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ADAPTIVE LOGIC AND COVERING LAW EXPLANATIONS∗

ERIK WEBER AND MAARTEN VAN DYCK†

Abstract
In his theory of explanation Hempel introduced two basic types of
covering law explanations for particular events: deductive-nomolog-
ical and inductive-statistical. In this article we argue that there is
more than one reason why adaptive logics provide the right tools
for analyzing the argument patterns involved in these covering law
explanations. To this end we claim that in the case of inconsis-
tent knowledge systems, neither classical logic, nor a paraconsis-
tent logic suffice to capture the right class of permissible arguments
that can make up a deductive-nomological explanation, whereas an
adaptive logic gives just the right results. The arguments behind
inductive-statistical explanations face the well-known problem of
inductive ambiguities, which Hempel tried to solve with his require-
ment of maximal specificity. We show how this requirement can be
nicely incorporated in a logic for these arguments, again using an
adaptive logic (which we describe in some detail).

1. Introduction

The distinction between two basic types of so-called covering law expla-
nations for particular events, deductive-nomological (D-N) and inductive-
statistical (I-S), goes back to the godfather of philosophy of explanation,
Carl Gustav Hempel (for an overview of the modern history of theories of ex-
planation, see Salmon 1989 — for Hempel’s own ideas, see Hempel 1965).
A D-N explanation can be characterized as a valid deductive argument hav-
ing as conclusion the statement that the event did occur. An I-S explanation,
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238 ERIK WEBER AND MAARTEN VAN DYCK

on the other hand, consists in an inductive argument with the same conclu-
sion. Of course, the premises will have to be subject to further restrictions,
which we will analyze in some detail. The most well known restriction is
the demand that the premises contain a sentence stating a law, whence the
general term of covering law explanations.

At first glance it might seem that the logical analysis of D-N explanations
is straightforward, but in section 2 we will recapitulate an earlier argument
from Weber & De Clercq (2002), showing that there are common cases that
cause trouble. As we will explain in section 3, this introduces a first reason
to approach the logic of explanation from the perspective of adaptive logics
(as was already claimed in Weber & De Clercq (2002)). The general ideas
behind these logics will also be presented in that section.

That I-S explanations cannot be handled with tools from classical logic
is of course no surprise — this is a counterpart of Hume’s problem with
inductive predictions. But as we will show in section 5, adaptive logics give
us just the right tools to analyze the logic of I-S explanations. Section 4 will
contain the needed preliminaries in which we discuss the general structure
of these explanations.

The general lesson will be that classical logic is not well-suited to handle
standard problems in philosophy of science. Adaptive logics, on the other
hand, turn out to be more fruitful in this respect.

2. D-N Explanations

2.1. The general structure

Let us begin with a clear informal characterization, as given by Hempel:

... a D-N Explanation answers the question ‘Why did the explanan-
dum-phenomenon occur?’ by showing that the phenomenon re-
sulted from certain particular circumstances, specified in C1, C2, . . . ,
Ck, in accordance with the laws L1, L2, . . . , Lr. By pointing this
out, the argument shows that, given the particular circumstances and
the laws in question, the occurrence of the phenomenon was to be
expected; and it is in this sense that the explanation enables us to
understand why the phenomenon occurred. (1965, p. 337; italics in
original)

In this approach, explanation is to be identified with expectability. Since the
conclusion of a deductive inference follows with certainty from the premises,
this clearly gives us the right sort of argument.
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ADAPTIVE LOGIC AND COVERING LAW EXPLANATIONS 239

In the traditional D-N model some further conditions besides deductive va-
lidity are added to the argument. Most importantly, the premises that make
up the explanans must contain at least one sentence stating a general law:
it is in virtue of this law that the other particular facts cited in the premises
can be considered explanatory relevant to the explanandum. In what follows
we will ignore the problems that surround the characterization of so-called
lawlike sentences, and concentrate ourselves on the general structure of D-N
explanations, assuming that all such sentences can be represented by gen-
eralized sentences containing only universal quantifiers. It is clear from the
preceding that all D-N explanations fall under something like the follow-
ing schema (L stands for the lawlike sentence, Ci for sentences describing
particular facts that together with L make up the explanans, and E for the
explanandum-sentence):

L: (∀x)(P1x&P2& . . .&Pnx → Qx)
C1: P1b
C2: P2b

. . .
Cn: Pnb

E: Qb

A very simple example is the following explanation of the fact that Mary has
blood group A:

L: All humans who belong to category IAIA×IAIO have blood group
A.

C1: Mary is a human
C2: Mary belongs to category IAIA × IAIO

E: Mary has blood group A.

So far, so good. Now, one minor complication has to be handled. The fol-
lowing would not be considered a satisfactory explanation by anyone:

L: All humans who belong to category IAIA×IAIO have blood group
A.

C1: Mary is a human
C2: Mary has blood group A.

E: Mary has blood group A.

An obvious way to repair this defect is to demand that the law sentence is
really needed in the derivation. Hempel takes care of this by adding the
requirement that the deletion of L makes the argument invalid. So, if want to
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240 ERIK WEBER AND MAARTEN VAN DYCK

summarize the idea behind D-N explanations in a more formal way, we get
something like the following set of conditions (CL standing for ‘Classical
Logic’ — and a knowledge system being the set of all statements accepted
at a given time):

Knowledge system K provides a deductive-nomological explana-
tion for E if and only if there are sentences C1, . . . , Cn describing
particular facts, and a lawlike sentence L such that
(i) C1, C2, . . . , Cn, L is consistent,
(ii) C1&C2& . . .&Cn and L are CL-derivable from K,
(iii) E is CL-derivable from C1&C2& . . .&Cn&L, and
(iv) E is not CL-derivable from C1&C2& . . .&Cn.

The first condition is needed to exclude trivial explanations: CL validates
the rule ex contradictione sequiter quodlibet, so if we have inconsistent
premises, they could explain everything (something that may please mys-
tical minds, but doesn’t help much if we want to understand more down-
to-earth instances of explanation). Besides this technical problem, it is also
questionable if one could ever consider a set of contradictory sentences as a
good explanation for some event. However, this condition (i) is not enough
to avoid all problems that can arise from inconsistencies.

2.2. A problem1

Suppose that our knowledge system contains the following sentences:

(K1) All Quakers are pacifists.
All republicans are non-pacifists.
Nixon is a Quaker and a republican.

Applying the preceding definition leads to the conclusion that K1 provides a
D-N explanation for both “Nixon is a pacifist” and “Nixon is not a pacifist”:

L1: All Quakers are pacifists
C1: Nixon is a Quaker

E1: Nixon is a pacifist

L2: All republicans are non-pacifists
C2: Nixon is a republican

E2: Nixon is not a pacifist

1 The following examples are taken from Weber & De Clercq (2002).
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This kind of situations is common enough: most real-life knowledge systems
do contain rules of this kind that can lead to inconsistencies. However, the
possibility of explaining both a sentence and its negation at the same time
should somehow be excluded (what do we learn by knowing that E was
expectable, if it turns out that ∼E was expectable as well?).

One way to secure this would be the requirement that the knowledge sys-
tem be closed under logical implication and consistent.2 However, we be-
lieve this too stringent a demand. There are both empirical and logical rea-
sons for this suspicion. The empirical ones are the apparent unavoidability
— due to the pragmatic limitations of human reasoning — of inconsistencies
in everyday knowledge (as already illustrated by our simple example K1),
as well as in scientific theories (consult e.g. Meheus 1993, Norton 1993,
Smith 1988). The logical sources of suspicion are well known, and among
the most surprising results of twentieth century philosophical investigations,
i.e. Gödel’s theorems.

In view of this, we believe that the D-N account of explanation needs
another way to circumvent the problem — if it is to be interesting as an
analysis of real-life explanations. A solution would be to expand the set of
conditions on admissible D-N explanations, so as to prevent the possibility
of giving at the same time a D-N argument for E and for ∼E. If we add a
fifth condition to the set of criteria in 2.1.,

(v) ∼E is not CL-derivable from K,

then K1 does not provide an explanation for “Nixon is a pacifist”, nor for
its negation. Indeed, whenever both E and ∼E are derivable, neither can be
given a D-N explanation, as a consequence of this extra condition.

However, it turns out that, as it stands, this solution coincides with the
first one. Indeed, consider what happens if we have a contradiction in a
knowledge system. Since in CL the rule ex contradictione quodlibet holds,
this means that we can deduce any sentence, so for any E, we also have
that ∼E is CL-derivable — and as a result condition (v) implies that no D-N
explanations are possible from an inconsistent knowledge system.

That this is counterintuitive can best be illustrated with a further example.
Consider the following knowledge system:

(K2) All birds fly.
Penguins don’t fly.
Tweety is a bird and a penguin.
Billy is a bird but not a penguin.

2 No doubt, this would have been Hempel’s own answer to the problem (e.g. Hempel
1965, p. 396).
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242 ERIK WEBER AND MAARTEN VAN DYCK

We think that almost everybody would agree that on this basis one can
explain why Billy flies, even if we have contradictory information about
Tweety. So adding condition (v) seems by no means the most promising
way to safeguard our theory of explanation of becoming trivial. As it stands,
it clearly forbids too much. This example illustrates the general problem
with our expanded definition: though the information we have about some
facts (e.g. that Billy flies) is consistent, the inconsistency of the knowledge
system as a whole implies that nothing can be explained. It seems that it is
not possible to analyze D-N explanations in a satisfying way, using CL as
the underlying logic. In what follows we will claim that this problem can be
solved by replacing CL by an adaptive logic in the conditions (i)–(v) (notice
that condition (v) will be retained, since we still want to exclude the possi-
bility of explaining E if ∼E was expectable as well, but that by using an
adaptive logic this no longer coincides with the first solution). As we will
show this entails that K2 allows one to give a D-N explanation for Billy’s
flying, but not for Tweety’s not flying.

3. Adaptive logics

3.1. The general idea

An adaptive logic is a logic that tries to take the best from two worlds. Put
more formally: it uses the rules from one strong logic, but when these cause
problems, it uses the rules from another, weaker logic. It ‘oscillates’ be-
tween an upper limit logic (ULL) and a lower limit logic (LLL). (Adaptive
logics were first introduced and developed by Diderik Batens; for a survey
see Batens 1998,2000,200+.)

When one is confronted with a knowledge system containing inconsisten-
cies, the safest thing to do is to use a paraconsistent logic. Such a logic
avoids triviality (ex contradictione quodlibet is not generally valid in it), by
dropping some inference rules of CL (e.g. modus tollens and disjunctive syl-
logism). But the fact that some inference rules are dropped also means that
in general a set of premises will have less conclusions. Consider the follow-
ing simple example: if we use a paraconsistent logic that invalidates modus
tollens, then ‘∼p’ will not follow from the set of premises p ⊃ q,∼q, r,∼r.
So, avoiding the triviality that arises from the inconsistency comes at a price;
and a price that is hard to pay, since p and q have nothing to do with the in-
consistency!

Inconsistency-adaptive logics were developed to handle this kind of sit-
uations. The intuitive idea is that one can use all rules from the ULL (in
this case CL), unless a specific application causes trouble. Whenever trouble
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arises, one can still use the rules from the LLL (in this case a paraconsis-
tent logic). One easily sees how this can generalize to other sorts of sit-
uations, where “trouble” arises from other sources than inconsistencies (in
these cases the LLL will often be CL, and the ULL will contain extra infer-
ence rules — e.g. to take inductive steps — which can cause their own kind
of trouble). A concrete example of this will be given in section 5 where we
will introduce an adaptive logic for I-S explanation.

The “unless”-clause is formalized by introducing conditional rules: some-
thing can be derived from a set of sentences on a condition. If at a later stage
of the proof it turns out that the condition is violated, then the sentence that
was derived at an earlier stage is marked as invalid: the line of the proof
containing this sentence is out. “Derived” and “invalid” thus have to be in-
terpreted as “at a stage”; this does not prevent us from also introducing the
notion of final derivability: a sentence is finally derived at a line in a proof
if and only if any extension of the proof in which the line is marked may be
further extended in such a way that the line is non-marked. It is clear that all
the rules from the LLL can be treated as unconditional rules. But of course,
if the sentences to which we apply such unconditional rules were derived on
a condition, then the sentence that we introduce at a new line in the proof
will also contain a condition: the union of all the conditions of the earlier
sentences of which it is a consequence.

Adaptive logics thus always have something like the following proof for-
mat. Every line of the proof consists of five elements:

(i) a line number,
(ii) the sentence derived,
(iii) the line numbers of the sentences from which (ii) is derived,
(iv) the rule of inference that justifies the derivation,
(v) the set of sentences on the normal behavior of which we rely in

order for (ii) to be derivable by (iv) from the sentences of the lines
enumerated in (iii).

By normal behavior we mean to indicate that these sentences cause no trou-
ble — a notion that always will be specified according to the particular adap-
tive logic that is studied. Besides a structural rule by which you can intro-
duce premises in a proof (always with an empty fifth element), there are two
kinds of inference rules: the unconditional ones, and the conditional ones.
For example, an application of the rule unconditional modus ponens (MP)
looks like the following:

j p ⊃ q . . . . . . ∆
j + 1 p . . . . . . Θ

j + 2 q j, j + 1 MP ∆ ∪ Θ
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And an application of the rule conditional modus tollens (MTC) looks like
the following:

j p ⊃ q . . . . . . ∆
j + 1 ∼q . . . . . . Θ

j + 2 ∼p j, j + 1 MTC ∆∪Θ∪{q}
Besides these inference rules, there is one special type of rules: the marking
rules that indicate when a line in the proof has to be marked. For example,
when you discover that B is causing trouble (e.g. because it behaves incon-
sistently), than these rules tell you to mark all lines of the proof containing
B in its fifth element.

One will recognize this general format in the adaptive logic that we will
propose in section 5.

3.2. How to solve the problem with D-N explanations

In the concluding remarks of his (1965) Hempel states his main objective as
being an explication of the concept “explanation”, implying that:

Like any other explication, the construal here put forward has to be
justified by appropriate arguments. In our case, these have to show
that the proposed construal does justice to such accounts as are gen-
erally agreed to be instances of scientific explanation, and that it
affords a basis for a systematically fruitful logical and methodologi-
cal analysis of the explanatory procedures used in empirical science.
(1965, p. 489)

The examples in 2.2. were intended to throw doubt on the fruitfulness of
Hempel’s original explication: there is an important class of situations for
which it fails. An improved construal should avoid the problem that arises
with inconsistent knowledge systems, while at the same time doing justice
‘to such accounts as are generally agreed to be instances of scientific expla-
nation’.

It is clear from the foregoing that a paraconsistent logic would avoid the
problem with the explanation of Billy’s flying (we can no longer use ex con-
tradictione quodlibet to derive that Billy does not fly). But at the same time
we believe that this would not be the right way to explicate the concept of ex-
planation, for we think it undeniable that scientists don’t refrain from using
a rule like modus tollens in constructing explanations, wherever it doesn’t
cause trouble. (A very nice example of an actual case in which this hap-
pened is found in Meheus 1993, in which Clausius’s reasoning leading up
to modern thermodynamics is analyzed — reasoning that had to deal with
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inconsistencies.) Consider for example what would happen if we would re-
strict permissible explanations to arguments based solely on a paraconsis-
tent logic invalidating modus tollens, and if our knowledge system would be
K3 : {p ⊃ q,∼q}. In this case it would be impossible to explain the fact
that ∼p — clearly contrary to what is ‘generally agreed to be instances of
scientific explanation’! Of course, someone could reply to this that one can
work with two sets of conditions on D-N explanations, one for consistent
knowledge systems, and another one for inconsistent knowledge systems.
That this will not do, is evident when one considers that it is not always
clear from the outset whether a system contains no contradictions (remem-
ber Frege’s despair after receiving Russell’s letter), but most importantly that
this still seems to give the wrong result with knowledge systems like the fol-
lowing K4 : {p ⊃ q,∼q, r,∼r}. When confronted with K4, one feels that
one can explain ‘∼p’ as much as when confronted with K3!

These remarks point to an inconsistency-adaptive logic as the right tool
for explicating D-N explanations. Indeed, using an inconsistency-adaptive
logic it is always possible to derive ∼p from K3 and K4, on the condition
that q behaves consistently. So, all we have to do is replace CL by I-AL
(standing for a suitable inconsistency-adaptive logic)3 in the extended set
of conditions (i)–(v) from section 2. (Notice that this replacement renders
condition (v) unproblematic, since ex contradictione quodlibet is no longer
valid.) With this revised definition in place, it follows that K2 provides a
D-N explanation for ‘Billy flies’ (this sentence is I-AL-derivable, whereas its
negation is not), and at the same time excludes an explanation for ‘Tweety
does not fly’ (since ‘Tweety flies’ is I-AL-derivable as well as ‘Tweety does
not fly’). For more on this, we refer the reader to Weber & De Clercq (2002),
where she can find a detailed description of an inconsistency-adaptive logic
for D-N explanations.

4. I-S Explanations

4.1. The general structure

Once again, let us begin with a characterization given by Hempel:

Explanations of particular facts or events by means of statistical
laws thus present themselves as arguments that are inductive or

3 Depending on the paraconsistent logic that one uses as LLL, and on the specific marking
rules, one can choose the adaptive logic one thinks best suited. In Weber & De Clercq (2002)
ACLuN1 is used for this purpose.
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probabilistic in the sense that the explanans confers upon the ex-
planandum a more or less high degree of inductive support or of log-
ical (inductive) probability; they will therefore be called inductive-
statistical explanations; or I-S explanations. (1965, pp. 385–386)

Explanation is still linked with expectability, but in this case expectability
comes in degrees. The idea of lawlike sentences thus has to be extended to
account for statistical laws that have the conditional form Prob(G | F) = r,
where r denotes the probability that an object of the set F is also a member
of the set G. The set F is called the reference class of this statistical law.

An I-S explanation will be an argument with the following structure, anal-
ogous to D-N explanations:

L: Prob(G | F) = r
C1 :
E :

Fb

Gb
[r]

The notation is borrowed from Hempel: the double line indicates that the
argument is inductive rather than deductive, and “[r]” represents the degree
of inductive support that is conferred upon the conclusion by the premises.
This argument explains the fact that object b has property G by showing that
this could be expected with probability r, given the fact that the statistical law
L holds, and that b has property F. (Of course this structure can be extended
to a more general schema in which the reference class of the conditional
probability is determined by a conjunction of properties F1&F2& . . .&Fn,
and in which b has the properties F1, . . . , Fn.)

Once again, there are further restrictions on this argument for it to count as
an I-S explanation. As in the case of D-N explanations we have to rule out
the possibility of circular explanations (this can be done in exactly the same
way). As an extra condition we can also require r > t with t a chosen limit
on the degree of inductive support.

A very simple example of an I-S explanation would be the explanation
of why John Jones (j) recovered (R) from a streptococcus infection (S),
when our knowledge system also contains the information that John was
administered penicillin (P ), and the probability (r, which is close enough to
1) of recovery from an infection given that penicillin is administered:

L: Prob(R | S&P) = r
C1: Sj

C2 :
E :

Pj

Rj
[r]

Hempel, after introducing this example, immediately remarks that an impor-
tant problem remains to be solved.
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4.2. A problem

Not all streptococcal infections can be cured by administrating penicillin,
and some streptococcus strains are even resistant to penicillin. The proba-
bility of recovery among the people who are treated with penicillin and are
infected by a resistant strain is a number s very close to 0 (equivalently, we
could say that the probability of not recovering among these people is a num-
ber 1− s very close to one). If we would know that John Jones was infected
by such a strain (Z), then we could give the following argument:

L: Prob(∼R | S&P&Z) = 1 − s
C1: Sj
C2: Pj

C3 :
E :

Zj

∼Rj
[1 − s]

But now we are confronted with two strong inductive arguments, the prem-
ises of which could all be true at the same time, that give contradictory con-
clusions. This phenomenon is dubbed the ambiguity of I-S explanations by
Hempel.

The problem clearly has to do with the choice of the right reference class.
This problem was well-known from the attempts at constructing an induc-
tive logic. But with I-S explanations another solution is needed, since the
requirement of total evidence that was favored by inductive logicians is to-
tally inappropriate. Hempel cites the following formulation by Carnap:

in the application of inductive logic to a given knowledge situation,
the total evidence available must be taken as basis for determining
the degree of confirmation. (1965, p. 397)

Consider what happens if we transpose this requirement to the problem at
hand: the explanandum must be incorporated among the premises of the
argument (since it is already known when constructing an explanation and
thus is part of the total evidence), but this means that all explanations are
rendered trivial!

Hempel’s solution is the so-called requirement of maximal specifity (RMS)
(‘b’, ‘F ’ and ‘r’ as introduced in 4.1.)4 :

... if K is the set of all statements accepted at the given time, let
k be a sentence that is logically equivalent to K ... Then, to be

4 We adapted the notation in the quotation to ours — we also slightly altered Hempel’s
original condition, in which he allows for premises not contained in the knowledge system at
the time of the explanation, since this doesn’t make a difference to our discussion.
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248 ERIK WEBER AND MAARTEN VAN DYCK

rationally acceptable in the knowledge situation represented by K,
the proposed explanation ... must meet the following condition (the
requirement of maximal specificity): if ... k implies that b belongs
to a class F1, and that F1 is a subclass of F, then ... k must also imply
a statement specifying the statistical probability of G in F1, say

Prob(G | F1) = r1

Here, r1 must equal r unless the probability statement just cited is
simply a theorem of mathematical probability theory. (1965, p. 400)

The unless-clause is needed to exclude the necessity of introducing Prob(G |
F&G) = 1 as the statistical law with the maximally specific reference class.

If we turn back to John Jones’s recovery, it is clear that the first explana-
tion does not satisfy RMS, whereas the second does: we have a correct I-S
explanation for ∼Rj, but not for Rj. We always have to subsume an object
under the class that gives the most specific information that is available in K;
in this case this is ‘S & P & Z’.

There are some further complications associated with Hempel’s original
formulation of RMS; we refer the reader to Salmon (1989) for this. In what
follows, our intention is to show how to formalize the arguments that make
up I-S explanations, incorporating RMS in the logic itself.

5. An adaptive logic for I-S explanations

5.1. ALISE

Trouble is spelled ‘ambiguity’; marking is governed by RMS. These are the
basics for the adaptive mechanism we want to propose to formalize Hempel’s
I-S explanations.

Once the adaptive logic, which we will call ALISE, is defined, the set of
conditions for I-S explanations can be easily defined in an analogue way
as for D-N explanations. All we have to do is replace CL by ALISE in the
conditions (iii) and (iv) in the characterization of D-N explanations given
in section 2 (for the moment disregarding problems that can arise with an
inconsistent knowledge system).

The LLL of the adaptive logic is classical predicate logic CL (with an ex-
tended language). The ULL is an inductive logic that allows you to conclude
‘Gb’ when you already have ‘Prob(G | F) = r’, ‘Fb’, and when r > t (t
being the chosen limit on the degree of inductive support).
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The adaptive logic works as follows: one is allowed to give the arguments
that make up I-S explanations unless one discovers that an inductive ambigu-
ity can arise. If this is the case, one can still give plain deductive arguments.
So, after one has analyzed all the information contained in a knowledge sys-
tem, all explanations that give rise to inductive ambiguities are excluded,
whereas all explanations using maximally specific reference classes (rela-
tive to the knowledge system) can be retained.

Let us make all this more precise.

THE LANGUAGE
The language consists of the language of CL, with the equality sign added,
together with a two-place probability function Prob(· | ·)5 , the arithmetic
function symbols +, ×, >, and the real numbers in the interval [0, 1]6 .

STRUCTURAL RULE
We introduce a premise rule that at once recalls the structural properties of
lines in a proof (as defined in section 3).

PREM At any stage of a proof one may add a line consisting of
(i) an appropriate line number, (ii) a premise, (iii) a dash,
(iv) ‘PREM’, (v) ‘φ’.

THE LOWER LIMIT LOGIC
The LLL, CL*, consists of CL, with equality, to which are added the standard
axioms of arithmetic and probability theory. This immediately gives us the
following unconditional rule.

RU If A1, . . ., An `CL* B, and A1, . . ., An occur in the proof, then
one may add B to the proof. The fifth element of the new line
is the conjunction of the fifth elements of the lines in its third
element.

THE UPPER LIMIT LOGIC
The ULL, as always, contains all the inference rules from the LLL plus some
extra rules. The ULL that will make possible the inductive arguments of sec-
tion 4 can take several forms, depending on the degree of inductive support
one demands for the arguments to go through. Here we opt for the simplest
form (albeit maybe not the most attractive one), with as extra rules (Γ stands

5 A one-place probability function can always be defined as: Prob(·) = Prob(· | λ),
with λ a tautology.

6 It is not desirable to name all these. We could restrict ourselves to rational numbers,
arguing that these are all that show up in real-life cases; or we could assume, as we implicitly
do, that the real numbers are defined by way of rational numbers using Dedekind cuts and
the like.
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for the conjunction of the statements making up K and the newly introduced
premises, as yet not included in K):

RF+ If Prob(ϕ | θ) = r and θb occur in the proof, and if `CL* r >
0.5, then one may add ϕb to the proof.

RF− If Prob(ϕ | θ) = r and θb occur in the proof, and if `CL* r <
0.5, then one may add ∼ϕb to the proof.

As was explained in section 3, these rules will appear as conditional rules in
our adaptive logic ALISE. The condition is the couple of the statistical law
being used in the inference, with the name of the object to which it is applied
(the reason for this will become clear when we discuss the marking rules).
As a result of this, the fifth element of the lines in an ALISE-proof where we
write down the conclusions of these inductive inferences, will look like this:
< Prob(ϕ | θ) = r, b >. Lines in a proof have to be retracted when these
conditions are troublesome, and since in ALISE trouble spells ambiguity, the
marking rules will have to reflect this.

MARKING RULE
A line in an ALISE-proof will be marked when a not maximally specific
statistical law was used to derive the sentence on this line (possibly in an
indirect way via earlier lines in the proof). This is the case when it is known
that (i) the object to which the law was applied is an element of a subset of
the reference class of that law, that (iia) there is no statistical law, with this
subset as reference class, giving a conditional probability for the property
mentioned in the conclusion, or that (iib) this subset is the reference class
of a statistical law (which is not a theorem of probability theory) that gives
another conditional probability for the property mentioned in the conclusion.
This gives us the following definition, and as a consequence the marking rule
MR:

A statistical law Prob(ϕ | θ) = r is not the maximally specific statistical
law for object b, iff there is a γ such that:

(i) γb and (∀x)(γx → θx) occur in the proof,
one of the following conditions is satisfied:
(iia) Prob(ϕ | γ) = r′ does not occur in the proof,
(iib) Prob(ϕ | γ) = r′ does occur in the proof, is not a theorem of

probability theory, and r′ 6= r,

MR If Prob(ϕ | θ) = r is not the maximally specific statistical
law for the object b, then mark all lines the fifth element of
which contains < Prob(ϕ | θ) = r, b >.

It is important to remark that the property of being a maximally specific
statistical law is a relational property holding between a law and an object.
So one law can at the same time be maximally specific with respect to one
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object, and not maximally specific with respect to another object. This is the
reason why we introduced couples in the conditions of the conditional rules.

This relativity is a result of the epistemic character of this property: RMS
is defined with respect to the knowledge system and not the world. Most
importantly, this cannot cause inductive ambiguities to arise, since ‘Fa’ and
‘∼Fb’ are not contradictory sentences. So the following would be a correct
ALISE-proof (r is supposed to be a number close to 1, and s a number close
to 0):

1. Prob(F | G) = r - PREM ϕ
2. Prob(F | H) = s - PREM ϕ
3. Ga - PREM ϕ
4. Gb - PREM ϕ
5. Fa 1,3 RF+ < Prob(F | G) = r, a >√
6. Fb 1,4 RF+ < Prob(F | G) = r, b >
7. Hb - PREM ϕ

8. (∀x)(Hx → Gx) - PREM ϕ
9. ∼Fb 2,7 RF− < Prob(F | H) = r, b >

Line 6 was marked when line 8 was written down. So before we had intro-
duced this information, ‘Fb’ was a justified conclusion, and at this stage of
the proof (or at this stage of our knowledge, if at the moment we cannot in-
troduce any further relevant premises) ‘Fa’ still is. This allows us to give two
IS-explanations, one for a having the property F, and one for b not having
this property.

The fact that in one explanation we use a statistical law that is considered
not maximally specific in the other explanation does not cause any trouble.
An example could be that you explain John Jones’s lasting sickness by citing
his having the properties S, P, and Z together with the relevant law, whereas
you explain the fact that his friend Mary did recover by citing her having
the properties S and P together with the relevant law. It may well be that
you find this an unsatisfactory situation, and that you wish to explain Mary’s
recovery by the properties S, P, and ∼Z and a statistical law. But to do this,
you have to introduce ‘∼Zm’ and the law in the proof, so first you will have
to ascertain that these facts hold in the world.7 The important thing is that
if you can ascertain this, you will mark the earlier conclusion and favor the
more specific derivation of the conclusion, but if you cannot ascertain this,
you can still explain her recovery (although you may find the explanation not
as good as it could be): after all, if you only know that Mary has properties S

7 Another option would be that you would introduce these as premises because you think
it would be a better explanation. Here we will not enter upon a discussion of inferences to
the best explanation.
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and P, it could have been expected that she recovered (and you have no more
specific information concerning this fact).

The foregoing remarks nicely illustrate the dynamic aspects of our adap-
tive logic, which it shares with all other adaptive logics. In view of newly
acquired information earlier conclusions sometimes have to be withdrawn.
This is the reason why adaptive logics are particularly well-suited to ana-
lyze I-S explanations. Indeed, classical logic has the property of monotonic-
ity, which means that adding premises cannot invalidate earlier conclusions.
The example of John Jones made clear that the logic behind I-S explana-
tions cannot be monotonic. Also in Mary’s case this shows up, although in
a slightly different way: the conclusion (‘Rm’) remains valid in the light of
new premises, but now we prefer another argument leading up to this con-
clusion. When the topic is explanation this can be highly relevant: we are
not just interested in the conclusion (remember that this is already known),
but in the arguments we can give for this conclusion.

5.2. Some alternatives

The logic we presented here naturally suggests some alternatives (whence
the indefinite pronoun in the title of our article).

As already mentioned, the rules RF+ and RF− could be modified to set
other restrictions on the degree of inductive support.

We could also change the RMS, so as to have an alternative definition in
which a line only gets marked when there is a more specific alternative to
the law used, giving a different conditional probability. The following is a
suggestion:

A statistical law Prob(ϕ | θ) = r is not the maximally specific statistical
law for object b, iff

(i′) γb and (∀x)(γx → θx) occur in the proof,
(ii′) Prob(ϕ | γ) = r′ does occur in the proof, and is no theorem

of probability theory, and r′ 6= r.

With this alternative definition, it could be the case that we know that an
object is a member of a subset of a reference class (condition (i′) holds), and
still use the statistical law with this broader reference class, because there
is no statistical information concerning this more specific set (there is no
condition (iia) as in the earlier definition, but only (iib) — now renamed (ii′)
— which doesn’t hold).

The most important modification, from a logical point of view, would be
the introduction of an inconsistency-adaptive logic as LLL. As our discus-
sion of D-N explanations made clear, this is by no means an unnecessary
modification. The only reason why we did not introduce this in ALISE was
that we did not want to make matters too complicated, and rather wanted
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to concentrate ourselves on the specific problems surrounding the inductive
ambiguity.

6. Conclusion

We do not want to claim that Hempel’s D-N and I-S explanations are the
final words on explanation; far from it. But we do claim that if you want
to get a better grip on the intuitions behind this proposals, adaptive logics
are a much more natural tool than classical logic is. Among the advantages
of adaptive logics over classical logic are the nice way in which inconsis-
tent knowledge systems can be handled, and the natural non-monotonicity
that arises. At the same time adaptive logics do have the advantages clas-
sical logic has; advantages that were well known by the logical positivists.
Most importantly, there is a clear and unambiguous proof-theory, as well as
a semantics (on which we were silent here, but see e.g. Batens 1995).
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