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LOGIC AND COHERENCE IN THE LIGHT OF COMPETITIVE
GAMES

AHTI PIETARINEN∗

Abstract
The class of non-strictly competitive games is commonplace in game
theory, but it has not been applied to logic before. In this paper, it
is argued that one way of motivating non-coherence in logic is by
means of the class of non-strictly competitive games, applied to the
framework of semantic games. It is shown that just as partial log-
ics are generated by games of imperfect information, formulas with
over-defined truth-values arise either by having non-strictly compet-
itive semantic games or by adding a weak negation to partial logic.
Finally, a couple of implications to games and logic are discussed.

1. Introduction

How does the notion of non-coherence arise in logic? The received sug-
gestions often fail to provide proper motivations, because either the unary
connective of the system does not really function as a genuine negation, or
else the semantics of the system as such is not foundationally motivated.
This problem is reminiscent of the similar one in partial logics, for they have
also lacked sufficient theoretical backing and an underlying mechanism that
would explain reasons for having it in the first place.

However, comparable motivations can be seen to work for non-coherent
formulas as for partial ones. Just as the phenomenon of partiality can be
viewed as a game-theoretic reality arising in situations where there is imper-
fect information flow between players playing a semantic game on formulas,
it will be shown that non-coherence arises in situations where the assumption
that semantic games be strictly competitive is relaxed. Alternatively, even

∗The work on this paper has been partially supported by the Osk. Huttunen Foundation
and the Jenny and Antti Wihuri Foundation. I would like to thank Gabriel Sandu for a close
collaboration on especially the material on partiality and games, and the participants of Logic
Colloquium 2000 in Paris for comments and discussion on one of the early versions of this
paper.
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without this change in the defining characteristics of the semantic games,
one can keep the strictness and affix, in addition to a strong game negation, a
weak contradictory negation to the formulas of underlying logic of imperfect
information. In both cases, the motivational foundation nonetheless lies in
the theory of semantic games.

This paper proceeds by illustrating first the way in which the phenomenon
of partiality is related to the failure of perfect information in game-theoretic
semantics. Non-coherence is then derived by dropping the property of strict
competition from the corresponding games. Finally, some implications to
the questions of coherence and rationality in logic are discussed, as well as
some aspects of negation in natural language. Further investigation into as-
pects of partiality and games in various propositional, first-order, and modal
logics is reported in Pietarinen & Sandu 1999, Pietarinen 2002, Sandu &
Pietarinen 2001.

2. Aspects of partiality in logic

2.1. Motivation

One way of generating partiality in logic is at the level of atomic sentences,
that is, at the level of the signature σ. In this case sentences S ∈ σ may
be neither true nor false, which would be equivalent to the case where the
models M of a language L are partial. A partial model M is a pair M =
〈M+,M−〉, where M+ and M− are disjoint subsets of σ, such that there
might be sentences in σ /∈ M , that is, M+ ∪M− 6= σ. The meaning of
the superscripts is that M+ denotes the set of true atomic sentences of L(σ)
and M− denotes the set of false atomic sentences of L(σ). If M− is the
complement of M+, that is, M+ ∪M− = σ and M+ ∩M− = ∅, the model
M is a complete partial model. Consequently, a complete partial model is a
classical one.

An alternative way of introducing partiality into propositional logic is by
having a lack of truth-values at the level of complex sentences. In this case,
the models can be complete but the standard language L is enriched with
some new propositional connectives. This can be implemented by augment-
ing the set of classical connectives with a zero place connective ◦, and defin-
ing that for anyM , ◦ is neither true nor false. Likewise, a zero-place connec-
tive ♦ could be introduced, defining that it is both true and false in any M .
The resulting logic L(◦,♦)(σ) can be shown to be functionally complete for
all partial functions, a property that does not generally hold in partial models
without these new connectives. The alternative is to introduce connectives
that are more complex. The resulting logic turns out to have the properties of
persistence and coherence, but it does not have the property of determinacy.
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The third option is to have partiality as a result of combining the first and
the second strategies. As expected, the logic will be persistent and coherent,
but not determined.

Falsity of a sentence and it being not true are two different things, as are
the truth of a sentence and its non-falsity. However, false sentences are also
not true and true sentences are also not false, but non-true sentences do not
imply that they are false and non-false sentences do not imply that they are
true.

However, games make available an alternative semantics for a variety of
logics. In games, the phenomenon of partiality is related to regulations on
information flow within formulas, arising from an imperfect transmission
of information between players. By introducing a non-determined proposi-
tional logic where in the associated semantic game the information can be
lost with respect to connective choices, one can generate complex sentences
corresponding to those lacking a definite truth-value in partial semantics.
This is how the game-theoretic semantics accounts for the phenomenon of
partiality: it is a consequence of certain natural informational constraints
between players in a game.

Not only can partiality be endorsed from this game-theoretic viewpoint,
but also the close relative of partiality, the property of non-coherence re-
ceives a game-theoretic motivation in terms of the class of non-strictly com-
petitive games. This class is liable for the conception of non-coherent sen-
tences having over-defined truth-values.

2.2. Extensions of propositional logic

Let the usual propositional language L(σ) extended with a four-place con-
nective W (ϕ,ψ, θ, χ) be L(W )(σ), the smallest set closed with respect to
the sentences in σ, the familiar rules for the connectives in {¬,∨,>}, and
the following rule for W :

• If ϕ,ψ, θ, and χ are L(W )(σ)-sentences, then so is W (ϕ,ψ, θ, χ).
Alternatively, the connective W (ϕ,ψ, θ, χ) may be written as

W (ϕij)i,j∈{1,2}, with ϕ11 = ϕ,ϕ12 = ψ,ϕ21 = θ, and ϕ22 = χ. The
sentences ϕ11, ϕ12, ϕ21, and ϕ22 are expressions of the metalanguage.

Models for L(W ) are pairs M = 〈M+,M−〉 with M+,M− ⊆ σ, M+ ∩
M− = ∅ (disjointedness), and M+ ∪ M− = σ (completeness). The se-
mantics involves the notions M |=+ ϕ (the sentence ϕ is true in M ) and
M |=− ϕ (the sentence ϕ is false in M ), and is defined by a double induc-
tion on the length of ϕ.
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374 AHTI PIETARINEN

Definition 2.1 : Let S be an atomic L(W )(σ)-sentence.

M |=+ S iff S ∈M+

M |=− S iff S ∈M−

M |=+ >; not M |=− >

M |=+ ¬ϕ iff M |=− ϕ

M |=− ¬ϕ iff M |=+ ϕ

M |=+ ϕ ∨ ψ iff M |=+ ϕ or M |=+ ψ

M |=− ϕ ∨ ψ iff M |=− ϕ and M |=− ψ

M |=+ W (ϕ,ψ, θ, χ) iff (M |=+ ϕ and M |=+ θ)
or (M |=+ ψ and M |=+ χ)

M |=− W (ϕ,ψ, θ, χ) iff (M |=− ϕ and M |=− ψ)
or (M |=− θ and M |=− χ).

The definition of truth and falsity forW (ϕ,ψ, θ, χ) can equivalently be writ-
ten as:

M |=+ W (ϕ,ψ, θ, χ) iff ∃j ∈ {1, 2}∀i ∈ {1, 2}M |=+ ϕij

M |=− W (ϕ,ψ, θ, χ) iff ∃i ∈ {1, 2}∀j ∈ {1, 2}M |=− ϕij ,

where ϕ11 = ϕ,ϕ12 = ψ,ϕ21 = θ, and ϕ22 = χ.
Let us fix a propositional logic L and an arbitrary signature σ. Let ϕ be an

L(σ)-sentence and let the models be partial (not necessarily complete ones).
By M ⊆ N we mean that M+ ⊆ N+ and M− ⊆ N−. The sentence ϕ is
truth-persistent, if for all models M,N in σ such that M ⊆ N , M |=+

L ϕ

implies N |=+
L ϕ, and falsity-persistent, if M |=−

L ϕ implies N |=−
L ϕ. If ϕ

is truth-persistent and falsity-persistent then ϕ is persistent. The logic L is
persistent, if for any σ, ϕ is persistent in σ.

The sentence ϕ is coherent, if for all M not both M |=+
L ϕ and M |=−

L
ϕ. L is coherent, if all L(σ)-sentences ϕ are coherent. The sentence is
determined, if for all M either M |=+

L ϕ or M |=−
L ϕ. If, for any σ, all the

L(σ)-sentences are determined then L is determined.
The proofs of the following results can be found in Sandu & Pietarinen

2001.
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Proposition 2.1 : The logic L(W ) is coherent and persistent, but not deter-
mined. �

The truth-value of the L(W )(σ)-sentence ϕ in the model M is denoted as
‖ϕ‖M . This function can have the following values.

‖ϕ‖M = 1, if M |=+ ϕ (hence, by the previous proposition, not
M |=− ϕ)

‖ϕ‖M = 0, if M |=− ϕ (hence, not M |=+ ϕ)

‖ϕ‖M = ?, if not M |=+ ϕ and not M |=− ϕ.

Let ϕ ∧ ψ be defined as a shorthand for ¬(¬ϕ ∨ ¬ψ), ϕ → ψ for ¬ϕ ∨ ψ
and ϕ ↔ ψ for (ϕ → ψ) ∧ (ψ → ϕ). In classical L, every truth-function
f : {0, 1}n → {0, 1} from a class of models K into {0, 1} is definable by a
sentence in L such that for all M ∈ K, ‖ϕ‖M = f(M). This result extends
to L(W ).

Theorem 2.1 : Let K be a class of classical models in σ. For any function f
from K into {0, 1, ?}, there is an L(W )(σ)-sentence ϕ such that ‖ϕ‖M =
f(M) for all M ∈ K. �

2.3. Weak negation

The interpretation of ‘¬’ makes it strong (positive) negation, transforming
truths to falsehoods and falsehoods to truths, but not meddling with non-
determined values. There is a version of weak (contradictory) negation avail-
able, defined in the following way. Let L(W,¬w) be L(W ) extended with
a contradictory negation ‘¬w’. Definition 2.1 is now augmented with the
following two clauses.

Definition 2.2 : For any L(W,¬w)(σ)-sentence ϕ and a model M :

(i) M |=+ ¬wϕ iff not M |=+ ϕ

(ii) M |=− ¬wϕ iff not M |=− ϕ.

Having a contradictory negation defines ϕ→w ψ as a shorthand for ¬wϕ∨
ψ and ϕ ↔w ψ for (ϕ →w ψ) ∧ (ψ →w ϕ). The equivalence |=+ ϕ ↔w ψ
holds when ϕ and ψ are true in exactly the same models, and |=+ ¬ϕ ↔w

¬ψ holds when ϕ and ψ are false in exactly the same models. The former can
be called a positive equivalence and the latter a negative equivalence. If both
equivalences hold, ϕ and ψ are strongly equivalent, denoted by |= ϕ ! ψ.
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If M = 〈{S1, S4}, {S2, S3}〉, then we have neither M |=+ W (S1, S2, S3,
S4) norM |=− W (S1, S2, S3, S4). But then by Definition 2.2, we have both
M |=+ ¬wW (S1, S2, S3, S4) and M |=− ¬wW (S1, S2, S3, S4).

Consequently, the presence of weak negation introduces a fourth truth-
value, and so the law of excluded fourth does not hold. The interpretation of
an L(W,¬w)(σ)-sentence ϕ can have the following values.

‖ϕ‖M = 1, if M |=+ ϕ and not M |=− ϕ

‖ϕ‖M = 0, if M |=− ϕ and not M |=+ ϕ

‖ϕ‖M = ?, if not M |=+ ϕ and not M |=− ϕ

‖ϕ‖M = !, if both M |=+ ϕ and M |=− ϕ.

It is readily seen that L(W,¬w) is persistent (all the models are complete),
but that it is neither coherent nor determined. Also, L(W,¬w) has a func-
tionally complete set of connectives.

Theorem 2.2 : Let K be a class of classical models in σ. For any function
f : K → {0, 1, ?, !}, there is an L(W,¬w)(σ)-sentence ϕ such that ‖ϕ‖M =
f(M) for all M ∈ K. �

Given σ, a classical model M is a subset of σ, while a partial model N is
a pair 〈N+, N−〉 with N+, N− ⊆ σ and N+ ∩N− = ∅. If N+ ∪N− = σ,
N can be turned into a classical model NC = N+, and similarly any M can
be turned into a complete partial model MP = 〈M,σ \M〉. Thus there is a
one-one correspondence between the class of classical models and the class
of complete partial models.

Let us define by induction two mappings ‘?’ (the truth-preserving map-
ping) and ‘]’ (the falsity-preserving mapping), which map L(W,¬w)(σ)-
sentences into L(∧,⊥)(σ)-sentences (where L(σ) has the connectives ∨,¬
and >).

S? = S

>? = >

(¬ϕ)? = ϕ]

(¬wϕ)? = ¬(ϕ?)

(ϕ ∨ ψ)? = ϕ? ∨ ψ?

(ϕ ∧ ψ)? = ϕ? ∧ ψ?

(W (ϕ,ψ, θ, χ))? = (ϕ? ∧ θ?) ∨ (ψ? ∧ χ?)
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S] = ¬S

>] = ⊥

(¬ϕ)] = ϕ?

(¬wϕ)] = ¬(ϕ])

(ϕ ∨ ψ)] = ϕ] ∧ ψ]

(ϕ ∧ ψ)] = ϕ] ∨ ψ]

(W (ϕ,ψ, θ, χ))] = (ϕ] ∧ ψ]) ∨ (θ] ∧ χ]).

Theorem 2.3 : For any L(W,¬w)(σ)-sentence ϕ and a complete partial
model M :

(i) M |=+ ϕ iff MC |= ϕ?

(ii) M |=− ϕ iff MC |= ϕ].
�

The language L(W ) is an extension of L interpreted on complete partial
models, and it is persistent and coherent, but not determined. This extension
does not add to the set of determined sentences of L, however. Likewise,
L(W,¬w) is persistent, non-coherent and non-determined, and it does not
add to the set of coherent and determined sentences of L. To see this, fix
an arbitrary L(W,¬w)(σ)-sentence ψ. Its image under the ?-mapping is an
L(∧,⊥)(σ)-sentence ψ?. If ⊥ is replaced by ¬>, ψ? becomes an L(∧)(σ)-
sentence, and since ∧ can be defined by ∨ and ¬, ψ? becomes an L(σ)-
sentence.

Theorem 2.4 : For any L(W,¬w)(σ)-sentence ϕ, one can find an L(σ)-
sentence ψ such that ϕ and ψ are positively equivalent, that is, |=+ ϕ ↔w

ψ. �

Theorem 2.5 : For any L(W )(σ)-sentence ϕ, ϕ is determined if and only if
one can find an L(σ)-sentence ψ such that ϕ and ψ are strongly equivalent,
that is, |= ϕ ! ψ. �

Theorem 2.6 : For any L(W,¬w)(σ)-sentence ϕ, ϕ is coherent and deter-
mined if and only if one can find an L(σ)-sentence ψ such that |= ϕ !

ψ. �
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3. Independence-friendly propositional language

Let us consider a language which is a variant of an IF (independence-friendly)
first-order language studied, for example, in Hintikka 1996, Hintikka &
Sandu 1997, Sandu & Pietarinen 2001 and Pietarinen & Sandu 1999. It
consists of a set Φ of propositional symbols, each having its own arity, and a
finite set i1 . . . in of indices ranging over a set of two elements.

The well-formed formulas of LIF are defined by the following clauses:
• If p ∈ Φ, the arity of p is n, and i1 . . . in are indices, then pi1...in and
¬pi1...in are LIF-formulas. Let us write pi1...in also as p(i1 . . . in).

• If ϕ and ψ are LIF-formulas then ϕ∨ψ and ϕ∧ψ are LIF-formulas.
• If ϕ is an LIF-formula then ∀inϕ and ∃inϕ are LIF-formulas.
• If ϕ is an LIF-formula then (∃in/U)ϕ is an LIF-formula (U is a finite

set of indices, in /∈ U .)
The notions of free and bound variables are the same as in first-order logic.

In (∃in/U)ϕ the indices on the right-hand side of the slash are free. For
simplicity, the clauses for dual prefixes such as (∀in/U) are omitted.

The models for the language are of the form M = 〈IM , (pM )p∈Φ〉, where
IM is any set with two elements, and each pM is a set of finite sequences of
indices from IM .

The sentences of LIF are interpreted by semantic games. With every LIF-
sentence ϕ and a model M = 〈IM , (pM )p∈Φ〉 an extensive semantic game
of imperfect information G∗(ϕ,M) is associated (see Appendix).

The game ends with an atomic formula or its negation p(i1 . . . in), and a
sequence of elements 〈a1 . . . an〉, where each an ∈ IM . Let us stipulate that:

• If 〈a1 . . . an〉 ∈ pM , then ∃ wins.
• If 〈a1 . . . an〉 /∈ pM , then ∀ wins.

Let M |=+
GTS

ϕ mean truth of ϕ in M under the game-theoretic evalua-
tion, and M |=−

GTS
ϕ mean falsity of ϕ in M .

• M |=+
GTS

ϕ iff there exists a strategy f that is winning for ∃ in
G(ϕ,M);

• M |=−
GTS

ϕ iff there exists a strategy f that is winning for ∀ in
G(ϕ,M).

Proposition 3.1 : For anyL(W )(σ)-sentenceϕ and a complete partial model
M :

(i) M |=+
GTS

ϕ iff M |=+ ϕ

(ii) M |=−
GTS

ϕ iff M |=− ϕ.
�
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We do not need any additional rules to the definition of semantic game
rules. Instead, what we have is the informational partition of histories of the
game, giving rise to strategy functions that are uniform on indistinguishable
histories. This is done in order to account for the imperfect information,
signalled by the indices in U . The intended meaning is that the player mov-
ing at (∃in/U) is not informed about the choices made for the elements in
U . The information partition (Ii)i∈N will be as described in Appendix. In
short, the information sets Si

j ∈ Ii tell what the players know and what they
do not know when making their moves. If a player cannot distinguish be-
tween the histories within the same information set, he or she is not allowed
to know something that has happened earlier in the game. When there are
only singleton information sets, that is, no two histories belong to the same
information set, one has perfect information as a special case.

Example 3.1 : Let M = 〈IM , (pM )p∈Φ〉, where IM = {Left,Right}.

M |=+
GTS

∀i1(∃i2/i1) pi1i2 iff M |= ∃i2∀i1 pi1i2 iff
〈Left, Left〉 ∈ pM and 〈Right, Left〉 ∈ pM ,
or 〈Left,Right〉 ∈ pM and 〈Right,Right〉 ∈ pM .

M |=−
GTS

∀i1(∃i2/i1) pi1i2 iff M |= ∃i1∀i2 ¬pi1i2 iff
〈Left, Left〉 ∈ pM and 〈Left,Right〉 /∈ pM ,
or 〈Right, Left〉 ∈ pM and 〈Right,Right〉 /∈ pM .

Given W (ϕ,ψ, θ, χ), and assuming the obvious connections between pi1i2’s
and ϕ,ψ, θ and χ, it follows that:

M |=+ W (ϕ,ψ, θ, χ) iff 〈IM , (pM )p∈Φ〉 |=
+
GTS

∀i1(∃i2/i1) pi1i2 .

M |=− W (ϕ,ψ, θ, χ) iff 〈IM , (pM )p∈Φ〉 |=
−
GTS

∀i1(∃i2/i1) pi1i2 .

Example 3.2 : In a game for W (ϕ,ψ, θ, χ), the information sets of a player
at any non-terminal history will be singletons, except for the two histories
h1 and h2 for which L(h1) = ϕ∨ψ and L(h2) = θ∨χ, which are of course
the immediate successors of h for which L(h) = W (ϕ,ψ, θ, χ). A common
way to indicate this in the extensive game representation is by drawing a
dashed oval around the two histories whose labelled formulas are within the
same information set, and annotating this information set for the respective
player. The game is in Figure 1.
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ϕ θ

∃ : θ ∨ χ

ψ χ

W (ϕ, ψ, θ, χ)

ϕ ∨ ψ
S∃

1

Left LeftRight

RightLeft

Right

∀ :

(1,−1) (−1, 1) (−1, 1) (1,−1)

Figure 1. Extensive semantic game of imperfect informa-
tion G∗(W (ϕ,ψ, θ, χ),M), with one nontrivial information
set S∃

1 of ∃.

4. Non-strictly competitive games

One of the characteristic features of logics with imperfect information is that
the negation ‘¬’ as given in the game rules denotes a strong game-theoretic
negation, whose meaning is that the roles of the two players are transposed
throughout the rest of the formula and the associated game. As noticed in
§2, it is possible to introduce a weak contradictory negation ‘¬w’ intoL(W ),
but as noticed in Hintikka & Sandu 1997, it cannot be quite captured by the
game rules. The definition of this classical negation would rather be the
familiar one, repeated here:

(i) M |=+ ¬wϕ iff not M |=+ ϕ

(ii) M |=− ¬wϕ iff not M |=− ϕ.

Nevertheless, in (i) the sentence ¬wϕ being a truth-consequence of a model
M says thatϕ cannot be verified, and in (ii) ¬wϕ being a falsity-consequence
of M asserts that ϕ cannot be falsified. The sentences prefixed with weak
negation are thus assertions about games, denoting when a winning verify-
ing or a winning falsifying strategy does not exist. As seen above, by letting
L(W,¬w) be L(W ) extended with this weak negation, it is readily seen that
L(W,¬w) is neither coherent nor determined, but that it is persistent.

Let us remark here that it is also possible to have just one direction in the
definition of contradictory negation. That is, we can have definitions where
(i) if not M |=+ ϕ then M |=+ ¬wϕ, and (ii) if not M |=− ϕ then M |=−

¬wϕ. These kinds of conditional non-truth-functional definitions of clas-
sical negations have not been studied in the context of partial or imperfect
information logics before.
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The way of creating the fourth truth-value by a contradictory negation
is somewhat limited, however. The alternative approach would be to relax
the assumption that games be strictly competitive altogether. One way to
implement this idea is to go back to the definition of partial models as pairs
M = 〈M+,M−〉 and to relax the assumption of disjointedness, namely that
M+ ∩M− = ∅. In this case it would be obvious that if M+ ∩M− 6= ∅,
there will have to be some terminal nodes in our extensive games that can be
winning for both ∃ and ∀. In such games it may then happen that both players
have a winning strategy, and one such example is provided by G∗(ϕ,M),
where ϕ is (p∨ q)∧ (q∨p), and M = 〈{p, q}, {p, q}〉. The difference to the
previous case is that we get the fourth truth-value already in the logic L(W )
without any need of extending it to L(W,¬w).

However, in order to get a different class of game to those of the received
ones, we can drop the competitiveness:

Definition 4.1 : The game G(ϕ,M) or G∗(ϕ,M), N = {∃, ∀} is strictly
competitive, iff for any ϕ ∈ L:

• if there exists a strategy f that is winning for ∃ then there does not
exist a strategy g that is winning for ∀, and

• if there exists a strategy g that is winning for ∀ then there does not
exist a strategy f that is winning for ∃.

If the game is not strictly competitive, call it non-strictly competitive. In
non-strictly competitive games, it may happen that both players have a win-
ning strategy in G or G∗. One can for instance stipulate that there are some
terminal histories K ⊆ Z that are winning for both ∃ and ∀. This would
be interpreted in a straightforward game-theoretic way by using the payoff
function ui(h) that gives the matrix (1, 1) for those histories in K, in addi-
tion to the zero-sum ones attached to those histories inH \K. Consequently,
given a literal ψ it will be interpreted as ‖ψ‖M = !, that is, is has both the
truth-value True and the truth-value False, and hence, has a truth-value Over-
defined.

Example 4.1 : An example of a non-strictly competitive game for the formula

φ = ∀i1(∃i2/i1)ϕi1i2 ,(1)

with ϕi1i2 as atomic, is given in Figure 2. As to the game G∗
1(φ,M), the first

line in the payoff distribution says that M |=+ ϕLeftLeft,M |=+ ¬ϕLeftLeft,
M |=+ ϕLeftRight,M |=− ¬ϕLeftRight and so on. That is, u∃((Left, Left)) =
u∀((Left, Left)) = 1, u∃((Left,Right)) = 1, u∀((Left,Right)) = −1, and
so on. Hence ϕi1i2 can receive both the value True and the value False,
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namely at L(h) = ϕLeftLeft. This does not mean that the whole formula
in interpreted similarly, since for that to be the case there would have to be
suitable winning strategies for both players.

Let us call the pairs of strategies that are winning for both players those
for non-coherence. In the previous example, winning strategies for non-
coherence do not exist in φ, because there is no winning strategy that would
lead ∀ to L(h) = ϕLeftLeft. The same holds for ∃, because she has to use
a uniform strategy that gives her either Left or Right at both histories ∀ has
chosen, leading her to L(h) = ϕLeftLeft and L(h′) = ϕRightLeft, or L(h) =
ϕRightLeft and L(h′) = ϕRightRight, while only ϕLeftLeft receives the variable-
sum payoff (1, 1).

With respect to determinacy, the presence of non-zero-sum payoffs can
cancel the effect of imperfect information, which otherwise would have turn-
ed a strictly competitive game into a non-determined one. To see this, let
the strategies that change a non-determined game into a determined one be
termed winning strategies for determinacy. Assume that u∃(h) = u∀(h) = 1
for some h ∈ Z, and that the rest of the payoffs are strict. Then all h′ ∈ Z
reached from an immediate predecessor pr(h) ∈ H have to get u∃(h′) = −1
or u∀(h′) = −1, because otherwise a player would have a winning move at
pr(h). Suppose that a strategy that a player applies at pr(h) is uniform. Then
every action from pr(h) has to have a corresponding action at k, such that
pr(h), k ∈ Si

j , i ∈ {∃, ∀}. But any action a corresponding to the action that
would leading to h can lead only to k′ = k _ a that has either u∃(k′) = 1
or u∀(k′) = 1, which hence constitutes a winning step for either ∃ or ∀.

This situation can be illustrated by concerning all the possible payoff dis-
tributions and winning strategies for determinacy for the game G∗

i (φ,M), i =
1 . . . 8 of Example 4.1 (see Figure 2). (It is assumed, for simplicity, that non-
coherent payoffs obtain only as u∃((Left, Left)) = u∀((Left, Left)) = 1.)
What are now needed in order to restore non-determinacy are in this case
partially interpreted models. Namely, we would need to have a partial logic
where partiality arises at the level of atomic formulas. In terms of this exam-
ple, setting L(h) = ϕRightLeft, h ∈ Z, u∃(h) = −1, u∀(h) = −1 would turn
any G∗

i (φ,M), i = 1 . . . 8 into a non-determined game.
In general, non-strictly competitive games are useful in distinguishing be-

tween different notions of consistency: even if a version of ex falso sequitur
quodlibet could be tolerable as ϕ ∧ ¬ϕ, it would never be the case that
ϕ∧¬wϕ, which is absurd, for it does not make sense to assert that ‘there ex-
ists a winning strategy for ∃ in ϕ, but there does not exist a winning strategy
for ∃ in ϕ’. Such statements denote a strong version of inconsistency. Should
we assume that there is no principled reason to prevent that the two players
cannot both have winning strategies in the same game, some sentences could
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ϕRightLeft

(1, 1)

Right

(−1, 1)(1,−1) (−1, 1)
(1, 1) (1,−1) (−1, 1) (1,−1)
(1, 1)

(1, 1)

Left

ϕLeftRight ϕRightRightϕLeftLeft

Right

∀i1(∃i2/i1)ϕi1i2

for determinacy:
Winning strategies

(∃i2/i1)ϕLefti2 (∃i2/i1)ϕRighti2

Left Right

Left

∀ :

∃ :

∀ : Right
∃ : Right

(1, 1)
(1,−1)
(1,−1)

(1,−1)
(1,−1)

(−1, 1)
(1,−1)

∃ : Left

(−1, 1) ∀ : Left
∃ : Left or ∃ : Right

S∃
1

G∗
1 :

G∗
2 :

G∗
3 :

G∗
4 :

G∗
5−8 :

Figure 2. Eight non-strictly competitive but determined
games G∗

i (φ,M), i = 1 . . . 8.

from a game-theoretic perspective be weakly inconsistent or non-coherent.
The possibility of having ϕ ∧ ¬ϕ in fact follows directly from the definition
of non-strictly competitive games.

The presence of imperfect information has nonetheless a noticeable ef-
fect on winning strategies, in the sense that whereas non-strict payoffs may
override it and make a non-determined game a determined one, non-strict
winning strategies for non-coherence may nonetheless not exist.

Given a zero-sum attribute of a strictly competitive game, the partial truth-
values impose a loss of verifying as well as a loss of falsifying capability
on players. Even more importantly, we could have a more expressive game-
theoretic framework at hand that would allow us to speak about players’
preferences. In that case we would see that in strictly competitive games,
players’ preferences would be inverses of each other, but yet if the pref-
erences are not assumed to be strictly opposed, a definite truth-value for a
sentence does not need to mean a serious deprivation of the purposes and the
motivation of the adversary. Just to mention one thing, as known in the the-
ory of games, in non-strictly competitive games the strategy functions may
be exposed to the opponent, at least in part and at times, and it sometimes is
even strategically advantageous to do so.
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5. Games and competition in a logical perspective

Motivation for studying non-strictly competitive games in logic is by and
large derived from the theory of games, where the strictness is merely a
historical remnant of the early developments of the theory, and most of the
contemporary work focussed on the non-strict ones.1 The abundance of non-
strict games strongly suggests that in logic, where game-theoretic concepts
are quite customarily being applied, one should not rule such games out
offhand. Just as physical instances of games can be used as evidence that
games in logic often encompass imperfect information, we ought to examine
the other basic class of games in logic too.

In the class of strictly competitive games, players’ interests are entirely in
conflict, the fact that often emerges when players are dividing some fixed
amount of gain. From the logical viewpoint this means that players aim at
ending up with either true or false atomic sentences. However, when there
is some surplus to be divided, games usually do not operate on strictly com-
petitive environments. This suggests that a division of surplus may be an
illustrative reflection or metaphor of what goes on in such semantic games
where players try to agree on some propositions that are to be distributed
among the participants. In this manner we obtain a game-theoretic expli-
cation of non-strict games, as a division of excess. One way of actually
implementing this proposal is that either of the two players can re-select the
already attained atomic sentence, after which the atomic sentence receives
a renewed valuation. For example, if ∃ chooses an atomic sentence it be-
comes true (if it already wasn’t true), and likewise, ∀’s selection renders the
sentence false.

A reasonable question to be asked at this point is whether this way of
modelling the games has some concrete effect on players’ strategies, espe-
cially on the winning ones. Obviously one should not insist that any atomic
sentence counts as a surplus to be invariably re-distributable among players,
since such a manoeuvre would make games to have trivial winning strategies.
One can easily see, however, that some new deals, or divisions of surplus,
can be done such that they benefit all contestants. New deals may hold out
new winning strategies, once the correct locations have been detected and
reached in any play of the game.

Yet another important thing is that in non-strictly competitive semantic
games, models can be either complete or partial. Every atomic proposi-
tion receives a definite valuation, or then there are partial models. But as

1 Vibrant stories concerning these kinds of games in various social contexts are found in
Wright 2000.
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seen above, partial models turn the logic in question non-persistent, inde-
pendently of whether the games are strictly or non-strictly competitive.

Likewise, we can give non-standard definitions of truth and falsity for non-
strictly competitive games as well as for strict ones without changing the per-
sistence or coherence properties of a logic. The two alternative non-standard
definitions are as follows (ϕ is atomic, M is a partial model):

• If L(h) = ϕ, and not M |=− ϕ or M |=+ ϕ, then u∃(h) = 1 (and
u∀(h) = −1, by strictness).

• If L(h) = ϕ, and M |=− ϕ, then u∀(h) = 1 (and u∃(h) = −1, by
strictness).

Or, alternatively:
• If L(h) = ϕ, and M |=+ ϕ, then u∃(h) = 1 (and u∀(h) = −1, by

strictness).
• If L(h) = ϕ, and not M |=+ ϕ or M |=− ϕ, then u∀(h) = 1 (and
u∃(h) = −1, by strictness).

Similar things happen with respect to perfect versus imperfect information.
The distinction of perfect versus imperfect information does not affect the
property of persistence, although it affects the property of determinacy. The
difference between games for logics with partial models and games for logics
with complete models is that in the former, not all terminal positions count
as winning ones for any player, and therefore winning strategies cannot be
based on such vacuous payoffs.

The other effect is that as seen in the previous sections, non-strict games
may be determined even if their strict counterparts are not, and non-determi-
nacy can in that case be restored only by having partial models. It should
be mentioned that some systems of paraconsistent logic admit that non-
atomic but inconsistent formulas are trivial, which means that anything can
be derived from them, and thus non-triviality holds only for atomic incon-
sistencies (Sette 1973). The game-theoretic perspective does not endorse
this, as games can transmit inconsistencies from non-constant-sum payoffs
of atomic formulas to complex ones via suitable winning strategies. In this
case the existence of imperfect information may nonetheless affect this trans-
mission.

What is being incoherent in non-strictly competitive semantic games is
the existence of some mutually beneficiary plays. These plays may consist
of just a tiny fragment of the totality of plays. Besides, some minimal in-
consistencies are likely to remain hidden when the game is played. Since no
winning strategy for one player can reach them as such, and because even the
process of establishing winning strategies is a non-trivial (epistemic) matter,
one way of looking at them is as a reflection of human ineptitude in detecting
minimal hidden inconsistencies. This can be particularly understandable in
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situations involving massive amount of information, such as in knowledge-
based systems.

The possibility of controlling logic by simply altering some of the ba-
sic characteristics of semantic games has some far-reaching implications, as
can readily be seen from the fundamental differences between perfect in-
formation and imperfect information. Some of the further possibilities in
manipulating games can be found in the class of games of incomplete infor-
mation, where players do not have complete information about the mathe-
matical structure of the game. The structure can be taken to codify things
such as the roles of the players or some other random deals based on chance
moves by Nature, among other things.

These findings also suggest that an account of mitigating logical omni-
science — the problem in epistemic logics of how to prevent an indefinite
production of logical consequences about what is known — is forthcoming:
by means of game-theoretic semantics for epistemic logics where the games
are non-strict, one can readily see how there can be inconsistent worlds (im-
possible possible worlds in Hintikka 1975), namely worlds that can be epis-
temically possible in the sense that a player can pick them in a game, but
which nevertheless are not logically possible. This idea then becomes just
another manifestation of the game-theoretically important notion of bounded
rationality.

Yet another implication is the need of taking seriously the possibility of
players in a semantic game to have at least some cooperation. This follows
because in non-constant-sum games, cooperative solutions are the only truly
rational solutions, because of the known fact in game theory that in the pres-
ence of cooperation, any non-constant sum game can be converted to a game
that profits all participants. A further examination of this result would invari-
ably yield to analyses of players’ preferences. In general, cooperative games
display at least some compatibility among agents, in order for the efficient
outcomes to be legitimately attained.

One caveat is in order here, however. Because of the game-theoretic be-
haviour of negation, it is not to be expected that the ensuing systems would
yield to something known as preservationist treatments of paraconsistent
logic. Yet no downright dialetheic approach is being suggested by these
games either, since the negation has a non-trivial game-theoretic explication
in the activity of a role-switch. No comparable explanation is to be expected
from preservationist or dialetheic systems.

6. Conclusion

Non-coherence arises when the assumption of games being strictly compet-
itive is relaxed. How viable is this assumption? A number of real life games
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are not strictly competitive, as witnessed by the prisoner’s dilemma, differen-
tial games, bargaining games, and so on. In this light, non-coherence is just
a logical reflection of non-constant-sum games. When we apply these games
to logics, we see how a ‘non-classical’ logic suddenly emerges — like for
partial ones, we have here further evidence that as far as these non-classical
logics are concerned, games are a superior semantic theory for them.

It is not the purpose here to provide any methodical treatise of paracon-
sistent logics, or their relations to the suggestions of this paper. Suffice it to
mention that in paraconsistent logics, a continuing problem is that valuations
of logical constants are rather arbitrarily chosen. For example, by varying the
interpretation of negation one can generate minimal definitions of a paracon-
sistent system. Such manoeuvres are void of theoretical impetus, however,
unless some independent insight into the inconsistencies thereby provoked
can be provided.

Related to this point is the so-called Jaśkowski’s problem (Jaśkowski,
1948). In brief, it asks for a logic claiming the name of paraconsistency to
fulfil three conditions: First, it needs to have a negation leading to a paracon-
sistent system (that is, to an inconsistent but non-explosive system). Second,
its negation must be strong enough to be called negation. Thirdly, its seman-
tics needs to be well motivated. To date, this problem has remained unsolved.
The insights of this paper are calculated to answer to this problem, however.
Game-theoretic semantics for ‘paraconsistent logic’ is a well-motivated and
systematic method, in contrast to the previous attempts in the literature that
remain to be based on some negative criteria — for example, they describe
principles that must be rejected, such as ex falso, consistency, or triviality.
Yet the game-theoretic negation is a genuine negation, as can be observed
from its relation to negative constructions in natural language.

It is thus possible now to see why the question of whether the negating
operator in non-coherent systems really denotes ‘real’ negation is somewhat
ill defined (Brown 1999, Slater 1995). In any sufficiently expressive lan-
guage, there will inevitably be more than one negation present, contributing
to various forms of coherence with differing effects.

To see just one example of a possible division of labour between negative
expressions in natural language, several distinctions can be made with re-
spect to the type of the negation operator and the properties of its linguistic
environment. For example, there can be (i) subminimal negative expressions
(e.g., few N , only a few N , not all N , at most), (ii) minimal negations (e.g.,
none of the N , neither N , no one, not a single, not a), and (iii) classical
(weak) negations (e.g., none of the N , no N , or a negative adverb not as in
don’t). These classes have different characteristics, and the three types of
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negations can be distinguished from each other by the underlying hierarchy
of their functional behaviour.2

For example, the quantifier few does not respect the classical de Morgan
laws, since from ‘Few men laughed and jumped’ it does not follow that ‘Few
men laughed and few men jumped’, given a model where most of the men
jumped but not laughed. The interesting point here is that the negative ex-
pressions, apart from just the classical one, do not usually form genuine
complements that could be used as a basis for generating inconsistent state-
ments. This can be seen from the example where the complement of the
sentence ‘Few men laughed’, for instance, is not ‘Few men didn’t laugh’,
because it introduces an auxiliary classical negative adverbial. The negated
expression would rather be along the most salient reading of the sentence
‘Many men laughed’.

It would nonetheless be misleading simply to assimilate the game negation
with any of these classes of negation. For the role-switch does not express
any syntactically marked negative element of language. Rather, it pertains to
the strategic resources from which the sentence meaning is derived. This can
be illustrated by saying that the interchange of the players in any part of the
game can be taken to not mean that something does not happen or does not
hold, but that the opponent is given an opportunity of achieving something
useful.

Appendix A. Games in extensive forms

A.1. Perfect information

Let us fix a family of actions A, where a finite sequence 〈ai〉ni=1, n ∈ ω rep-
resents the consecutive actions of players in N (no chance moves), ai ∈ A.

Definition A.1: An extensive-form game G of perfect information is a five-
tuple

GA = 〈H,Z, P,N, (ui)i∈N 〉

such that

2 Briefly, (i) occur in downward entailing environments f(X ∪ Y ) ⊆ f(X) ∩ f(Y ),
f(X) ∪ f(Y ) ⊆ f(X ∩ Y ); (ii) cover anti-additive expressions satisfying f(X ∪ Y ) =
f(X) ∩ f(Y ), and (iii) describe anti-morphic expressions f(X ∪ Y ) = f(X) ∩ f(Y ) plus
the classical f(X) ∩ f(Y ) = f(X ∩ Y ), f(¬X) = ¬f(X), corresponding to classical
negation.
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• H is a set of finite sequences of actions h = 〈ai〉ni=1 from A, called
histories of the game. It is required that:
– the empty sequence 〈〉 is in H;
– if h ∈ H , then any initial segment of h is in H too, that is, if
h = 〈ai〉ni=1 ∈ H then pr(h) = 〈ai〉n−1

i=1
∈ H for all n, where

pr(h) is the immediate predecessor of h (= ∅ for h = ∅).
• Z is a set of maximal histories (complete plays) of the game. If

a history h = 〈ai〉ni=1 ∈ H can continue as h′ = 〈ai〉n+1
i=1

∈ H ,
h is a non-terminal history and an ∈ A is a non-terminal element.
Otherwise they are terminal. Any h ∈ Z is terminal.

• P : H\Z → N is the player function which assigns to every non-
terminal history a player in N whose turn is to move.

• each ui, i ∈ N is the payoff function, that is, a function which speci-
fies for each maximal history the payoff for player i.

For any non-terminal history h ∈ H define

A(h) = {x ∈ A | h _ x ∈ H}.

A (pure) strategy for a player i is any function

fi : P−1({i}) → A

such that fi(h) ∈ A(h), where P−1({i}) is the set of all histories where
player i is to move. A strategy specifies an action also for histories that may
never be reached.

In strictly competitive game, N = {∃, ∀} and in addition:
• u∃(h) = −u∀(h);
• either u∃(h) = 1 or u∃(h) = −1 (that is, ∃ either wins or loses);

for all terminal histories h ∈ Z.

A.2. Imperfect information

Definition A.2: Let GA be a perfect information game. To represent imperfect
information, let us extend GA to a six-tuple

G∗
A = 〈H,Z, P,N, (ui)i∈N , (Ii)i∈N 〉

where Ii is an information partition of P−1({i}) (the set of histories where
i moves) such that for all h, h′ ∈ Si

j , h _ x ∈ H if and only if h′ _ x ∈

H,x ∈ A, j = 1 . . .m, i = 1 . . . k,m ≤ k. Si
j is called an information set.
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The games are exactly as before, except that now players might not have
all the information about the past features of the game. This is achieved
by an information partition, which partitions histories into information sets
(equivalence classes). Those histories that belong to the same information
set are indistinguishable to the players, and thus a player takes no notice of
the history that has been played.

In imperfect information games, the strategy function is required to be
uniform on indistinguishable histories:

If h, h′ ∈ Si
j then fi(h) = fi(h

′), for all i ∈ N.

A.3. Semantic games in extensive forms

Let Sub(ϕ) denote a set of subformulas of ϕ.

Definition A.3: An extensive-form semantic game G∗(ϕ,M) associated with
an LIF−formula ϕ is like an extensive game G∗

A defined above, except that
it has one extra-element: a labelling function L : H → Sub(ϕ) such that

• L(〈〉) = ϕ (the root);
• for every terminal history h ∈ Z,L(h) is an atomic formula or its

negation.
In addition, the components H,L, P, uV and uF jointly satisfy the follow-
ing:

• if L(h) = ¬ϕ and P (h) = ∃, then h ∈ H,L(h) = ϕ, P (h) = ∀;
• if L(h) = ¬ϕ and P (h) = ∀, then h ∈ H,L(h) = ϕ, P (h) = ∃;
• if L(h) = ψ∨ϕ or L(h) = ψ∧ϕ, then h _ Left ∈ H,h _ Right ∈
H,L(h _ Left) = ψ, and L(h _ Right) = ϕ;

• if L(h) = ψ ∨ ϕ, then P (h) = ∃;
• if L(h) = ψ ∧ ϕ, then P (h) = ∀;
• for every terminal history h ∈ Z:

– if L(h) = pi1...in and 〈a1 . . . an〉 ∈ pM , then u∃(h) = 1 and
u∀(h) = −1;

– if L(h) = pi1...in and 〈a1 . . . an〉 /∈ pM , then u∃(h) = −1 and
u∀(h) = 1.

The notion of strategy is defined in the same way as before. A winning
strategy for i ∈ {∃, ∀} is a set of strategies fi that leads i to ui(h) = 1 no
matter how the player −i (the player other than i) decides to act.

If there is imperfect information, players may not be able to distinguish
between some of the game histories. This is indicated by the information
partition (Ii)i∈N of Definition A.2, the information sets Si

j spelling out the
information available to the players when making their moves. When there
are only singleton information sets, that is, no two history belongs to the
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same information set, then the game is one of perfect information. Otherwise
the game is one of imperfect information.
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