientific
Research.

1 For an extended presentation of the STM-method see [6]. The present paper is based
on chapter 3 of [6], but is not a mere translation of it.
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156 MARIUSZ URBAŃSKI

2. Basics

Ł3 is a well-known three-valued propositional calculus, developed by Łuka-
siewicz (cf. [4] for details). The vocabulary of Ł3 consists of propositional
variables (p, q, r, . . . , p1, p2, . . . and so on), implication (→) and nega-
tion (¬) as the only primitive connectives, and brackets as technical symbols
(which were originally avoided by Łukasiewicz by using so called Polish
notation). Ł3 is not truth-functionally complete, but other standard connec-
tives (as conjunction and disjunction) can be defined in it. The notion of a
well-formed formula of Ł3 is defined in the standard way. For conciseness,
instead of the expression ‘well-formed formula of Ł3’ we will use the term
‘formula’ or simply ‘wff’. We will use the letters ϕ, φ, . . . (possibly with
subscripts) as metavariables for propositional variables, and the letters A, B,
. . . as metavariables for formulas of Ł3.
The meanings of Ł3 implication and negation are described by the following
matrices (in case of implication the first column represents the value of an
antecedent, the first row — the value of a consequent):

A ¬A

1 0
1/2

1/2
0 1

→ 1 1/2 0
1 1 1/2 0

1/2 1 1 1/2
0 1 1 1

The sign ‘1’ stands for Truth whereas the sign ‘0’ stands for Falsehood. The
symbol ‘1/2’ stands for undefinedness or undeterminacy (the introduction of
the third logical value was strongly connected with Łukasiewicz’s indeter-
ministic philosophical account).
A valuation is defined as a distribution of the truth-values over the propo-
sitional variables. Valuations will be referred to as w, u, . . . (possibly with
subscripts). As 1 is the designated truth value, a Ł3-valid formula is a for-
mula which is true under every valuation. The notions of satisfiability of a
set of wffs and of a formula are defined in the usual way.
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3. Signed formulas

Synthetic tableaux for Ł3 will be presented in subsequent sections using
so-called signed formulas. This concept was introduced by Smullyan (see:
[5]) and showed itself as extremely useful in constructing Smullyan-like
tableaux. There are two main reasons for that. First, it enables a very con-
cise formulation of inferential rules and a considerable shortening of proofs
of metatheorems. The second reason is that for some logics it is impossible
to construct a Smullyan-like tableaux without application of signed formulas
(see [2] for more details). The same hold for synthetic tableaux.
We will use T, F, N as the truth-signs: if A is a formula, then each of the fol-
lowing: TA, FA, NA is a signed formula. We will use &, #, % as variables
for truth-signs.
Truth-signs do not belong to the vocabulary of Ł3, so the truth values of
signed formulas are not determined by valuations and matrices for connec-
tives. Nevertheless, the truth value of a signed formula #A (where # is any of
T, F, N) is dependent upon the truth value of the formula A under a certain
valuation, so we will speak of the truth value of a formula #A with respect
to that valuation. The definition of this notion is given by the following ta-
ble (in the leftmost column there is indicated the truth value of a formula A
under a valuation in question):

A TA FA NA

1 1 0 0
1/2

1/2
1/2 1

0 0 1 0

Thus the truth value of a formula TA with respect to a certain valuation is
the same as the truth value of A under this valuation. The same holds for FA
and ¬A. In the third case, that of NA, the situation is slightly different.
In case of Smullyan’s analytic tableaux for CPC it is extremely easy to obtain
an unsigned version of a tableau from a signed one: it suffices to omit all T’s
and to transform all F’s into ‘¬’. The same holds in the opposite direction
and the same holds for synthetic tableaux for CPC. But this is not the general
feature of tableaux: as we have mentioned above, in some cases the truth
signs are indispensable. This is also the case here: there is no simple method
of elimination of the truth signs in case of synthetic tableaux for Ł3 (at least
if one is not going to introduce into the vocabulary of Ł3 some uncommon
connectives).
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4. Further syntax

In what follows we will make use of the notions of a subformula of a formula
A and of a degree of complexity of a formula.
If A is a formula of the form ¬B (or of the form (B → C), respectively),
then B is (or both B, C are) a proper subformula(s) of A and, at the same
moment, the only immediate subformula(s) of A. If A is a propositional
variable, then it has no proper subformulas at all. A formula B is a subfor-
mula of a formula A iff (if and only if) B is a proper subformula of A or
A = B. It follows that if C is a subformula of some subformula of A, then
C is a subformula of A. The set of all subformulas of A will be referred to
as Sub(A).
The notion of a degree of complexity of a formula A (symbolically: deg(A))
is defined here as the measure of the number of arguments of the connectives
occurring in A:

(i) if A is a propositional variable, then deg(A) is 0;
(ii) deg(¬A) is deg(A) + 1;
(iii) deg(A → B) is deg(A) + deg(B) + 2.

Since the truth-signs T, F, N are not symbols of the vocabulary of Ł3, the
notions of a subformula and of a degree of complexity of signed formulas
are defined in the same way as for their unsigned counterparts:

Sub(A) = Sub(TA) = Sub(FA) = Sub(NA)
deg(A) = deg(TA) = deg(FA) = deg(NA)

In the construction of the synthetic tableaux for Ł3 the following rules will
be applied (we will call them Ł3-rules):

CT-rule: CF-rule: CN-rule:
FA|TB|NA,NB

T(A→B)
TA,FB

F(A→B)
NA,FB|TA,NB

N(A→B)

NT-rule: NF-rule: NN-rule:
FA

T¬A
TA

F¬A
NA

N¬A

The CT-rule allows one to derive T(A → B) from any of FA, TB or from
the pair NA, NB. The other rules should be understood in an analogous way.
We shall call a formula A a Ł3-consequence of a set of wffs X iff there exists
at least one derivation of A from X by means of the above rules.
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In what follows we will omit brackets round arguments of the truth-signs,
e.g. we will write ‘TA → B’ instead of ‘T(A → B)’. This convention will
not lead to any misunderstanding as no signed formula can be a subformula
of any wff.

5. Synthetic inferences

Definition 1 : Let #A be a signed formula.
A finite sequence s = s1, . . . , sn of signed wffs is a synthetic inference of
#A iff:

(1) every term of s is a subformula of A, preceded by a truth-sign;
(2) s1 is a signed propositional variable;
(3) sn is #A;
(4) for every sg (where g = 1, . . . , n) of s one of the following holds:

(a) if sg is a signed propositional variable #ϕ, then none of #ϕ, &ϕ,
%ϕ (where #, &, % are distinct truth-signs) occurs at any other
place in s;

(b) sg is a Ł3-consequence of some earlier formula(s) of s.

It is obvious that clauses 4a and 4b are disjoint.
Thus a synthetic inference of a signed formula #A is a finite sequence of
signed subformulas of it, which begins with some signed propositional vari-
able and ends with #A itself. Moreover, every (signed) propositional variable
occurs as a term in s only once, no matter of truth-signs, and every formula
which is not a (signed) propositional variable is derivable form some earlier
formula(s) of s by means of Ł3-rules.
Let us consider two examples:

Example 1
A synthetic inference s1 of a formula T(p → q) → (p → (p → q)):
s1 = Tp, Nq, Np → q, Np → (p → q), T(p → q) → (p → (p → q))

Example 2
A synthetic inference s2 of a formula T(p → q) → (p → (p → q)):
s2 = Tq, Tp → q, Tp → (p → q), T(p → q) → (p → (p → q))

It is easily seen that a synthetic inference of a formula #A can be viewed as a
derivation of #A on the basis of certain set of signed propositional variables
of A such that every propositional variable of A occurs in this set (in a signed
form) at most once.
In the above examples the terms of the sequences s1 and s2 were ordered
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according to their degrees of complexity. It is worthy noticing that such an
ordering is not an essential feature of synthetic inferences. As an example,
consider the following synthetic inference of the same formula (see also ex-
ample 6):

Example 3
A synthetic inference s3 of a formula T(p → q) → (p → (p → q)):
s3 = Fp, Tp → q, Nq, Tp → (p → q), T(p → q) → (p → (p → q))

Example 3 shows also that synthetic inferences need not be “deductively
minimal”. That is, they may contain some inferential steps that are deduc-
tively superfluous (here this pertains to the formulas Nq and Tp → q).

6. Synthetic tableaux

We are now in a position to introduce the main concept of this paper, that is,
the notion of a synthetic tableau for a given wff of Ł3.

Definition 2 : Let A be an unsigned formula. A family Ω of finite sequences
of signed wffs is a synthetic tableau for A iff every element of Ω is a synthetic
inference of TA, or of FA, or of NA, there exists a propositional variable ϕ
such that the first element of every sequence in Ω is one of the Tϕ, Fϕ, Nϕ,
and for every sequence s = s1, . . . , sn in Ω the following holds (&, #, % are
supposed to represent distinct truth-signs):

(*) if si (where i = 1, . . . , n) is a signed propositional variable #φ, then
(1) there exists in Ω a sequence s* such that its i-th element is %φ

and, if i > 1, then s and s* do not differ to the level of their
i − 1th terms;

(2) there exists in Ω a sequence s** such that its i-th element is &φ
and, if i > 1, then s and s** do not differ to the level of their
i − 1th terms;

(3) if i > 1, then for every sequence s* in Ω such that s and s* do
not differ to the level of their i− 1th terms, the i-th term of s* is
one of the following: Tφ, Fφ, Nφ.

Thus a synthetic tableau Ω for a formula A is a set of interconnected syn-
thetic inferences of TA, or of FA, or of NA. Every element of Ω begins with
a fixed propositional variable, preceded with a truth-sign. If the i-th element
of a certain synthetic inference s in Ω is a signed propositional variable #φ,
then Ω contains synthetic inferences s*, s** such that they do not differ from
s to the level of their i − 1th terms and whose i-th terms are %φ and &φ,
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respectively. Moreover, if a synthetic inference s in Ω has a signed propo-
sitional variable #φ as its i-th term (i > 1), then each synthetic inference in
Ω which is identical with s to the level of their i − 1th terms has as its i-th
term one of the following: Tφ, Fφ, Nφ.

These are two examples of synthetic tableaux for the formulas of Ł3. The
first is very simple, the second is a bit more complicated.

Example 4
A synthetic tableau for the formula ‘(p → ¬p) → ¬p’:

Tp Fp Np

F¬p T¬p N¬p

Fp → ¬p T(p → ¬p) → ¬p Tp → ¬p

T(p → ¬p) → ¬p N(p → ¬p) → ¬p

Example 5
A synthetic tableau for the formula ‘(p → q) → (¬q → ¬p)’:

�
�

�
�

�
�
�

�
�
�
�
�
�

\
\
\
\
\
\
\

�
�
�
�
�
�
�

c
c
c
c

Tp Fp Np

T¬p N¬p

Tq

Fq

Nq

T¬q → ¬p

Tq

Fq

Nq

F¬q

Fp → q

Np → q

T(p → q) → (¬q → ¬p)

F¬q

Np → q

T¬q → ¬p T(p → q) → (¬q → ¬p)

N¬q

T¬q → ¬p

T¬q

N¬q

T(p → q) → (¬q → ¬p)

F¬p

T(p → q) → (¬q → ¬p)

N¬q → ¬p

T(¬q → ¬p)

N(¬q → ¬p) T(p → q) → (¬q → ¬p)

T(p → q) → (¬q → ¬p)

T(p → q) → (¬q → ¬p)

Synthetic tableaux are defined as sets of sequences of wffs. Nevertheless, as
in the above examples, we are going to represent them in a tree-like form,
where every branch of a tree represents a certain synthetic inference of the
tableau in question. The last formula of a synthetic inference is indicated by
underlining.
For the purposes of simplicity we shall call the elements of a synthetic
tableau Ω paths of Ω. If the last element of a path s is #A we shall say
that s leads to #A. By Ts we will denote the set of all the (signed) formulas
occurring at the path s.
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Just as in case of synthetic inferences, “deductive minimality” of synthetic
tableaux is not warranted by definition. Consider the following example:

Example 6
A synthetic tableau for the formula ‘(p → q) → (¬p → ¬q)’:

Tp Fp

Np

F¬p Tp → q

T¬p → ¬q T¬p

T(p → q) → (¬p → ¬q)

Tq Fq Nq

Tq Fq Nq

T¬q N¬q

F¬q T¬q N¬q

N¬p Tp → q T¬p → ¬q N¬p

F¬p → ¬q T¬p → ¬q N¬p → ¬q

F¬q N¬p T(p → q) → (¬p → ¬q) T¬p → ¬q

F(p → q) → (¬p → ¬q) T(p → q) → (¬p → ¬q) N(p → q) → (¬p → ¬q)

N¬p → ¬q F¬q T(p → q) → (¬p → ¬q)

Tp → q N¬p → ¬q

N(p → q) → (¬p → ¬q) N(p → q) → (¬p → ¬q)

���������

XXXXXXXXX

      
      
hhhhhhhhhh

@@@��
��

Two inferences beginning with Np, Tq (the fourth and the third one to the
right, indicated by the double-line) are simply sequences that differ with re-
spect to the ordering of their terms. A less trivial example is the following:

Example 7
A synthetic tableau for the formula ‘¬p → (p → q)’:

Tp Fp Np

T(p → q)

Tq Fq Nq T¬p → (p → q)

Tq Fq NqF¬p F¬p

T(p → q) N¬p T(p → q)

F¬p T(p → q)

T¬p → (p → q) N(p → q)

T¬p → (p → q) N(p → q) T¬p → (p → q)

T¬p → (p → q) T¬p → (p → q)

T¬p → (p → q)

T¬p → (p → q)

``````̀@����

�
��
�

�
�

Q
QQ

Q
Q
Q

Q
Q
Q

!!!!!

In this case the leftmost inference and the inference next to it represent two
distinct derivations of the formula ‘T¬p → (p → q)’ on the basis of the very
same set of signed variables {Tp, Tq}.
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7. Minimal error points

In further metatheorems we will use the notion of a minimal error point2 of
a synthetic inference.

Lemma 1 : Let a sequence s = s1, . . . , sn be a synthetic inference of a cer-
tain formula #A and let w be a valuation such that w does not satisfy Ts

(recall that Ts is the set of all the terms of s). Then there exists an index
k(k = 1, . . . , n) such that:

(1) sk is a signed propositional variable;
(2) the truth value of sk with respect to w is 0 or 1/2;
(3) there is no j < k such that the truth value of sj with respect to w is

0 or 1/2.
We call k the minimal error point of s with respect to w.

The proof of Lemma 1, which we omit here, is an indirect one and is based
on the fact that the Ł3-rules are sound, so the first formula in s which is not
true (if any) cannot be a Ł3-consequence of any earlier formulas of s and
thus it must be a (signed) propositional variable.

8. Metatheorems

In a series of theorems we shall present the basic properties of synthetic
tableaux for Ł3.

Lemma 2 : Let A be an unsigned formula and let w be a valuation such that
A is true under w. Let W be a set made up of all the propositional variables
of A such that:

(*) for every propositional variable ϕ of A:
(1) Tϕ belongs to W iff ϕ is true under w;
(2) Fϕ belongs to W iff ϕ is false under w;
(3) Nϕ belongs to W iff ϕ is undetermined under w.

Then TA is a Ł3-consequence of W and there exists a synthetic inference of
TA.

Proof
First we shall show that TA is a Ł3-consequence of W, that is, that there
exists a derivation of TA from W by means of Ł3-rules.

2 This notion is due to Wiśniewski (cf. [9]).
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Let P be the set of all the subformulas of A, preceded by a truth-sign. Let P*
be the smallest subset of P such that:

(**) for every subformula C of A:
(1) TC belongs to P* iff C is true under w;
(2) FC belongs to P* iff C is false under w;
(3) NC belongs to P* iff C is undetermined under w.

It is obvious that W is a subset of P* and that TA belongs to P*.
Now, build up a sequence d = d1, . . . , ds of the elements of P* ordered by
the increasing degree of their complexity in such a way that every formula
of degree n should precede in d any formula of degree n+1. An exact order
of the formulas of the same degree does not matter, with two exceptions:

(i) signed propositional variables should be ordered alphabetically;
(ii) the last element of d should be TA (this clause is added for the pur-

pose of clarity only; in fact it is superfluous).
Moreover, d should be a sequence without repetitions.
Thus, if ϕ1, . . . , ϕt are all the propositional variables of A, then the t first
terms of d are signed propositional variables and the degree of complexity
of any further term of d is greater than 0. It can be shown by induction on
the degree of complexity of the terms of d that for any i(i = 1, . . . , s), di is
a Ł3-consequence of W:

(I) If deg(di) = 0, then di is a signed propositional variable and, at the
same moment, di is in W;

(II) Suppose that deg(di) > 0; moreover, suppose that for any m < i,
dm is a Ł3-consequence of W.
Obviously, if deg(di) > 0, then there is a formula G such that di is
in either of the form T¬G or F¬G or N¬G, or there are formulas G,
H such that di is in either of the form TG → H or FG → H or
NG → H .
(a) If di is T¬G, then, since ¬G is a subformula of A, then G is

a subformula of A as well. As T¬G is member of P*, ¬G is
true under w and G is false under w. This means that FG is in
P* and that there exists an index f such that df is FG. Since
deg(FG) < deg(T¬G), then f < i. Thus, on the basis of induc-
tive assumption and by the NT-rule (and due to idempotency of
the consequence operator in question), di is a Ł3-consequence
of W.

The other cases can be proved in a similar way.
This ends the first part of the proof.
It is easily seen that the sequence d is also a synthetic inference of the for-
mula TA. For observe the following:
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(1) every term of d is a signed subformula of A;
(2) the first term of d is a signed propositional variable;
(3) the last term of d is TA;
(4) every term of d is either a signed propositional variable (and, due to

the conditions imposed on the set W and the sequence d, clause 4a of
definition 1 is met) or is a Ł3-consequence of some earlier formula(s)
of d. �

The following two lemmas can be proved in an analogous way:

Lemma 3 : Let A be an unsigned formula and let w be a valuation such that
A is false under w. Let W be a set made up of all the propositional variables
of A such that:

(*) for every propositional variable ϕ of A:
(1) Tϕ belongs to W iff ϕ is true under w;
(2) Fϕ belongs to W iff ϕ is false under w;
(3) Nϕ belongs to W iff ϕ is undetermined under w.

Then FA is a Ł3-consequence of W and there exists a synthetic inference of
FA.

Lemma 4 : Let A be an unsigned formula and let w be a valuation such that
A is undetermined under w. Let W be a set made up of all the propositional
variables of A such that:

(*) for every propositional variable ϕ of A:
(1) Tϕ belongs to W iff ϕ is true under w;
(2) Fϕ belongs to W iff ϕ is false under w;
(3) Nϕ belongs to W iff ϕ is undetermined under w.

Then NA is a Ł3-consequence of W and there exists a synthetic inference of
NA.

The central theorems of the present paper are the following soundness and
completeness theorems:

Theorem 1 : If a formula A is Ł3-valid, then there exists a synthetic tableau
Ω for A such that every path of Ω leads to TA.

Proof
Let A be a certain valid formula of Ł3. Let K be the set of all the propo-
sitional variables of A. Let ϕ1, . . . , ϕp be all the distinct members of K,
ordered alphabetically. Thus there exist t = 3p valuations, which differ with
respect to truth values assigned to the variables ϕ1, . . . , ϕp. Let’s now assign
to every propositional variable ϕh(h = 1, . . . , p) t-terms sequence uh of the
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truth values 1, 1/2, 0; the g-th (g = 1, . . . , t) term of the sequence uh is
defined in the following way (‘×’ stands here for the sign of multiplication):

uh
g =



























1 if 1 ≤ g ≤ 3p−h

0 if 3p−h < g ≤ 2 × 3p−h

1/2 if 2 × 3p−h < g ≤ 3(p−h)+1

uh
g−r if 3(p−h)+1 < g ≤ 3p, where r = 3(p−h)+1

Now, define t = 3p p-terms sequences of truth values; the sequence vz

(where z = 1, . . . , t) is given by the following formula:

vz = u1
z, u

2
z, . . . , u

p
z

Every sequence vz defines a certain class of valuations, namely, these un-
der which the variable ϕh takes the value uh

z for h = 1, . . . , p. Moreover,
every valuation belongs to exactly one such a class. Valuations which be-
long to distinct classes (that is, defined by distinct sequences v1, . . . , vt) do
differ with respect to the truth values assigned to the variables of A (that is,
ϕ1, . . . , ϕp). Let w1, . . . , wt be valuations which belong to the classes de-
termined by v1, . . . , vt, respectively.
Now for every valuation wb (where b = 1, . . . , t) we define a p-term se-
quence db = db

1, . . . , d
b
p of signed propositional variables of A. The j-th

term of the sequence db is defined in the following way:

db
j =















Tϕj if ϕj is true under wb;

Fϕj if ϕj is false under wb;

Nϕj if ϕj is undetermined under wb

where j = 1, . . . , p.3

Note, that db contains no repetitions.

3 Consider the following example. Let A = ‘p ∧ q → p’. Thus all the distinct variables
of A are p, q (ordered alphabetically). The sequence up of truth-values, assigned to the
variable p will look as follows: up

= 1, 1, 1, 0, 0, 0,1/2,
1/2,

1/2 whereas to the variable q

will be assigned the sequence uq
= 1, 0,1/2, 1, 0,1/2, 1, 0,1/2. The relevant v-sequences are:

v1
= 1, 1, v2

= 1, 0, v3
= 1, 1/2, v4

= 0, 1, v5
= 0, 0, v6

= 0, 1/2, v7
=

1 /2, 1, v8
=

1 /2,
0, v9

=
1 /2, 1/2. As for an example of d-sequences: the sequence determined by a valuation

that is defined by the sequence v3 is the following: d3
= Tp, Nq.
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Let Wb be the set of all the formulas of db. The following condition is met
by Wb:

(*) for every propositional variable ϕ of A:
(1) Tϕ belongs to Wb if ϕ is true under w;
(2) Fϕ belongs to Wb if ϕ is false under w;
(3) Nϕ belongs to Wb if ϕ is undetermined under w.

Since A is Ł3-valid, then it is true under every valuation, including w1, . . . ,
wt. Thus, by Lemma 2, for any of w1, . . . , wt there exists a certain Ł3-
derivation of TA on the basis of W1, . . . , Wt, respectively. Now we assign to
every of W1, . . . , Wt such a derivation, built up as in the proof of Lemma 2;
the only restriction is that derivation Db assigned to the set Wb begins with
db as its starting sequence, that is, Db

e = db
e for e = 1, . . . , p (according to

the definition of the sequence db signed propositional variables of A occur
in it in the alphabetical order, determined by their unsigned counterparts).
By Lemma 2, any of the derivations D1, . . . , Dt is a synthetic inference of
TA (and none of them are identical).
Let Ω = {D1, . . . , Dt}. We shall show that Ω is a synthetic tableau for the
formula A.

(1) Every sequence in Ω is a synthetic inference of TA.
(2) The first term of every sequence in Ω is the signed propositional vari-

able ϕ1 and at least one sequence in Ω begins with Tϕ1, at least one
with Fϕ1 and at least one with Nϕ1.

(3) The first p terms of every sequence in Ω are signed propositional
variables of A, ordered alphabetically. Thus, if #, &, % are distinct
truth-signs, then if #φ is the q-th term of the sequence Ds (where
s = 1, . . . , t), then Ω contains sequences Ds*

, Ds**
which do not

differ from Ds up to the level of their q − 1th terms (if there are any)
and are such that the q-th term of Ds*

is &φ while the q-th term of Ds**

is %φ. Moreover, if #φ is the q-th term of Ds, then there is no term
in Ds of any of the form: Tφ, Fφ, Nφ other than the q-th. Finally, if
Ds and Ds*

do not differ up to their q − 1th terms and Ds
q is #φ, then

Ds∗

q is in one of the forms: Tφ, Fφ, Nφ.
Thus Ω is a synthetic tableau for A such that every path of it leads to TA. �

Theorem 2 : If there exists a synthetic tableau Ω for a formula A such that
every path of Ω leads to TA, then A is Ł3-valid.
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Proof4

Suppose that there exists a synthetic tableau Ω for a formula A such that
every path of Ω leads to TA. Moreover, suppose (for an indirect proof) that
A is not Ł3-valid. Since all the terms of paths of Ω are signed subformulas
of A, Ω is a finite set.
Since A is not Ł3-valid, there exists a certain valuation w such that A is false
under w or A is undetermined under w, that is, either FA or NA is true with
respect to w. Since every path of Ω leads to TA, then w does not satisfy any
set of formulas of a path of Ω. Therefore, by Lemma 1, for every path of Ω
there exists a minimal error point with respect to the valuation w. Let ω be
the set of all the minimal error points of the paths of Ω with respect to the
valuation w (so, ω is a set of indices, i.e. positive integers).
The set ω is finite and thus must have a maximal element, that is, there exists
an index k such that for any j in ω, j ≤ k. Let s be a path of Ω such that
its minimal error point is the maximal one, that is, k. By Lemma 1, sk is a
signed propositional variable, sk is false or is undetermined with respect to
w and either sk is the first term of s, or every term that precedes sk in s is
true with respect to w.
Let #, &, % be the distinct truth-signs. If sk is the first term of s, then there
are paths s*, s** of Ω such that, if sk = #φ, then s∗k = &φ and s∗∗k = %φ.
Therefore, one of the s∗k, s∗∗k is bound to be true with respect to w.
If sk is not the first term of s, then there exist paths s*, s** of Ω such that
for every sd which precedes sk in s, sd = s∗d = s∗∗d (remember that every
term of s which precedes sk is true with respect to the valuation w) and, if
sk = #φ, then s∗k = &φ and s∗∗k = %φ. Therefore, one of the s∗k, s∗∗k is
bound to be true with respect to w.
By Lemma 1, for every path of Ω there exists a minimal error point with
respect to the valuation w, so there exist also such minimal error points of
the paths s∗k and s∗∗k . According to what has been shown above, the minimal
error point of one of them must be greater than the minimal error point of s.
This means that the minimal error point of either s* or s** is greater than the
maximal element of ω, so we arrive at a contradiction. Therefore the valu-
ation w satisfies the set of all the formulas of at least one path of Ω. Since
every path of Ω leads to TA, then TA is true with respect to w and thus A
itself is true under w. �

By using similar ideas as in the proof of Theorem 1, one can prove the fol-
lowing:

4 This proof is based on the idea that comes from Wiśniewski’s [9].



“11urbanski”
2004/3/16
page 169

i

i

i

i

i

i

i

i

SYNTHETIC TABLEAUX FOR ŁUKASIEWICZ’S CALCULUS Ł3 169

Theorem 3 : For every formula A of Ł3 there exists a synthetic tableau for
A.

One can also prove the following:

Theorem 4 : A formula A is Ł3-valid iff every synthetic tableau Ω for A is
such that every path of Ω leads to TA.

Therefore, one can show that synthetic tableaux method is both an adequate
proof method and an effective decision procedure for Ł3. Moreover, the
situation is similar in the case of any propositional Łukasiewicz-like finite-
valued calculus.

9. A systematic procedure

In the present subsection we describe a systematic, finite and effective proce-
dure for constructing a synthetic tableau for any formula of Ł3 that is based
on the proofs of lemmata 2–4 and of Theorem 1.

To this end we need to determine an alphabetical order of the formulas of
Ł3. Suppose that propositional variables of Ł3 are made up of the symbols
ϕ and |: e.g. the fourth variable becomes ϕ ||||. Thus the alphabet of Ł3
consists of the following six signs:

¬ → ()ϕ |

We shall call this ordering alphabetical. An alphabetical order of the formu-
las of Ł3 with respect to the alphabetical ordering of the symbols of Ł3 is
defined in the standard way.
Now we are in a position to describe a systematic procedure for constructing
a synthetic tableau for any formula of Ł3.

Let ϕ1, . . . , ϕk be all the distinct propositional variables of a formula A of
Ł3.

Task
Build a synthetic tableau for A.
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Step 1
Determine all the valuations that differ with respect to the truth-values as-
signed to variables ϕ1, . . . , ϕk. Let w1, . . . , wr be all this distinct valua-
tions5 .

Step 2
Perform the following substeps for w1:

Substep 2a
Determine the truth value of A under w1.

Substep 2b
If A is true under w1, then build up a set W1 of all the formulas that
fulfil the following condition:
(*) for every propositional variable ϕi of A (i = 1, . . . , k):
(1) Tϕi ∈ W1 iff ϕi is true under w1,
(2) Fϕi ∈ W1 iff ϕi is false under w1,
(3) Nϕi ∈ W1 iff ϕi is undetermined under w1,
and then build a synthetic inference s1 of TA as in the proof of
Lemma 2. If in s1 there occur some formulas with equal degrees
of complexity, they should be ordered alphabetically.

Substep 2c
If A is false under w1, then build up a set W1 of all the formulas that
fulfil the following condition:
(*) for every propositional variable ϕi of A (i = 1, . . . , k):
(4) Tϕi ∈ W1 iff ϕi is true under w1,
(5) Fϕi ∈ W1 iff ϕi is false under w1,
(6) Nϕi ∈ W1 iff ϕi is undetermined under w1,
and then build a synthetic inference s1 of FA as in the proof of
Lemma 3. If in s1 there occur some formulas with equal degrees
of complexity, they should be ordered alphabetically.

5 To be precise, w1, . . . , wr represent distinct classes of valuations such that elements of
the same class do not differ with respect to the truth-values assigned to variables ϕ1, . . . , ϕk.
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Substep 2d
If A is undetermined under w1, then build up a set W1 of all the
formulas that fulfil the following condition:
(*) for every propositional variable ϕi of A (i = 1, . . . , k):
(7) Tϕi ∈ W1 iff ϕi is true under w1,
(8) Fϕi ∈ W1 iff ϕi is false under w1,
(9) Nϕi ∈ W1 iff ϕi is undetermined under w1,
and then build a synthetic inference s1 of NA as in the proof of
Lemma 4. If in s1 there occur some formulas with equal degrees
of complexity, they should be ordered alphabetically.

Step 3
Perform the substeps 2a–2d for the valuations w2, . . . , wr.

Step 4
Build up a set Ω of the sequences s1, . . . , sr.

It can be easily checked that Ω is a synthetic tableau for a formula A.

10. Canonical synthetic tableaux

Synthetic tableaux built up according to the procedure described in section 9
will be called canonical. Let us compare two synthetic tableaux for the for-
mula ‘p → q’. The tableau of example 8 is a canonical one, whereas the
tableau of example 9 is not:

Example 8
A canonical synthetic tableau for the formula ‘p → q’:

Tp Fp Np

Tq Fq Nq Tq Fq Nq Tq Fq Nq

Tp → q Fp → q Np → q Tp → q Tp → q Tp → q Tp → q Np → q Tp → q

�
�

��

Q
Q
QQ

�
�

��

Q
Q
QQ

�
�

��

Q
Q
QQ

Example 9
A (non-canonical) synthetic tableau for the formula ‘p → q’:
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Tp Fp Np

Tq Fq Nq Tq Fq Nq

Tp → q Fp → q Np → q

Tp → q

Tp → q Np → q Tp → q

�
�

��

Q
Q
QQ

�
�

��

Q
Q
QQ

It is easily seen that the tableau of example 8 contains some inferential steps
that are “deductively superfluous”: introduction of Tq, Fq, Nq after Fp is
not needed in order to obtain Tp → q. The procedure described in section 9
enables one to determine the maximal number of synthetic inferences that is
sufficient to built up a synthetic tableau for a given formula A: it is equal to
3k, where k is the number of distinct propositional variables, occurring in A.
This procedure does not determine, however, the minimal number of syn-
thetic inferences that are needed to this end. And the method of determining
it (as well as the method of determining the minimal length of synthetic in-
ferences) is at the moment the main open problem concerning STM. As can
be observed on the basis of the examples 6–9 the problem of the minimal
complexity of a synthetic tableau for a given formula should be dealt with
in terms of “pragmatics” of a proof rather than in terms of purely structural
conditions. Such a heuristics for STM certainly deserves further investiga-
tions6 .
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[9] Wiśniewski, A. “Erotetic Search Scenarios”, Synthese, vol. 134
(3)/2003, pp. 389–427.
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