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PUSHING THE SEARCH PATHS IN THE PROOFS.
A STUDY IN PROOF HEURISTICS∗

DIDERIK BATENS AND DAGMAR PROVIJN

Abstract
Introducing techniques deriving from dynamic proofs in proofs for
propositional classical logic is shown to lead to a proof format that
enables one to push search paths into the proofs themselves. The
resulting goal directed proof format is shown to provide a decision
method for A1, . . . , An ` B and a positive test for Γ ` A.

1. Aim of this Paper

Proofs may serve several purposes. In this paper we shall restrict our at-
tention to one such purpose, viz. to show that a specific conclusion G is
derivable from a set of premises Γ — in other words, to construct a proof
for Γ ` G. We shall call G the main goal, whether G is derivable from the
premises or not.

To construct such a proof is a goal directed enterprise, which may be per-
formed in a more or less efficient way. The present paper is the result of
explicating the way in which some logicians search for proofs and teach stu-
dents to search for proofs — see [4].

Our main aim was to find a proof format that enables one to write down
within the proofs the reasoning steps that cannot be written within proofs
of the usual proof format because they may not be successful. Once we
found this proof format, it turned out to be interesting in its own. So, we
decided not to embed the aforementioned reasoning steps in, say, a Fitch-
style system, but rather to push the goal directed character of the format to
the extreme.

The proof format seems quite interesting. There is simple and perspicuous
proof heuristics that warrants that the proofs are goal directed and efficient,

∗Research for this paper was supported by subventions from Ghent University and from
the Fund for Scientific Research – Flanders, and indirectly by the Flemish Minister responsi-
ble for Science and Technology (contract BIL98/37). We are indebted to Liza Verhoeven for
locating several mistakes in previous drafts.
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114 DIDERIK BATENS AND DAGMAR PROVIJN

and moreover leads, for any G and Γ to a construction with the following
interesting properties: (i) it constitutes a positive test for derivability1 and
(ii) if it stops and the main goal is not derived, then the main goal is not
derivable from the premises. The proof format is also interesting in a very
different respect. By slightly modifying the format, it provides a way to
obtain natural and efficient Fitch-style proofs in a deterministic way — the
job may be left to a computer programme. We can only mention this result;
its discussion requires a different paper.

Our goal directed proofs obviously display certain similarities to other goal
directed proofs (see for example [10]). However, they are different from
anything we came across, apparently because our starting point was ‘natural’
reasoning. As a result, ‘shortcuts’ by conjunctive normal forms and similar
procedures were out of sight from the very beginning. Goal directed proofs
also bear certain similarities to tableau-methods. The format we shall present
below is certainly more efficient than such methods (at least if the premises
are consistent).

The proof format was influenced by the dynamic proofs of adaptive logics
— see for example [5] or [6].2 In those proofs a ‘condition’ (a set of formu-
las) is attached to some derived formulas, the interpretation being that the
formula is derived if and only if all members of the condition ‘behave nor-
mally on the premises’. As the proof proceeds, some lines may be marked,
indicating that the formula derived at that line is not a consequence of the
premises in view of the information provided by the proof — incidentally,
a line may be marked at some stage of a dynamic proof, and unmarked at
a later stage. The function of the conditions is a negative one: the formula
is derived provided certain formulas are not derivable from the premises. It
seems natural to look for positive conditions as a counterpart to this: the for-
mula is derivable if certain other formulas are derivable from the premises.

We shall only consider propositional classical logic — henceforth P. How-
ever, our approach may be applied to other logics as well.

1 That is: if the main goal G is derivable from the premises Γ, then the heuristics leads to
a finite proof of Γ ` G. See [9] on positive test, decidability, etc.

2 A regularly updated survey, including a bibliography as well as a bibfile, is avail-
able at http://logica.rug.ac.be/adlog/al.html. Most unpublished papers
mentioned there may be downloaded from http://logica.rug.ac.be/centrum
/writings/.
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2. Preliminaries

Let us first clarify the idea behind the proof format. Consider a P-proof that
contains the following lines:

...
...

5 s ∧ t
6 p ⊃ q
7 p ∨ r

Obtaining t from these is simple enough. One locates a formula from which
it may be derived and extends the proof:

8 t 5 ∧E

But suppose that the main goal is q. One shall first look for a formula from
which q may be derived. For all that is displayed of the proof, there is no such
formula. Next, one will remark that q is derivable from 6 if p is derivable
from the premises. Given this, one will check whether p is derivable. And
indeed, p is derivable from 7, provided ∼r is derivable from the premises.
Next, one will check whether ∼r is derivable.

Of course, q may be derivable from the premises even if p is not, and p
may be derivable even if ∼r is not. One has engaged in a search tree, which
may be more or less complex depending on the complexity of the premises,
and many paths of which may lead nowhere. A particular nuisance is that
this search tree is not part of the proof itself. If the tree is complex, one will
need to make notes, somewhere in the margin of the proof, in some or other
ad hoc way.

However, there is a way to write the search tree in the proof itself. We
illustrate this by an extension of the proof:

9 q 6 ⊃E {p}
10 p 7 ∨E {∼r}
11 q 9, 10 Trans {∼r}

On line 9, q is derived on the condition {p} — the condition is a set be-
cause, as we shall soon see, it may contain several formulas. The function of
the condition is double. First, it reminds one that q has not been derived from
the premises, but that it is derivable provided the members of the condition
are, in this case p. Second, the condition also has a heuristic function: it
reminds one that one should try to obtain p. Precisely this led to the addition
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116 DIDERIK BATENS AND DAGMAR PROVIJN

of line 10. From 9 and 10, it follows that the main goal q is derivable from
the premises if ∼r is derivable from them, which is expressed by line 11.3

When we claimed that there is a way to write the search tree in the proof,
we did not mean that one may interrupt the proof by some lines that relate to
the search tree. Quite to the contrary, each line in our proof format expresses
a statement about derivability from the premises. Let us write A∆ to indicate
that the formula A has been derived on the condition ∆, which always is a
finite set. The rules of the new proof format will be such that:

(†) A∆ is derivable from a set of premises Γ iff Γ ∪ ∆ ` A.

For P and other logics for which the Deduction Theorem holds, this may
be rephrased as Γ `

∧
(∆) ⊃ A. But even if the proof format is applied

to a logic for which the Deduction Theorem does not hold, Γ ∪ ∆ ` A is a
sensible step in the direction of Γ ` A in view of Cut.

Before we move on to the rules, some further points have to be settled.
Remember that we are concentrating on proofs that have a specific purpose:
to show that the formula G is derivable from the set Γ. So, let us concentrate
for a moment on the goal directed character of the proofs. At the start, the
only formula that we try to obtain is the main goal G. This too may be noted
in the proof, viz. as follows:

1 G Goal {G}

Remark, first of all that this move agrees with (†). Indeed, for any G and
Γ, it holds that Γ ∪ {G} ` G. Next, just as the {p} from line 9 above
reminded one that one should try to obtain p, the {G} reminds one that one
should try to obtain G. As may be expected of a goal directed proof format,
the application of the Goal rule will always be the first step in the proof.
As we shall see, this will enable one to introduce by the premise rule those
members of Γ that may be useful for deriving the main goal.

The above suggests that the goal directed character of the proofs may be
realized as follows: at any stage of the proof, one tries to derive the formulas
that occur in the condition of some line. Two problems arise in this connec-
tion. First, which moves does one take in view of the fact that one tries to
derive some formula? And next, should one really try to obtain all members
of some condition?

The last problem is most easily solved. Suppose that both A∆ and A∆∪∆′

have been derived, in which ∆ and ∆′ are disjoint. Clearly, it is then useless

3 It is clear at once that applications of the rule Trans may cause a somewhat uncontrolled
increase in the number of lines. We shall solve this problem later.
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to try to derive members of ∆′. To indicate this, lines the condition of which
contains superfluous elements will be marked — see Definition 1.4

One obviously will try to derive the members of the conditions of un-
marked lines. Once the main goal has been derived on the empty condition,
there obviously is no point in actually adding the marks to the proof.5

The first problem is slightly harder. Suppose that A is an element of the
condition of an unmarked line, and that A occurs in a premise or in a de-
rived formula. Is this a reason to act on that formula? Not necessarily. The
essential question is whether A can be obtained from that formula. Thus, if
one tries to obtain p and ∼p ∨ q occurs in the proof, there is no reason to
act upon ∼p ∨ q because there is no efficient way to obtain p from it.6 It is
easily seen that A may be obtained from some B if A is a positive part of B,
where “positive part” is defined as follows:7

(i) A is a positive part of each of the following: A, A∧B, B∧A, A∨B,
B ∨ A, B ⊃ A, A ≡ B, and B ≡ A;

(ii) A is a negative part of ∼A, A ⊃ B, A ≡ B, and B ≡ A;
(iii) if A is a negative part of B, then ∼A is a positive part of B;
(iv) if A is a positive part of B and B is a positive part of C, then A is a

positive part of C;
(v) if A is a positive part of B and B is a negative part of C, then A is a

negative part of C;
(vi) if A is a negative part of B and B is a positive part of C, then A is a

negative part of C;
(vii) if A is a negative part of B and B is a negative part of C, then A is a

positive part of C.

So, if one tries to obtain A and A is a positive part of some B, then one
eliminates the central connective of B (by the rules specified in the next
section) in order to derive from B a subformula that contains A as a positive

4 People familiar with the dynamic proofs of adaptive logics should be warned that mark-
ing there serves a different function than in the present proofs.

5 If G∅ occurs in the proof, all lines at which G∆ occurs for some ∆ 6= ∅ are marked
according to Definition 1, and this is important for the metatheory. So, we really mean that
there is no point in actually writing down the marks.

6 If A is derivable from the premises, there always is some clumsy way to use ∼p ∨ q in
the derivation of A from the premises. The way is inefficient and clumsy because it involves a
useless detour. There is one exception, related to Ex Falso Quodlibet, which we shall discuss
below.

7 We leave it to the reader to verify that “positive part” is well-defined.
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118 DIDERIK BATENS AND DAGMAR PROVIJN

part. This settles the case in which one tries to obtain A and A may be
obtained in one or more steps from a formula B that occurs in the proof.

Applying the premise rule may be restricted along the same lines: if one
tries to obtain A and A is a positive part of some premise B that does not yet
occur in the proof, then B is added to the proof. Next, unless A = B, the
central connective of B is eliminated as in the preceding paragraph.

What if one tries to obtain A, but A is not a positive part of any formula
in the proof or of any premise? This is the case, for example, if one tries to
obtain p ⊃ r from the premise set {p ⊃ q, q ⊃ r}:

1 p ⊃ r Goal {p ⊃ r}

As p ⊃ r is not a positive part of any premise, one has to act upon the formula
in the condition of 1. This is illustrated below, and the proof is continued in
view of the result:

2 p ⊃ r 1 C⊃E {∼p}
3 p ⊃ r 1 C⊃E {r}
4 p ⊃ q Prem ∅
5 ∼p 4 ⊃E {∼q}
6 q ⊃ r Prem ∅
7 r 6 ⊃E {q}
8 p ⊃ r 2, 5 Trans {∼q}
9 p ⊃ r 3, 7 Trans {q}

Remark that we explicitly mentioned the empty set as the condition of lines
4 and 6. A line has the empty set as its condition iff its second element (the
formula derived at the line) is a consequence of the premises — remember
(†).

The rule applied on lines 2 and 3 is called C⊃E because it eliminates an
implication in the condition of line 1. As a result of these applications, one
tries to obtain ∼p as well as r;8 these are readily found and the rule Trans
gives us lines 8 and 9.

This example illustrates a second type of goal directed proof. Neither ∼p
nor q is derivable from the premises, but the main goal can be reached by an
application of the Excluded Middle rule. Indeed, both q and ∼q are sufficient
to derive p ⊃ r from the premises, whence one obtains p ⊃ r on the empty
condition.9

8 Needless to say, it is sufficient that one of them is derived on the empty condition for
deriving the main goal. However, as the proof in the text illustrates, the main goal may be
derivable even if neither ∼p nor r is derivable on the empty condition.

9 There is a third type of goal-directed proofs, viz. those in which EFQ is applied.
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10 p ⊃ r 8, 9 EM ∅

Here is another example of a proof, viz. a proof for (p∧ q) ⊃ r, p∧ s, s ⊃
q ` r:

1 r Goal {r}
2 (p ∧ q) ⊃ r Prem ∅
3 r 2 ⊃E {p ∧ q}
4 r 3 C∧E {p, q} 7
5 p ∧ s Prem ∅
6 p 5 ∧E ∅
7 r 4, 6 Trans {q}
8 s ⊃ q Prem ∅
9 q 8 ⊃E {s} 11
10 s 5 ∧E ∅
11 q 9, 10 Trans ∅
12 r 7, 11 Trans ∅

That P validates Ex Falso Quodlibet causes a complication. Suppose that
one tries to find a proof for p, r ∧ ∼p ` q. If applications of the rule Prem
are restricted as explained above, no premise will be introduced in the proof.
Even if premises are introduced unrestrictedly, q is not a positive part of any
of them, whence no rule would ever be applied to the premises. Many au-
tomatic proof searchers solve this oddity by heading for unsatisfiability —
trying to derive a contradiction for the premises together with the negation
of the main goal. We diverge from that plot for two reasons. First, the plot
does not work for many logics, viz. relevant and other (strictly) paraconsis-
tent logics.10 Next, the unsatisfiability plot is generally recognized as rather
remote from ‘natural’ reasoning, as may be seen from the fact that nearly
any introductory logic textbook (explicitly or implicitly) propagates a goal
directed proof heuristics.

To keep the proofs goal directed, one searches for negations of premises.
In other words, if (in the case of finitely many premises) the main goal can-
not be derived in the normal way, one notes that it would be derived if the
negation of a premise is derived, and continues searching in function of this
new condition.

By now, the reader should have an idea of the plot of our enterprize. In the
next two sections, we shall spell things out in a precise way. We shall list
all the rules, and take away step by step the suspicions that the reader might
have at this moment.

10 A logic L is strictly paraconsistent iff CnL(Γ) is not trivial for any finite Γ — see [3]
for a more refined definition.
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3. The Rules

In the present section, we list a set of rules that leads to proofs as the ones
intended in the previous paragraph. The formal system defined by these rules
will be called Pc, in which the “c” refers to the conditions (fifth elements of
the lines) that occur in the proofs.

Anything related to the proof heuristics is postponed to the next section.
In other words, we restrict our attention to the question whether a Pc-proof
is correct in the sense of (†). Here are the rules to introduce the main goal
and the premises.11

Goal G may be introduced on the condition {G}.

Prem Any premise may be introduced in the proof on the condition ∅.

Next we need rules that analyse derived formulas (second elements of
lines). We shall call them formula analysing rules. Two formulas below the
horizontal line indicate variants of the rule. The rules ⊃E and ∨E introduce
new elements in the condition.

⊃E
(A ⊃ B)∆

B∆∪{A} ∼A∆∪{∼B}

∨E
(A ∨ B)∆

A∆∪{∼B} B∆∪{∼A}

∧E (A ∧ B)∆
A∆ B∆

≡E (A ≡ B)∆
(A ⊃ B)∆ (B ⊃ A)∆

∼∼E ∼∼A∆

A∆

∼⊃E ∼(A ⊃ B)∆
A∆ ∼B∆

∼∨E ∼(A ∨ B)∆
∼A∆ ∼B∆

∼∧E ∼(A ∧ B)∆
(∼A ∨ ∼B)∆

11 As we disregard the proof heuristics in the present section, the Goal rule may be applied
at any point and for any A.
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∼≡E ∼(A ≡ B)∆
(A ∨ B)∆ (∼A ∨ ∼B)∆

Similarly, we need rules to eliminate logical constants in the elements of
conditions. These will be called condition analysing rules.

C⊃E
A∆∪{B⊃C}

A∆∪{∼B} A∆∪{C}

C∨E
A∆∪{B∨C}

A∆∪{B} A∆∪{C}

C∧E
A∆∪{B∧C}

A∆∪{B,C}

C≡E
A∆∪{B≡C}

A∆∪{B,C} A∆∪{∼B,∼C}

C∼∼E
A∆∪{∼∼B}

A∆∪{B}

C∼⊃E
A∆∪{∼(B⊃C)}

A∆∪{B,∼C}

C∼∨E
A∆∪{∼(B∨C)}

A∆∪{∼B,∼C}

C∼∧E
A∆∪{∼(B∧C)}

A∆∪{∼B} A∆∪{∼C}

C∼≡E
A∆∪{∼(B≡C)}

A∆∪{∼B,C} A∆∪{B,∼C}

All elimination rules have one premise only. The following two rules take
two premises:

Trans
A∆∪{B}

B∆′

A∆∪∆′

EM
A∆∪{B}

A∆′∪{∼B}

A∆∪∆′

Finally, we introduce a somewhat unusual version of Ex Falso Quodlibet.
Remembering that the goal directed proof aims at deriving G from Γ:

EFQ Where A ∈ Γ, G may be introduced on the condition {∼A}.
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122 DIDERIK BATENS AND DAGMAR PROVIJN

This rule tells us that, if we are able to derive the negation of the premise A
from the premises, then the latter are inconsistent and hence G is P-derivable
from them. In this sense, the rule is a variant of Ex Falso Quodlibet.

We have given some examples of simple proofs from premises in Section
2. Proofs of theorems are always simple, as is illustrated by the following
two examples.

1 ∼(p ∧ ∼p) Goal {∼(p ∧ ∼p)}
2 ∼(p ∧ ∼p) 1 C∼∧E {∼p}
3 ∼(p ∧ ∼p) 1 C∼∧E {∼∼p}
4 ∼(p ∧ ∼p) 2, 3 EM ∅

1 p ⊃ (q ⊃ p) Goal {p ⊃ (q ⊃ p)}
2 p ⊃ (q ⊃ p) 1 C⊃E {∼p}
3 p ⊃ (q ⊃ p) 1 C⊃E {q ⊃ p}
4 p ⊃ (q ⊃ p) 3 C⊃E {∼q}
5 p ⊃ (q ⊃ p) 3 C⊃E {p}
6 p ⊃ (q ⊃ p) 2, 5 EM ∅

Remark that these P-theorems would not be provable if the Goal rule were
removed from Pc — similarly for p `Pc p ∨ q. The reason is obviously that
no rule enables one to derive a complex formula from one or more simpler
formulas, and that no rule enables one to obtain a complex formula in a con-
dition from simpler formulas in conditions. So, whenever the main goal G is
not itself a subformula of any premise, one needs the Goal rule to introduce
the condition {G}, which then may be analysed. So, although the Goal rule
was introduced as a means to push the proof heuristics into the proof, it is by
no means redundant within Pc.

4. The Proof Heuristics

A proof for Γ ` G (a proof of G from Γ) is started by introducing G{G} by
the Goal rule and is finished iff G∅ has been derived.12

The aim of the proof heuristics is to guide one in finding a proof of the
main goal from the premises, and more particularly to guide one in finding
an efficient such proof. By an efficient Pc-proof we mean one in which only
sensible search paths are tried out. A proof of q from the premises p ⊃ q,
r ⊃ q, and r ∧ (p ∧ s) is clearly inefficient if either s or r ∨ t is derived in it

12 There is no harm in introducing several applications of the Goal rule in the same proof
in order to derive several main goals within the same proof. However, we shall not discuss
this complication in this paper.
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— no efficient search path for that proof requires that one tries to obtain s or
r ∨ t.

The efficiency of proofs should not be confused with their elegance. Con-
sider the following proof for p ⊃ q, r ⊃ q, r ∧ (p ∧ s) ` q:

1 q Goal {q}
2 p ⊃ q Prem ∅
3 q 2 ⊃E {p}
4 r ⊃ q Prem ∅
5 q 4 ⊃E {r}
6 r ∧ (p ∧ s) Prem ∅
7 r 6 ∧E ∅
8 q 5, 7 Trans ∅

Lines 2 and 3 are obviously superfluous. This indicates that a search path
for the proof breaks off at line 3 because another search path is pursued first
and leads to success. The matter is hardly different if the third premise is
replaced by r ∧ s. In this case too a search path breaks off. However, the
reason is not only that q∅ is reached via another search path, but also that p is
not derivable from the (thus modified) premises. In both cases, the presence
of lines 2 and 3 does not make the proof inefficient — given 2, it is sensible
to try to obtain p in order to derive q. A very different matter is that, if one
is not interested in the proof heuristics, but merely in displaying the result
of one’s search, viz. that q is Pc-derivable from the premises p ⊃ q, r ⊃ q,
and r ∧ (p ∧ s), then one would present the more elegant proof obtained by
deleting lines 2 and 3.

We now turn to the proof heuristics properly. We first introduce the Mark-
ing Definition. A line is marked iff its condition points to a search path
that is unnecessarily complex in comparison to another search path. Inter-
estingly, this does not only comprise conditions (fifth elements of lines) that
are proper supersets of other conditions. Let a set of formulas ∆ be flatly in-
consistent iff A,∼A ∈ ∆ for some A. Lines that contain flatly inconsistent
conditions will be marked. Such lines are not only harmless in view of (†),
they are also useless because P validates Ex Falso Quodlibet — the matter
is wholly different for paraconsistent logics. A further kind of lines is also
useless, viz. those for which the derived formula (second element) occurs in
the condition (fifth element).

Definition 1 : Where A∆ is derived at line i, line i is marked (at a stage of
the proof) iff (i) (at that stage) A∆′ is derived at some line and ∆′ ⊂ ∆,
(ii) ∆ is flatly inconsistent or (iii) A ∈ ∆.13

13 Unlike what is the case for most dynamic proofs of adaptive logics, a line that is marked
at a stage of a proof remains marked at all subsequent stages.
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We shall say that a proof is at stage j iff j is the number of the last line
added to the proof. The heuristics is guided by the set Σj , where A ∈ Σj iff
A is a member of the condition of some non-marked line. We shall some-
times write Σ to refer to ‘the present stage’ of the proof.

We now list the instructions for writing a proof for Γ ` G. We start with
two restrictions on the instructions — omitting R1 and R2 would make the
formulation of the instructions more complex.

R1 No formula analysing rule is applied to the formula introduced by the
Goal rule.

R2 No rule is applied to repeat a (marked or unmarked) line.

Here are the instructions in the order in which they should be carried out.
An instruction should be carried out whenever possible. If it can be carried
out, a line is added to the proof and one returns to instruction I1; if it cannot
be carried out, one moves on to the next instruction.

I0 Introduce G{G} by the Goal rule.
I1 Derive G∅ by any rule.14

I2 Apply EM if this results in a line being marked.
I3 Apply Trans if this results in a line being marked.
I4 Apply a formula analysing rule to obtain A∆, say as line i, provided

some B ∈ Σi−1 is a positive part of A.
I5 Apply Prem to obtain A∅, say as line i, provided some B ∈ Σi−1 is a

positive part of A.
I6 Apply a condition analysing rule.
I7 Apply Trans to obtain G∆ (for some ∆), provided ∆ is not flatly incon-

sistent.
I8 Apply EM to obtain G∆, provided ∆ is not flatly inconsistent.
I9 Apply EFQ.

Trans is applied in two cases only: (i) to eliminate a formula A from Σ and
(ii) to derive the main goal with a new condition. I2 restricts applications of
EM to cases where ∆′ ⊆ ∆ or ∆ ⊆ ∆′. Remark that this includes the
case where ∆ = ∆′ and the case where ∆ or ∆′ or both are empty. Given
that a proof is started by the Goal rule, I4 warrants that each subsequent
step in the proof will be a sensible step on a path of the search tree for the
main goal. In view of I5, a premise is only introduced if one of its positive
parts is a member of Σ. The place of instruction I6 in the list warrants that

14 In other words, go through possible applications of all rules and check whether one of
them results in G∅.
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no condition analysing rule is applied if Σi (for that stage i) enables one to
introduce premises and apply formula analysing rules.15

If Γ ` G and Γ is consistent and finite, then one will never apply in-
struction I9 — infinite Γ are discussed later. Once I9, one searches for an
inconsistency. Instruction I9 makes sure that this search is still goal directed
in that specific inconsistencies are searched for.

Here is a simple illustration of the heuristics: a proof for p ⊃ q, r ∨
s,∼q, p ` r.

1 r Goal {r}
2 r ∨ s Prem ∅
3 r 2 ∨E {∼s}
4 r EFQ {∼(p ⊃ q)}
5 r 4 C⊃E {p,∼q} 7
6 p Prem ∅
7 r 5, 6 Trans {∼q}
8 ∼q Prem ∅
9 r 7, 8 Trans ∅

Remark that the proof format remains goal directed even after EFQ has
been applied. If EFQ, possibly combined with a condition analysing rule,
causes new formulas to occur in some condition, the proof proceeds in func-
tion of these.

By a Pc-proof for Γ ` G we shall from now on mean a proof obtained
by applying the heuristics.16 We shall say that a proof is stopped iff it is
finished (the main goal has been derived on the empty condition) or no line
can be added to the proof in view of the heuristics. A third restriction needs
to be imposed for infinite Γ. Let Γ1, Γ2, . . . be a limiting sequence of Γ iff
Γ1 ⊂ Γ2 ⊂ . . . and Γ = Γ1 ∪ Γ2 ∪ . . ..

R3 If Γ is infinite, a proof for Γ ` G is defined in terms of a limiting
sequence Γ1, Γ2, . . . of Γ as follows: first the instructions are applied
to Γ1; if the procedure stops, the proof is continued by applying the
instructions to Γ2; etc.

15 As a result, a condition analysing rule will only be applied to some A ∈ Σi if A∅ cannot
be obtained from the premises by formula analysing rules only — we shall handle infinite
premise sets in a special way below.

16 The heuristics is not completely deterministic. There are several ways to make it fully
deterministic, but in our view the choice between them should depend on the outcome of a
study of their computational efficiency.
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To see the need for R3, let Γ = {p ∧ ∼p} ∪ {qi ⊃ qi+1 | i ∈ {0, 1, . . .}}
and consider a Pc-proof for Γ ` ∼q0. Without R3, the proof would never
stop — EFQ would never be applied and ∼q0 would never be derived.

5. Metatheoretical Matters

In the lemmas and theorems of this section, “proof for Γ ` G” may refer to
two different kinds of constructions in that Γ may either be the full (finite
or infinite) set of premises or a member of a limiting sequence of the set
of premises. In both cases, all formulas that are introduced in the proof
by application of the premise rule belong to Γ. However, both kinds of
constructions are in general different in that the rules may be applied in a
different order.

Remember that, at any stage of a Pc-proof, the proof is either finished, or
stopped without the main goal being derived, or may be continued. If Γ is an
infinite set and Γi a member of a limiting sequence of Γ, then the proof for
Γi ` G may be stopped (but not finished) even if the proof for Γ ` G may
be continued.

Definition 2 : Γ `Pc A∆ (A∆ is derivable from Γ) iff there is a Pc-proof from
Γ in which occurs a line that has A as its second and ∆ as its fifth element.
Γ `Pc G iff Γ `Pc G∅

Theorem 1 : If Γ `Pc A∆, then Γ ∪ ∆ `P A.

Proof. This is easily seen by an induction on the length of the proof. The base
case is stage 1, where only G{G} occurs in the proof. Obviously Γ∪{G} `P
G. For the inductive step, we have to consider 23 cases, all of which are
obvious. Thus applications of the left variant of ⊃E are justified because
Γ ∪ ∆ ∪ {B} `P C follows from Γ ∪ ∆ `P B ⊃ C. Similarly, applications
of the right variant of C⊃E are justified because Γ∪∆∪ {C} `P B follows
from Γ ∪ ∆ ∪ {D ⊃ C} `P B. “

Corollary 1 : If Γ `Pc G, then Γ `P G. (Soundness.)

Our goal directed proofs were guided by the marking definition. In Section
2, we said that, once the main goal has been derived on the empty condition,
there is no point in actually adding further marks to the proof. Nevertheless,
if G∅ occurs in the proof, all lines at which G∆ occurs for some ∆ 6= ∅
are marked according to Definition 1. This is important for the following
paragraph.
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We now introduce a ticking off definition. This is not part of the proof
procedure, but is only introduced in view of the metatheory.

Definition 3 : A line at which some formula has been derived on a condition
listed in the left column of Table 1 is ticked off iff the same formula has
been derived on the conditions listed in the right column of the same row in
Table 1.

∆ ∪ {A ⊃ B} ∆ ∪ {∼A} and ∆ ∪ {B}

∆ ∪ {A ∨ B} ∆ ∪ {A} and ∆ ∪ {B}

∆ ∪ {A ∧ B} ∆ ∪ {A, B}

∆ ∪ {A ≡ B} ∆ ∪ {A, B} and ∆ ∪ {∼A,∼B}

∆ ∪ {∼∼A} ∆ ∪ {A}

∆ ∪ {∼(A ⊃ B)} ∆ ∪ {A,∼B}

∆ ∪ {∼(A ∨ B)} ∆ ∪ {∼A,∼B}

∆ ∪ {∼(A ∧ B)} ∆ ∪ {∼A} and ∆ ∪ {∼B}

∆ ∪ {∼(A ≡ B)} ∆ ∪ {∼A, B} and ∆ ∪ {A,∼B}

Table 1. Ticking Off Table

Let CA,s denote the set of all ∆ such that A∆ occurs on an unmarked line
of the proof at stage s. Let C◦

A,s be defined exactly like CA,s except in that it
refers only to lines that are both unmarked and not ticked off.

A P-model will be said to falsify a set of formulas ∆ iff it does not verify
all members of ∆. Obviously, no P-model falsifies ∅. The proof of Lemma
1 is immediate in view of the P-semantics and Definitions 1 and 3.

Lemma 1 : For any Pc-proof for Γ ` G at stage s, a P-model M falsifies all
∆ ∈ C◦

A,s iff M falsifies all ∆ ∈ CA,s.

By an atom we shall mean a sentential letter or its negation. The proof
of Lemmas 2 and 3 are obvious in view of the proof heuristics; the proof of
Lemma 4 is given in Section 5.1.

Lemma 2 : If a Pc-proof for Γ ` G is stopped but not finished at stage s,
then C◦

G,s contains finitely many finite sets of atoms.17

17 Actually, if the condition is fulfilled, then, for any A, C
◦
A,s contains finitely many finite

sets of atoms.
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Lemma 3 : If Γ is finite, then any Pc-proof for Γ ` G stops at a finite stage
(whether G∅ has been derived in it or not).18

Lemma 4 : If a Pc-proof for Γ ` G is stopped but not finished at stage s,
then some P-model falsifies all ∆ ∈ C◦

G,s.

Lemma 5 : If Γ is finite and a Pc-proof for Γ ` G has stopped at stage s,
then every P-model that falsifies all ∆ ∈ C◦

G,s is a model of Γ.

Proof. Suppose that the antecedent is true and that M falsifies all ∆ ∈ C◦
G,s

(and hence that ∅ /∈ C◦
G,s). It follows that the proof is not finished. As the

proof is stopped but not finished, G{∼A} has been introduced by EFQ for all
A ∈ Γ. By Lemma 1, M falsifies ∼A for all A ∈ Γ. It follows that M is a
model of Γ. “

Theorem 2 : If Γ `P G then Γ `Pc G. (Completeness.)

Proof. Suppose that Γ 0Pc G and consider an arbitrary Pc-proof for Γ ` G.
Case 1: Γ is infinite. In view of Lemma 3, the proof for Γi ` G stops

without being finished for any Γi of the limiting sequence Γ1, Γ2, . . . of Γ.
Let s be the stage at which the proof stops.

In view of Lemma 4, some P-model M falsifies all ∆ ∈ C◦
G,s. But then,

by Lemma 5, M is a model of Γi and, by Lemma 1, falsifies all ∆ ∈ CG,s.
As {G} ∈ CG,s, M falsifies G. Hence, for any Γi, some model of Γi falsifies
G. By the compactness and completeness of P, Γ 0P G.

Case 2: Γ is finite. The reasoning is easily adapted from case 1. “

The proof of the preceding Theorem is readily transformed to a proof of:

Theorem 3 : If Γ `P G then any Pc-proof for Γ ` G is finished at a finite
stage. (Positive Test.)

Theorem 4 : If Γ is finite, then any Pc-proof for Γ ` G stops and Γ `P G or
Γ 0P G according as the proof is or is not finished.

Proof. Suppose that Γ is finite and consider a Pc-proof for Γ ` G. By
Lemma 3, the proof stops at a finite stage. If G∅ has been derived in the
proof, Γ `P G in view of Corollary 1. If G∅ has not been derived in the
proof, Γ 0P G in view of Theorem 2. “

18 One relies on König’s Lemma that a tree is finite if it has the finite path and the finite
fork property.
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Corollary 2 : Pc-proofs are a decision method for A1, . . . , An ` B.

5.1. Proof of Lemma 4

The proof of Lemma 4 is moved here because it is long, because this gives
us the opportunity to spell out the proof in a way that clarifies the Pc-proof
format, and because there might be a more elegant proof.

It needs to be shown that, if a Pc-proof for Γ ` G is stopped but not
finished at stage s, then some P-model falsifies all ∆ ∈ C◦

G,s.
Suppose that a Pc-proof for Γ ` G is stopped but not finished at stage s,

and that each P-model verifies some ∆ ∈ C◦
G,s. We shall derive an inconsis-

tency from this supposition.
Remember that a P-model is said to falsify a set of formulas iff it does

not verify all its members. A set S of sets of atoms will be called falsifiable
iff some P-model falsifies all ∆ ∈ S; it will be said to be minimally non-
falsifiable iff it is non-falsifiable and all its proper subsets are falsifiable. By
the letter-cardinality of a set S of sets of atoms we shall mean the number of
letters that occur (negated or unnegated) in members of S.

In view of Lemma 2, C◦
G,s contains finitely many finite sets of atoms. It

follows that there is a M ⊆ C◦
G,s that is minimally non-falsifiable and the

letter-cardinality of which is not larger than that of any other subset of C◦
G,s.

Let Λ be the set of letters that occur (negated or unnegated) in members of
M. In view of the supposition, M 6= {∅} and Λ 6= ∅.

By a selection from S = {∆1, . . . , ∆n} we shall mean a set obtained
by selecting one member from each ∆i. A simple but useful fact is the
following:19

Fact 1: Where S is a set of sets of atoms, S is falsifiable iff some selection
from S is consistent.

Consider an arbitrary letter A ∈ Λ. M may contain three kinds of mem-
bers. Let

∆1, . . . , ∆n

be the members of M that contain neither A nor ∼A. Let the members of M

that contain A be
∆′

1 ∪ {A}, . . . , ∆′
m ∪ {A}

where A is not a member of any ∆′
i. Finally, let the members of M that

contain ∼A be
∆′′

1 ∪ {∼A}, . . . , ∆′′
k ∪ {∼A}

where ∼A is not a member of any ∆′′
i .

19 Some model falsifies each atom in the selection, and hence falsifies all ∆i, iff the selec-
tion is consistent.
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Fact 2: m > 0 and k > 0.
As A ∈ Λ, m + k > 0. Suppose that m = 0, in other words, that A is not

an element of any member of M. As M is a minimally non-falsifiable set,
{∆1, . . . , ∆n} is a falsifiable set. By Fact 1, there is a consistent selection
Θ from {∆1, . . . , ∆n}. As A is not a member of the selection, Θ ∪ {∼A}
is a consistent selection from {∆1, . . . , ∆n, ∆′′

1 ∪ {∼A}, . . . , ∆′′
k ∪ {∼A}}.

So, if m = 0, M is falsifiable in view of Fact 1. But this is impossible.20

Similarly for k > 0.
Fact 3: {∆1, . . . , ∆n, ∆′

1, . . . , ∆
′
m} is a non-falsifiable set.

If the set were falsifiable, there would be a consistent selection Θ from it
and, as A does not occur in any ∆i or ∆′

i, Θ ∪ {∼A} would be a consistent
selection from M. This is impossible in view of Fact 1, because M is non-
falsifiable. By a similar reasoning:
Fact 4: {∆1, . . . , ∆n, ∆′′

1, . . . , ∆
′′
k} is a non-falsifiable set.

Consider the following set of sets of atoms:

X = {∆1, . . . , ∆n, ∆′
1 ∪ ∆′′

1, . . . , ∆
′
1 ∪ ∆′′

k, ∆
′
2 ∪ ∆′′

1, . . . , ∆
′
m ∪ ∆′′

k}

Fact 5: X is a non-falsifiable set.
To see why this is the case, suppose that a selection Θ from X were con-

sistent. Θ contains a member of each ∆i. Moreover it is easily seen that Θ
either contains a member of each ∆′

i (1 ≤ i ≤ m) or contains a member of
each ∆′′

i (1 ≤ i ≤ k).21 By Facts 1, 3 and 4, Θ is inconsistent and hence X

is a non-falsifiable set.
Let X′ be the set of consistent members of X. As every member of X − X′

is falsified by all models, it follows that:
Fact 6: X′ is a non-falsifiable set.

It is instructive to phrase this in terms of selections. Suppose that ∆ ∈
X − X′ and that there is a consistent selection Θ from X − {∆}. As ∆ is
inconsistent, there is a sentential letter B such that B,∼B ∈ ∆. As Θ is
consistent, either B or ∼B is not a member of Θ. If B /∈ Θ, then Θ∪{∼B}
is a consistent selection from X. If ∼B /∈ Θ, then Θ ∪ {B} is a consistent
selection from X. Both are impossible in view of Facts 1 and 5.

20 It is not excluded, however, that m = 1 and that ∆′
1 = ∅; nor is it excluded that n = 0.

21 If Θ does not contain a member of some ∆′
i, then, as it is bound to contain a member

of each of ∆′
i ∪ ∆′′

1 , . . . , ∆′
i ∪ ∆′′

k , it contains a member of each ∆′′
j .
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As X′ is a non-falsifiable set, some X′′ ⊆ X′ is minimally non-falsifiable.
Moreover, the letter cardinality of X′′ is smaller than the letter cardinality of
M — the set of letters that occur (negated or unnegated) in members of X′′ is
a proper or improper subset of Λ − {A}. Finally, as M ⊆ C◦

G,s, X′′ ⊂ C◦
G,s

in view of instruction I8 and Fact 2. This contradicts the fact that M is
minimally non-falsifiable and that its letter-cardinality is not larger than that
of any other subset of C◦

G,s.
Having derived an inconsistency from the main supposition, we have proved

Lemma 4. What this comes to with respect to proofs is that, if a proof for
Γ ` G is stopped and the set of conditions on which G occurs in the proof is
non-falsifiable, then instruction I8 warrants that G∅ occurs in the proof.

6. Some Further Comments

Proofs of the usual type are composed of analysing steps (or elimination
steps) and constructive steps (or introduction steps), and possibly of some
mixed ones. It is well known that the constructive and mixed steps easily
cause a proof not to be goal directed (even in the loose sense of the term).
One of the central features of our proof format is that the constructive rules
are replaced by condition analysing rules. In this way, it is assured that these
rules are only applied where they are useful for reaching the main goal. Our
rules Trans and EM, which we think of as mixed,22 are strictly controlled
by the heuristics. They are only applied in order to eliminate members of
Σ, except when the main goal is not derivable in the ‘normal way’. In this
case one arrives at instructions I7 and I8, which are meant to ‘round up’ the
obtained results before moving on to EFQ.

A very different comment concerns EFQ. Suppose that one drops EFQ
from the rules, and calls the resulting logic Pc−. What is this logic?

Anyone familiar with the relevant logic enterprise (see especially [1], [2]
and [13]) will see that we move a step in the direction of relevant logics.
Of course, relevant logicians would reject ∨E as well as ⊃E. Or they may
decide to retain those rules, reading ⊃ as a relevant implication and ∨ as an
intensional disjunction, but then they would reject both C∨E and C⊃E.

Dropping EFQ is clearly also a step in the direction of paraconsistent log-
ics, and as not all paraconsistent logics are relevant one may hope to obtain
one of them. But again, trouble arises. Most paraconsistent logics reject
∨E. The few that accept it — logics such as AN from [12] and consequence
relations defined by filters as in [14] — reject C∨E.

22 The Goal rule and the EFQ rule are somewhat similar to ‘structural’ rules.
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Pc− is not likely to become a popular logic. The obvious reason is that
Pc−-derivability is not transitive. Indeed, p `Pc− p∨q and ∼p, p∨q `Pc− q,
but p,∼p 0Pc− q. This nicely illustrates the extent to which the necessity
to introduce EFQ depends on the proof heuristics from Section 4. If it were
allowed to introduce arbitrary formulas A{A} by the Goal rule, then EFQ
would be redundant. Indeed, if the set of premises Γ is inconsistent, then
there is an A such that both A and ∼A are Pc−-derivable from Γ. So, for
any B, if both B{B} and A ∨ B{A∨B} are introduced by the Goal rule, both
A ∨ B∅ and B∅ would be obtained in the Pc−-proof.

7. Further Research

First of all, the proof format needs to be extended to full Classical Logic and
not only to its propositional part. Moreover, it certainly seems interesting to
apply the proof format to other logics.23 Other open problems are slightly
more remote from present results.

It turns out that Pc-proofs may be turned into very natural Fitch-style
proofs by algorithmic means. The idea is that, when certain situations occur
in the Pc-proof, then applications of the rules from Section 3 are systemat-
ically removed and replaced by applications of Fitch-style rules. After this
replacement, one applies again Pc-rules until one reaches another point at
which the applications are replaced by applications of Fitch-style rules, etc.
The aim of this research is not only to arrive, in an automatic way, at nice and
natural Fitch-style proofs, but also to better understand the search process by
which humans may reach such proofs.

A further application is related to Hintikka’s distinction between rules of
inference (“definitory rules”) and heuristic rules (“the strategy”) — see for
example [11]. We certainly agree that heuristic rules have been for a long
time neglected by logicians, and that this led to (pedagogical failure and)
mistaken insights about the nature and applicability of logic. We do not
agree, however, that the distinction is a very deep one. Moreover, we in-
tend to show that the heuristic rules may be ‘pushed down’ into the rules of
inference without loss of any metatheoretical results.

A very important application concerns adaptive logics. Typically, there is
no positive test for the consequence relations of these logics. For this reason,
it is important to delineate criteria for deciding whether some formula A
has been finally derived from a premise set at some stage of a proof. Our

23 Even intuitionistic logic seems to cause a puzzle here, as the EM rule is definitely not
acceptable in it. However, the present paper does not reveal the full force of our proof format,
but presents the simplest version that may be obtained for propositional classical logic.
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goal directed proof method is able to produce such a criterion. Clearly, the
fact that those dynamic proofs themselves proceed in terms of conditions
introduces a complication: there are two kinds of conditions, the ‘positive’
ones that relate to the goal directed proof, and the ‘negative’ ones that relate
to the dynamic character of adaptive logic proof. The underlying idea of the
approach is that one first tries to obtain the main goal on the empty positive
condition and on an arbitrary negative condition. Suppose that this succeeds
at line i. From there on the proof continues, this time with the goal to settle
whether some formulas are derivable that cause line i to be marked in view
of the negative condition.

A rather technical matter concerns the computational efficiency of the
proofs. The heuristics from Section 4 requires, for example, that formula
analysing rules are applied in order to derive all formulas that occur in the
condition of an unmarked line. While this leads to sensible proofs, a more
efficient method is obtained by first applying I0–I3, whenever this is possi-
ble, and next applying I1–I6 in view of the first formula that occurs in the
last (unmarked) condition — if none of these instructions may be applied
in view of that formula, one moves on to the first formula in the previous
(unmarked) condition, etc. Further study on such matters is in progress.

The goal directed character of the procedure makes it suitable for applica-
tions, for example to the philosophy of science. Two examples of this may
be found in [7]. The first concerns the search for explanatory conditions
(antecedent conditions) in view of an explanandum and a theory. The sec-
ond concerns the derivation, from a yes–no question and a theory, of a set
of yes–no questions that may be settled (answered) by empirical means and
that provide an answer to the original question.24
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