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QUANTITATIVE CONFIRMATION, AND ITS QUALITATIVE
CONSEQUENCES

THEO A.F. KUIPERS

Introduction

In a previous paper (Kuipers, 1998)1 we have developed, guided by the suc-
cess perspective, a qualitative (classificatory and comparative) theory of de-
ductive confirmation. In this paper we will present, in Section 1, the cor-
responding quantitative theory of confirmation, more specifically, the corre-
sponding probabilistic theory of confirmation of a Bayesian nature, with a
decomposition in deductive and non-deductive confirmation. It is again pure
in the sense that all equally successful hypotheses profit from their success
to the same degree. It is inclusive in the sense that it leaves room for confir-
mation of hypotheses with zero probability (p-zero hypotheses). In Section 2
the resulting qualitative theory of (general) confirmation, encompassing the
qualitative theory of deductive confirmation, will be indicated. In the Ap-
pendix 1, it will be argued that Popper’s quantitative theory of corroboration
amounts to an inclusive and impure Bayesian theory of confirmation.

The quantitative approach to confirmation has a somewhat dubious char-
acter, since the assigned probabilities are, as a rule, largely artificial. Their
main purpose is to lead to adequate qualitative (classificatory and compar-
ative) judgments of confirmation. As far as deductive confirmation is con-
cerned, we have seen in (Kuipers, 1998) that we do not need a quantitative
approach for that purpose. However, since to date no independent or direct
qualitative theory of general confirmation, or of non-deductive confirmation,
has been developed, a quantitative approach is required for that purpose.
Such a dependent or indirect qualitative theory of general and non-deductive
confirmation will be presented in the second section.

Accordingly, we do not claim that the quantitative theory reflects quan-
titative cognitive structures concerning confirmation. Instead, they should
primarily be conceived as quantitative explications of qualitative cognitive
structures, to be used only for their qualitative consequences. As will be ar-
gued, the justification of these qualitative consequences is at least as good as

1 Both papers will also appear, in a marginally revised form, in (Kuipers, 2000).
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the justification of the quantitative explications ‘under ideal circumstances’,
that is, when the probabilities make objective sense. Moreover, as in the
qualitative case, it will also become clear that there is not one ‘language of
quantitative confirmation’, but several, e.g. pure and impure ones, inclusive
and non-inclusive ones. As long as one uses the same updating calculus for
probabilities, it does not matter which confirmation language one chooses,
the only important point is to always make clear which one one has chosen.
Although speaking of confirmation languages hence is more appropriate, we
will accept the current practice of speaking of confirmation theories.

1. Quantitative confirmation

In this section, a non-standard version will be presented of the so-called
Bayesian theory of confirmation, guided by the success perspective. Quanti-
tative confirmation will be decomposed into confirmation by a deductive or a
non-deductive success, or simply deductive and non-deductive confirmation.
Both will be localized in the so-called Confirmation Square. The degree of
confirmation of a hypothesis by a piece of evidence will be equated with
the plausible degree of success, which happens to be equivalent to the ratio
of the posterior and prior probability when the latter is non-zero. The ver-
sion of Bayesianism is non-standard in two senses2 . First, and foremost, it
is inclusive in the sense that it leaves room for a substantial degree of con-
firmation for ‘p-zero’ hypotheses when they are confirmed. Second, it is
pure in the sense that equally successful hypotheses get the same degree of
confirmation, irrespective of their prior probability.

1.1. Non-deductive confirmation and the Confirmation Square

The four possible (unconditional) deductive relations between hypothesis
and evidence specified in the Confirmation Matrix in Section 1.1 of (Kuipers,
1998) have somewhat weaker probabilistic versions, for which we propose
to use the same ‘deductive’ names.

H |= E ⇒ p(E/H) = 1 Deductive Confirmation: DC(H, E)
H |= ¬E ⇒ p(E/H) = 0 Falsification: F(H, E)

2 Standard versions of Bayesian philosophy of science, leaving no room for confirmation
of p-zero hypotheses, can be found in Horwich (1982), Earman (1992), Howson and Urbach
(1989), Schaffner (1993, Ch. 5). These non-inclusive versions are pure or impure depending
on whether they support the difference degree or the ratio degree of confirmation (see below),
respectively.
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¬H |= E ⇒ p(E/¬H) = 1 Deductive Disconfirmation: DD(H, E)
¬H |= ¬E ⇒ p(E/¬H) = 0 Verification: V(H, E)

Here we assume that there is some defensible probability function p, i.e.,
p may well have subjective features, though then as much as possible in
agreement with objective information. In line with Bayesian philosophers
of science (Howson and Urbach 1989; Earman 1992), we will call p(E/H)
and p(E/¬H) likelihoods.3

A probabilistic theory of confirmation will be called Bayesian as soon as it
assumes, explicitly or implicitly, some prior distribution, that is, probability
values p(H) and p(¬H) = 1 − p(H). As a rule, this is already the case
when one of the probabilities p(H), p(¬H), p(E) or p(H/E) is used, or
both likelihoods p(E/H) and p(E/¬H).4

According to the definition of conditional probability, p(E/H) = p(E&
H)/p(H) is undefined when p(H) = 0. However, this does not exclude
that p(E/H) can be interpreted in this case. For example, in case H en-
tails E, p(E/H) is 1. Or consider the case that the hypotheses Hv for
all possible values v in [0,1] for the probability of heads of a biased coin.
Then p(Hv) = 0, but p(En/Hv) makes perfectly sense for a sequence
En of outcomes of n throws, viz. the corresponding binomial distribution.
In this case, it is at most controversial for non-Bayesians whether and how
p(En/¬Hv) can be meaningfully interpreted. For, in general, if p(H) = 0
then p(E/¬H) = p(E), and in any Bayesian approach it is assumed that
p(E) can be assigned a value, whether this is done in terms of the decom-
position p(H)p(E/H)+p(¬H)p(E/¬H) induced by H , hence p(E/¬H),
or in terms of some other decomposition. From now on we will assume
that both p(E/H) and p(E), and hence p(E/¬H), are interpreted, even if
p(H) = 0. Similarly, there are cases where p(H/E) can be interpreted
when p(E) = 0. For instance, if E reports the specific value 0.2 of a quan-
tity X taking values in the [0,1]-interval and H claims that the value of
a similar quantity Y will be below 0.5, it may well be reasonable to as-
sign, on the basis of the background beliefs, p(H) = p(Y < 0.5) = 0.5,

3 That is, without assuming, as statisticians do, that H and ¬H are simple hypotheses
in the sense of generating a certain probability distribution. Hence, H and ¬H may well
be disjunctions of such simple hypotheses, in which case p is based on a prior distribution
over the latter hypotheses and their corresponding conditional probability distributions. To
be sure, H itself is primarily thought of as a non-statistical hypothesis. For the extrapolation
of the Bayesian approach to statistical hypotheses, see e.g., (Howson and Urbach 1989) and
(Schaffner 1993).

4 Recall that p(H/E) is equal to p(H)p(E/H)/p(E), where p(E) is equal to p(H)p(E
/H) + p(¬H)p(E/¬H). Note also that p(E/¬H) is equal to p(E)p(¬H/E)/p(¬H).



“12kuipers”
2002/6/11
page 450

i

i

i

i

i

i

i

i

450 THEO A.F. KUIPERS

p(H/E) = p(Y < 0.5/X = 0.2) = 0.7 and p(E) = p(X = 0.2) = 0.

Deductive Disconfirmation

Non-deductive
Disconfirmation

Non-deductive
Confirmation

Verification 1
p(E/H)

0

1

ù
ù

Figure 1: The Confirmation Square (CS)

Well then, by using the weaker ‘likelihood versions’, the four deductive re-
lations between H and E can be depicted as the four sides of the unit square
of likelihood pairs 〈p(E/H), p(E/¬H)〉, henceforth called the Confirma-
tion Square (CS), depicted in Figure 1.

The core of the ‘quantitative success theory of confirmation’ of Bayesian
nature is completed by taking the interior of CS also into account. From the
success perspective, the criteria

p(E) < p(E/H) Confirmation C(H, E)
p(E/H) < p(E) Disconfirmation D(H, E)

are the plausible criteria of confirmation and disconfirmation in general. The
first condition, p(E) < p(E/H), will be called the S(uccess)-criterion of
confirmation. Note that the S-criterion coincides with the success definition
of confirmation in general (SDC) in (Kuipers, 1998), viz., H makes E more
plausible, as soon as we equate plausibility with probability. Note also that
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the depicted (/-)diagonal typically represents ‘no confirmation’ or neutral ev-
idence:

p(E) = p(E/H) Neutral Evidence: NE(H, E)

To get a better view on extreme cases, represented by the sides of CS,
and of the non-extreme cases, represented by the interior, we formulate first
equivalent criteria of confirmation, disconfirmation and neutral evidence.

p(E/¬H) < p(E/H) Confirmation: C(H, E)
p(E/H) < p(E/¬H) Disconfirmation: D(H, E)
p(E/¬H) = p(E/H) Neutral Evidence: NE(H, E)

In this way, the S-criterion for confirmation leaves clearly room for the ex-
treme cases of verification, p(E/¬H) = 0, and deductive confirmation,
p(E/H) = 1. Similarly, the criterion for disconfirmation leaves room for the
extreme cases of falsification, p(E/H) = 0, and deductive disconfirmation,
p(E/¬H) = 1.

As a consequence, the region of the interior of CS right/below (left/above)
the diagonal typically represents non-extreme probabilistic successes of H
(¬H). These non-extreme cases represent the remaining intuitive cases of
confirmation and disconfirmation, respectively. They will be called non-
deductive:

0 < p(E/¬H) < p(E/H) < 1 Non-deductive
Confirmation:

NC(H, E)

0 < p(E/H) < p(E/¬H) < 1 Non-deductive
Disconfirmation:

ND(H, E)

Note that, as in the deductive case, non-deductive disconfirmation of H
amounts to non-deductive confirmation of ¬H .

If one wants to set apart verification and falsification as extreme cases of
confirmation and disconfirmation, respectively, it is plausible to introduce
the notions of non-extreme or proper confirmation and disconfirmation:

0 < p(E/¬H) < p(E/H) Proper Confirmation: PC(H, E)
0 < p(E/H) < p(E/¬H) Proper Disconfirmation: PD(H, E)

with some conceptually plausible consequences, in abbreviated form, indi-
cating subsets of CS by the relevant condition:
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C(H, E) = V(H, E)∪ PC(H, E)
and PC(H, E) = DC(H, E)∪ NC(H, E)

D(H, E) = F(H, E) ∪ PD(H, E)
and PD(H, E) = DD(H, E)∪ ND(H, E)

It is also fruitful to define conditional versions of non-deductive confirma-
tion, proper confirmation and confirmation in general:

0 < p(E/¬H&C) < p(E/H&C) < 1 cond. Non-ded.
Confirmation:

NC(H, E; C)

0 < p(E/¬H&C) < p(E/H&C) cond. Proper
Confirmation:

PC(H, E; C)

p(E/¬H&C) < p(E/H&C) cond.
Confirmation:

C(H, E; C)

When supplemented with plausible definitions of conditional (deductive and
non-deductive) disconfirmation, each specific condition gives rise to its own
confirmation square, the conditional CS.

In sum, CS not only depicts falsification, verification and neutral evidence
but also suggests how to split proper confirmation and disconfirmation into
both a (basically qualitative) deductive subtype and a (fundamentally quan-
titative, at least so it seems) non-deductive subtype. This interpretation of
the unit square of likelihood pairs provides, as we will further illustrate, a
quantitative explication of the general idea of (qualitative) confirmation, that
is, the basic ‘cognitive structure’ regarding confirmation that is implicitly
used by empirical scientists. However, since the required specific probabil-
ities usually do not correspond to anything in reality, neither in the object
of study, nor in the head of the scientist, consciously or unconsciously, they
do not seem to directly reflect a quantitative cognitive structure. However,
one may argue that there is something between a purely qualitative and a
purely quantitative cognitive structure, viz., by certain elicitation procedures
one obtains interval assignments of probabilities which may be interpreted
as reflecting unconscious attitudes. These interval assignments might obey a
cognitive structure in terms of intervals, but we will not pursue this possibil-
ity further.

Several aspects of CS will be treated in some detail. The following termi-
nology will be very useful:

H is a p-zero hypothesis p(H) = 0
H is a p-one hypothesis p(H) = 1
H is a p-normal hypothesis 0 < p(H) < 1
H is a p-uncertain hypothesis p(H) < 1
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The analysis provides in fact a decomposition of the standard Bayesian the-
ory of confirmation for p-normal hypotheses. Its criteria of confirmation and
neutrality read, respectively:

p(H) < p(H/E) p(H) = p(H/E)

(see e.g., Carnap 19632, the new foreword, Horwich 1982, Howson and Ur-
bach 1989). The confirmation criterion, stating that the posterior probabil-
ity is larger than the prior probability, called the PP-criterion, is in perfect
agreement with the common sense idea, expressed in the updating princi-
ple of plausibility (UPP) of (Kuipers, 1998), that confirmation, normally,
increases, or leads to the increase of, the probability of the hypothesis. As-
suming that H is p-normal, the PP-criterion is equivalent to the S-criterion,
C(H, E), as is easy to check. In view of the “p(E/¬H) < p(E/H)”-version
of the S-criterion, its decomposition of Bayesian confirmation amounts to
the following claim: assuming p-normality of H , the PP-criterion express-
ing Bayesian confirmation can be naturally decomposed into three mutu-
ally exclusive and together exhaustive possibilities in which the (equiva-
lent) S-criterion can be satisfied: two extreme possibilities, viz., verification
(0 = p(E/¬H) < p(E/H)) and deductive confirmation (p(E/¬H) <
p(E/H) = 1), and the non-extreme possibility, viz. non-deductive confir-
mation (0 < p(E/¬H) < p(E/H) < 1).

The important difference is that the S-criterion is also non-trivially appli-
cable to p-zero hypotheses. Whereas the PP-criterion makes all evidence
neutral with respect to p-zero hypotheses (for p(H) = 0 implies p(H/E) =
0), the S-criterion leaves perfectly room for confirmation of such hypotheses.
However, since p(H/E) remains 0, the confirmation is, as it were, not re-
warded in this case. Note that the situation is different for p-one hypotheses.
If p(H) = 1 then, assuming that E and H are compatible, p(H/E) = p(H)
and p(E/H) = p(E). Hence, according to both criteria, p-one hypotheses
cannot be confirmed. Note in this connection also that, in contrast to the fact
that the confirmation of a p-normal hypothesis amounts to the disconfirma-
tion of its negation, the confirmation of a p-zero hypothesis, according to the
S-criterion, of course, does not amount to the disconfirmation of its nega-
tion according to any of the two criteria, which is easy to check. In view of
the deviating behavior of the S-criterion regarding p-zero hypotheses, the S-
criterion will be called inclusive and the PP-criterion non-inclusive. Hence,
although the inclusive and the non-inclusive criteria are equivalent for the
non-zero cases, they are incompatible for the zero cases. As we will see in
Appendix 1, Popper’s approach (Popper 1959, 1963, 1983) also presupposes
the S-criterion, and hence is inclusive. Inclusive behavior is very important
in our opinion. Although there may be good reasons (contra Popper, see Ap-
pendix 1) to assign sometimes non-zero probabilities to genuine hypotheses,
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it also occurs that scientists would sometimes assign in advance zero prob-
ability to them and would nevertheless concede that certain new evidence is
in favor of them.

Whereas deductive confirmation has only one ‘cause’, the evidence is
entailed by the hypothesis, non-deductive confirmation may have different
causes. In the following we will restrict the attention to p-normal hypothe-
ses and evidence. As Salmon (1969) already pointed out in the context of the
possibilities of an inductive logic, a probability function may be such that E
confirms H when H partially entails E. Here ‘partial entailment’ essentially
amounts to the claim that the relative number of models in which E is true
on the condition that H is true is larger than the relative number of models in
which E is true without any condition.5 For instance, in a ‘color language’
with at least four colors, p will be such that the evidence that a raven is black
or white confirms the hypothesis that it is black or red. In general, one may
require that a probability function satisfies the principle of partial entailment:
if H partially entails E(¬E) then E confirms (disconfirms) H . Fortunately,
it seems that a probability function usually satisfies this principle. However,
and this was Salmon’s main message, it is not at all guaranteed that such
a function is such that E confirms H when H essentially is an (inductive)
extrapolation of E, notably from past to future instances of a certain kind.
For instance, one might like to have that the evidence that the first raven
is black confirms the hypothesis that the second raven is black as well. In
general, one may require that a probability function satisfies the principle of
extrapolation (or induction): if H extrapolates upon E(¬E) then E confirms
(disconfirms) H .6 In (Kuipers, 1997, 2000) we study probability functions
which satisfy both principles, e.g. Carnap’s continuum of inductive meth-
ods. Of course, such functions are such that a hypothesis H which partially
entails E and extrapolates upon E is confirmed by E. In sum, we may dis-
tinguish at least three causes or types of non-deductive confirmation: due to
partial entailment, which might be called ‘partial (deductive) confirmation’,
due to extrapolation, to be called ‘inductive confirmation’, and due to both
factors.

5 This formulation applies, strictly speaking, only to a language with a finite domain.
However, in many cases it can be extended to infinite domains, provided E deals with a finite
number of individuals.

6 A problem with this principle is that the notion of extrapolation or ‘going beyond the
evidence’ is not easy to define in a general way such that it is satisfactory from an inductive
point of view, as Popper and Miller (1983) have pointed out. See Mura (1990) and Kuipers
(2000, Chapter 4) for different proposals.
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1.2. The ratio-degree of confirmation

Although the quantitative theory of confirmation presented thus far already
allows qualitative judgments of deductive and non-deductive confirmation,
for comparative purposes we also need a degree of confirmation. In (Kuipers,
1998) we have explicated ‘confirmation’ qualitatively as increase of plausi-
bility of, in the first place, the evidence (SDC), and, in the second place, of
the hypothesis (UPP). In the present probabilistic context, it is plausible to
identify plausibility with probability, and hence, confirmation with increase
of probability of the evidence, as we have noted, with the consequence, as
far as p-normal hypotheses are concerned, that confirmation is rewarded by
an increase of the probability of the hypothesis.

There are many possibilities for defining a degree of confirmation, sev-
eral having some prima facie plausibility.7 In the introduction we have al-
ready remarked that, as long as one uses the same updating calculus for
probabilities, it does not matter very much which confirmation theory one
chooses, and hence which degree of confirmation, the only important point
is to always make clear which one one has chosen. In this section, we
will restrict our attention to mainly one degree of confirmation, viz. the
ratio degree of confirmation, with some reference to the standard and non-
standard difference degree of confirmation.8 Let us begin by the latter,
d(H, E) =def p(H/E)− p(H), that is, the difference between the posterior
and the prior probability of the the hypothesis. From the success perspec-
tive, d′(H, E) =def p(E/H) − p(E) is an at least as plausible difference
measure for it expresses in a way to what extent E is a success of H . Since
they usually give different values one has to choose between them.

The ratio degree of confirmation is usually presented as the ratio of the
posterior and the prior probability, p(H/E)/p(H). However, from the suc-
cess perspective, the ratio p(E/H)/p(E) is at least as plausible as indicator
of the extent to which E is a success of H . The latter ratio may well be called
the amount or degree of success of H on the basis of E. Fortunately, now
we do not have to choose, for the two ratio measures are trivially equivalent,
when they are defined, hence we define:

r(H, E) =def p(H/E)/p(H)) = p(E/H)/p(E)
= p(H&E)/(p(H)p(E))

7 See Festa (1999a) for a lucid survey.

8 Popper’s arguments (Popper 1959) against p(H/E) as degree of confirmation con-
vinced even Carnap (19632, the new foreword) that the ‘genuine’ degree of confirmation
should be identified with, or at least be proportional to p(H/E) − p(H) or p(H/E)/p(H).
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to be called the r-degree or r-measure of success and confirmation. Note
that the first and the third ratio are not defined, when p(H) = 0, and that
the same holds for the second and the third ratio when p(E) = 0. Since p
is, as a rule, not just an objective probability, both possibilities should not
be excluded beforehand. Recall that we have assumed that p(E/H) can
be interpreted when p(H) = 0, and that p(H/E) can be interpreted when
p(E) = 0. Hence, r(H, E) is almost always defined, that is, it is always
defined, except when both p(E) and p(H) are zero, or when one of them is
0 such that the corresponding conditional probability cannot be interpreted,
possibilities that will further be disregarded.

In the following, we will evaluate the r-degree of confirmation in some de-
tail, partly in comparison with the d-degree and the d′-degree. To begin with,
being almost always defined need not be a positive feature, that depends on
the values that are assigned. For a first major advantage of r over d and d′

we study their extreme behavior. Note first that r has the neutral value 1 and
that d and d′ both have the neutral value 0. Higher values indicate, of course,
confirmation and lower values disconfirmation. Let us see what happens un-
der the extreme conditions that p(H) or p(E) is zero. When p(H) = 0 d
gets the neutral value. Hence d reflects the PP-criterion of confirmation, ac-
cording to which a p-zero hypothesis is always neutrally confirmed. That
is, an hypothesis that is excluded by p cannot be confirmed or disconfirmed
by evidence; all evidence is, by definition, neutral for such hypotheses, a
very strange situation indeed. Similarly, d′ gets the neutral value whenever
p(E) = 0. So, according to d′ evidence that is impossible according to p
cannot confirm nor disconfirm an hypothesis, but is always neutral. Note
that in both cases, it would be less objectionable when the degree of confir-
mation would not be defined. It is the assignment of the neutral value which
is conceptually unattractive.

It is easy to check that r may well assign a non-neutral value when ei-
ther p(H) or p(E) is zero (assuming that p(E/H), respectively p(H/E),
can be interpreted), and, as already remarked, it is undefined when p(H) =
p(E) = 0. When p(H) and p(E) are both non-zero, r(H, E) reflects both
the S- and the PP-criterion of confirmation, it reflects the S-criterion when
p(H) = 0 and the PP-criterion when p(E) = 0. Hence, we may say that
the ratio-degree r shows refined extreme behavior, whereas d and d′ show
conceptually implausible extreme behavior.

To be sure, when p(H) = 0 and r(H, E) > 1, r(H, E) expresses confir-
mation which is not rewarded, since p(H/E) remains 0. Note that r(H, E)
equals p(E/H)/p(E/¬H)9 when p(H) = 0, since P (E) then equals p(E/

9 This ratio of likelihoods of H and ¬H might be called the ‘likelihood ratio’, but we will
not do so because this expression has a different meaning in statistics. There it means the ra-
tio of the likelihoods of two alternative (but usually non-exhaustive) hypotheses assuming
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¬H). Similarly, when p(E) = 0 and r(H, E) > 1, E is not recognized as
confirming evidence, since p(E/H) remains 0. In the case that r(H, E) > 1
and p(H) and p(E) are both positive, E is recognized as confirming evi-
dence of H , in the sense that p(E/H) has increased with respect to p(E) by
the factor r(H, E), whereas H is rewarded for that success, in the sense that
p(H/E) has increased with respect to p(H) by the same factor.

A second feature of the r-measure is its being a P-incremental measure10

in the sense that it is (or can be written as) a function of the probabilities
p(H/E) and p(H) which increases with increasing p(H/E) and decreases
with increasing p(H)11 . It may also be called an L-incremental measure in
the sense that it is (or can be written as) a function of the likelihoods p(E/H)
and p(E) which increases with increasing p(E/H) and decreases with in-
creasing p(E). Note that d is also P-incremental, but not L-incremental,
whereas d′ is L-incremental, but not P-incremental.

Next, the ratio of the r-degrees of confirmation of two hypotheses on the
basis of the same evidence, r(H1, E)/r(H2/E), just equals the ratio of the
likelihoods, p(E/H1)/p(E/H2).12 This nicely fits the so-called likelihood
ratio approach in statistics to comparing two statistical hypotheses with each
other, assuming an underlying statistical model (see Note 9). Although d′ is
L-incremental, it is not easily connectable to this statistical practice.

An important further difference between r and both d and d′ is that r is
symmetric, that is, r(H, E) = r(E, H), whereas d and d′ are asymmetric:
d(H, E) is unequal to d(E, H), in fact it is equal to d′(E, H), and similarly
for d′. Symmetry is particularly appealing in cases where the hypothesis is
of the same nature as the evidence. Consider, for example, the hypothesis
(H) that the outcome of a fair die will be even in relation to the evidence (E)
that the outcome is larger than 1 and the reverse situation that the evidence
reports an even die (E ′ = H), and the hypothesis (H ′ = E) states that the
outcome will be larger than 1. An asymmetric degree of confirmation may

one underlying statistical model. However, the ratio p(E/H)/p(E/¬H) is also (uncon-
ditionally) equivalent to the ratio of the posterior odds, p(H/E)/p(¬H/E), and the prior
odds, p(H)/p(¬H). For this reason, this ratio could also be conceived as an inclusive (and
impure) degree of confirmation.

10 The term is due to Festa (1999a).

11 Since p(H/E) itself is a function of p(H), viz. p(H) · p(E/H)/p(E), this does not
exclude that some P-incremental degrees of confirmation, e.g. the d-measure, increase under
certain conditions with increasing p(H). E.g. for deductive confirmation of H and H∗ by
E, d(H, E) = p(H)(1/p(E) − 1) > d(H∗, E) iff p(H) > p(H∗).

12 Note that this ratio may be defined for two p-zero hypotheses and that values for
p(E/¬H1) and p(E/¬H2) are not needed.
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imply that E confirms H more (or less) than E ′(= H) confirms H ′(= E),
and d and d′ do so. The symmetry of r is, of course, directly related to the
fact that r(H, E) can be seen as a degree of mutual dependence between H
and E, since independence is usually defined by the criterion p(H&E) =
p(H)p(E)13 .

Some special values of r(H, E) are relatively simple. For instance, r(H, E)
increases from 0, for falsification, via p(E/H)/[1−p(H)p(¬E/H)] for de-
ductive disconfirmation, to 1, for neutral (including tautological) evidence,
from which it increases further, via 1/p(E) for deductive confirmation, to
1/p(H), for verification. The last value is, moreover, the maximum degree
of confirmation a hypothesis can get, viz. 1/p(H) for verification, e.g. when
E = H . Note that this maximum is hypothesis specific, and that we have
the plausible extreme consequence that verification of a p-zero hypothesis
amounts to obtaining an infinite degree of confirmation. Similarly, 1/p(E)
is the maximum degree of confirmation certain E can provide for an hypoth-
esis, viz. by deductive confirmation, with the plausible extreme consequence
that the degree of confirmation in the case of deductive confirmation by p-
zero evidence is infinite.

1.3. Comparing and composing degrees of confirmation

Let us now turn to the comparative and composite behavior of r(H, E) by
presenting some trivial but crucial theorems, always assuming that H is p-
uncertain (p(H) < 1).

We start by considering two pieces of evidence with respect to which a
fixed hypothesis is equally successful in the sense that they provide the hy-
pothesis with the same likelihood (e.g., 1 in the case of deductive confirma-
tion):

Th.1: if p(E/H) = p(E∗/H) > 0 then
r(H, E) > r(H, E∗) iff p(E∗) > p(E)
(iff p(H/E) > p(H/E∗), if p(H) > 0)

Th.1 states that, when H obtains the same likelihood from two pieces of evi-
dence, the degree of confirmation increases with decreasing prior probability
of the evidence or, if p(H) > 0, equivalently, with increasing posterior prob-
ability of the hypothesis. Hence, under the mentioned condition, according
to r(H, E), H gets ‘richer’ from less probable (more surprising) evidence,

13 This definition has some complications. Strictly speaking, it provides only a necessary
condition for independence. It is nevertheless plausible to call, in general, the probabilistic
expression p(A&B)/(p(A) · p(B)) the degree of mutual or inter-dependence of A and B.
Carnap (1950/63, par. 66) has called it the (mutual) relevance quotient.
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which agrees with scientific common sense; we will call this the surprise
bonus. Note that, when p(H) = 0, this surprise bonus is not payed out in an
increase of the posterior probability, for that remains zero.

Let us now turn to fixed evidence and two hypotheses, which are equally
successful in the sense that they obtain the same likelihood from that evi-
dence (again, e.g., 1 in the case of deductive confirmation):

Th.2: if p(E/H) = p(E/H∗) > 0 then
r(H, E) = r(H∗, E)
and
p(H/E) > p(H∗/E) iff p(H) > p(H∗)

Th.2 shows in the first place that r(H, E) is a (hypothesis-) neutral14 or pure
degree of confirmation, in the sense that two hypotheses which are equally
successful in the sense that they make the evidence equally plausible, obtain
a degree of confirmation which is independent of their prior probability. Th.2
states, moreover, that, assuming equal successfulness, the posterior probabil-
ity increases with increasing prior probability. Note that the first feature is in
sharp contrast to the ‘impure’ behavior of d(H, E). Since d(H, E) is equal
to p(H)(r(H, E) − 1), it favors plausible hypotheses, that is, it increases
in the case of equal successfulness with the prior probability. On the other
hand, d′ is easily seen to be pure.

Restricting attention to deductive confirmation and identifying plausibility
with probability, it follows directly from Th.1 and Th.2 that quantitative de-
ductive confirmation, as measured by r(H, E), satisfies the qualitative prin-
ciples of deductive confirmation P.1 and P.2, respectively:

P.1 if E and E∗ d-confirm H then E d-confirms H more than
E∗ iff E∗ is more plausible than E in the light of the back-
ground beliefs

P.2 if E d-confirms H and H∗ then E d-confirms H∗ as much
as H

Let us also look at some specific cases that have been put forward in favor
of r(H, E) or d(H, E). Roberto Festa (1999a, p. 66) has suggested a ver-
sion of the following counter-intuitive case against d(H, E), and in favor of
r(H, E), when p(H) > 0. Compare p(H/E) = 0.1 and p(H) = 0.0001
with p(H∗/E) = 0.9 and p(H∗) = 0.8. Although the respective differences

14 The term ‘neutral’ is already used within the presented theory of confirmation, viz., in
the phrase ‘neutral evidence’, which makes that term less attractive for our present purposes.
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are almost the same (≈0.1 and 0.1, respectively) the first case of confirma-
tion is intuitively much more impressive than the second. It is easy to check
that r(H, E) is in agreement with this intuition (1000 and 9/8, respectively),
which makes r(H, E) superior to d(H, E). For a real-life (aircraft) example
of a formally similar nature, see (Schlesinger 1995, Section 4).

However, such specific intuitions may easily be countered by similar ones,
pointing in the opposite direction. Consider the following case against r(H,
E) and in favor of d(H, E), stemming from Eells and reported by Sober
(1994). In a slightly modified form, consider p(H/E) = 0.9 and p(H) =
0.1 versus p(H∗/E) = 0.001 and p(H∗) = 0.00001. Though H may seem
intuitively and according to d(H, E) much more confirmed by E than H ∗

(d(H, E) = 0.8 versus d(H∗, E) ≈0.001), the r(H, E)-definition leads to
the reverse conclusion (9 versus 100).

Accordingly, such examples make clear that our intuitions are confused
and that we can decide to reconsider our intuitions in the light of the fact
that there is something to choose, viz., principles we may or may not want
to subscribe to.

So let us return to general properties of the r-measure. First we will con-
sider disjunctions of evidence and hypotheses. For the disjunction of two in-
compatible pieces of evidence, the r-degree of confirmation is the weighted
sum of the separate degrees of confirmation:

Th.3.1: if p(E&E ′) = 0 then
r(H, E ∨ E′) = p(E)

p(E)+p(E′)r(H, E) + p(E′)
p(E)+p(E′)r(H, E′)

Similarly, due to the symmetry of the r-degree with respect to E and H , the
r-degree of confirmation of a disjunction of two incompatible hypotheses is
the weighted sum of the degrees of the disjuncts:

Th.3.2: if p(H&H ′) = 0 then
r(H ∨H ′, E) = p(H)

p(H)+p(H′)r(H, E)+ p(H′)
p(H)+p(H′)r(H

′, E)

Let us now turn to conjunctions. Let E and E ′ be mutually independent
pieces of evidence in general and with respect to H . Then the degree of con-
firmation provided by the conjunction is the product of the separate degrees:

Th.4.1: if p(E&E ′) = p(E) · p(E′)
and p(E&E ′/H) = p(E/H) · p(E ′/H)
then r(H, E&E ′) = r(H, E) · r(H, E ′)
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Similarly, again due to the symmetry of the r-degree with respect to E and
H , for prior and posterior mutually independent hypotheses:

Th.4.2: if p(H&H ′) = p(H) · p(H ′)
and p(H&H ′/E) = p(H/E) · p(H ′/E)
then r(H&H ′, E) = r(H, E) · r(H ′, E)

Finally, let us consider the ‘addition’ of an irrelevant piece of evidence E ′,
defined by p(H/E&E ′) = p(H/E), or an irrelevant hypothesis, defined by
p(E/H&H ′) = p(E/H).

Th.5.1: if p(H/E&E ′) = p(H/E) then r(H, E&E ′) = r(H, E)
Th.5.2: if p(E/H&H ′) = p(E/H) then r(H&H ′, E) = r(H, E)

In our opinion, the composite behavior of the r-measure, as expressed by
Theorems 3–5, is very plausible.

In sum, we conclude that r(H, E) is an attractive degree of confirma-
tion. It shows refined extreme behavior, it is incremental with respect to
the probability of the hypothesis as well as the evidence, it has hypothe-
sis and evidence specific maxima, it realizes the surprise bonus, it is pure
in the sense of being neutral with respect to equally successful hypotheses,
independently from their prior probabilities, and it has plausible composite
behavior.15 Since it implies the qualitative principles of deductive confirma-
tion, we may conclude from (Kuipers, 1998), that it can deal with the stan-
dard objections to deductive confirmation, with the raven paradoxes, and the
grue problem. In the next section, we will further evaluate r(H, E) with
respect to qualitative consequences, again partly in comparison with other
candidates.

We conclude this section with three technical points. First, accepting r
as degree of confirmation, implies, of course, as explication of “E confirms
H more than E∗ confirms H∗”: r(H, E) > r(H∗, E∗). Second, as Milne
(1995, 1996) has rightly argued, a near relative to r, viz., log r(H, E), has
some advantages over r(H, E). E.g. its neutral value is 0. Third, for com-
pleteness and later use, we write down the conditional degree of confirma-
tion corresponding to the unconditional one:

15 See Jeffrey (1975) for a comparison of a couple of measures, including r, d, and d′.
His emphasis is on r and d, and on second thoughts, that is, in his “Replies” he favors d
over r, mainly because of its ‘impure’ character. In our opinion (see also the next section),
the impact of different prior probabilities is perfectly accounted for in the resulting different
posterior probabilities.
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r(H, E; C) =def p(H/E&C)/p(H/C) = p(E/H&C)/p(E/C) =
p(H&E/C)/(p(H/C)p(E/C))

It is easy to check that this conditional degree has similar properties to the
unconditional one.

The quantitative theory of confirmation based on r will be called the r-
theory of confirmation. Similarly for the d- and the d′-theory.

2. Qualitative consequences

In this section it will first be argued in some more detail than in Sections 1.3
and 1.4 that the ‘r-theory’ restricted to deductive confirmation implies the
whole qualitative theory of deductive confirmation presented in (Kuipers,
1998). In this connection it will be particularly illuminating to write out
the quantitative variant of the qualitative solution of the raven paradoxes
in (Kuipers, 1998). This example illustrates, among other things, that the
r-degree of confirmation can also be interpreted as a degree of severity of
tests, in particular of HD-tests, with attractive qualitative consequences. Fi-
nally, we will investigate to what extent a corresponding qualitative theory
of general and non-deductive confirmation can be derived and defended.

2.1. Derivation of the qualitative theory of deductive confirmation

The claim that the qualitative theory of deductive confirmation can be de-
rived from the quantitative theory amounts, of course, to the claim that de-
ductive confirmation is a subkind of quantitative confirmation that satisfies
the comparative principles of deductive confirmation when plausibility is
identified with probability. We have already seen that deductive confirma-
tion amounts to an extreme kind of quantitative confirmation, due to the fact
that H |= E implies that p(E/H) = 1. The corresponding r-degree of con-
firmation is 1/p(E), which exceeds 1, hence indicates confirmation, as soon
as E is probabilistically uncertain. We have also concluded already, on the
basis of Th.1 and Th.2, that quantitative confirmation respects the compar-
ative principles P.1 and P.2, when we identify plausibility with probability.
Hence, quantitative confirmation entails all principles of the qualitative the-
ory of deductive confirmation. In Section 2.4 we will review the extent to
which it implies the general principles of qualitative confirmation presented
in (Kuipers, 1998), viz., SDC, UPP, PS, and PCS.

In (Kuipers, 1998) we have also alluded to the reverse perspective on P.1
and P.2, that is, that they are made plausible by Bayesian considerations.
For this purpose, it is important to note first that r(H, E) and d(H, E) are
both popular among Bayesians. Hence, since both measures support P.1, this
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comparative postulate seems unproblematic for Bayesians. Moreover, since
r(H, E) is frequently suggested and used as an alternative to d(H, E), and
since r(H, E) supports P.2, the latter comparative postulate is frequently im-
plicitly assumed by Bayesians. However, it should be conceded that d(H, E)
is used at least as frequently as r(H, E). Hence, for supporters of d, P.2 will
only become acceptable as far as our general arguments in favor of r (above
and below), and those of others, such as Festa (1999a), Schlesinger (1995),
and Milne (1995, 1996), are convincing for them.

In this respect, it is interesting to study the way the r- and the d-measure
deal with an irrelevant additional hypothesis H ′ in the case of deductive con-
firmation of H by E, that is, when p(E/H) = 1. Whereas d(H&H ′, E) be-
comes smaller than d(H, E), by the factor p(H&H ′)/p(H), r(H&H ′, E)
remains equal to r(H, E). In general, if p(E/H&H ′) = p(E/H), the
plausible condition for a, relative to E in the face of H , irrelevant addi-
tional hypothesis H ′, d(H&H ′, E) = (p(H&H ′)/p(H))·d(H, E), whereas
r(H&H ′, E) = r(H, E) (Th.5.2). Hence, whereas r accounts for the irrele-
vance of H ′ in a straightforward way, d does so in a more complicated way,
which may or may not be conceived as more sophisticated.

In order to question the latter suggestion we will conceive an ’objective
case’, assuming that the degree of confirmation should give satisfactory an-
swers in cases where only objective probabilities are in the game, since our
intuitions may then be assumed to be as sharp as possible. Consider the fol-
lowing urn-model of a two-step random experiment. A B-urn is an urn with
precisely one black ball, a BB-urn an urn with precisely two black balls and
a BW-urn an urn with one black and one white ball. First we randomly se-
lect an urn out of a collection of 1 B-urn, 4 BB-urns and 5 BW-urns, hence
with objective probability 1/10, 2/5, 1/2, respectively. Next, in the selected
urn, we randomly select balls with replacement. Suppose that the first n se-
lections of the second type lead to a black ball. It is easy to check that this
type of evidence deductively follows from, hence d-confirms, the hypothesis
that the first selected urn is a B-urn, H-B, as well as the hypothesis that it
is a BB-urn, H-BB. Now the question is whether this evidence (d-)confirms
H-B more than H-BB. Since the evidence differentiates in no way between
the two hypotheses, the ‘r-answer’ (‘as much as’) seems the most plausible
one, and not the ‘d-answer’ (‘less than’). Similarly, consider the disjunctive
hypothesis ‘H-B or H-BB’, being weaker than its disjuncts, but nevertheless
d-confirmed by the evidence. Again, the r-claim that it is as much confirmed
as its disjuncts, seems more plausible than the d-claim that it is more con-
firmed. To be sure, the prior and hence the posterior probability of H-B is
smaller than that of H-BB, and the latter, and hence the former, is smaller
than that of the disjunctive hypothesis ‘H-B or H-BB’.

Let us now consider the way the r- and the d-measure deal with irrelevant
disjunctive evidence E ′ in the case of deductive confirmation of H by E. To
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avoid inessential complications, let us restrict attention to the case that E ′

is incompatible with E. Then r(H, E ∨ E ′) becomes smaller than r(H, E)
by the factor p(E)/p(E ∨ E ′) = p(E)/(p(E) + p(E ′)), hence decreases
with increasing p(E ′). Since d(H, E) = p(H)(r(H, E)− 1), d(H, E ∨E ′)
decreases in a related way. In general, if p(E ′/H) = p(E′), the plausible
condition for irrelevant, for neutral, disjunctive evidence E ′, r(H, E ∨ E′)
and d(H, E ∨ E ′) both decrease with increasing p(E ′); in view of Th. 3.1,
the former does so in a more transparent way than the latter. In sum, as
was to be expected, r and d behave rather similar with respect to irrelevant
disjunctive evidence.

Combining the results for an irrelevant conjunctive hypothesis and an ir-
relevant disjunctive piece of evidence, we may conclude that the r-measure
deals with both in a plausible way.

Let us now turn to the special qualitative applications or principles of
(Kuipers, 1998), Section 2. It will be useful to list first the relevant corollar-
ies of Th.1 and Th.2 with respect to conditional deductive confirmation:

Th.1c: if p(E/H&C) = p(E∗/H&C∗) > 0 then
r(H, E; C) > r(H, E∗; C∗) iff p(E∗/C∗) > p(E/C)
(iff p(H/E&C) > p(H/E∗&C∗), if p(H) > 0)

Th.2c: if p(E/H&C) = p(E/H∗&C) > 0 then
r(H, E; C) = r(H∗, E; C) = p(E/H&C)/p(E/C) =
p(E/H∗&C)/p(E/C)
and
p(H/E&C) > p(H∗/E&C) iff p(H/C) > p(H∗/C)
(iff p(H) > p(H∗) if p(C/H) = p(C/H∗) > 0)

The condition “p(C/H) = p(C/H∗) > 0” amounts, of course, to the claim
that the probability that C is, or will be, realized is independent of the hy-
pothesis under consideration. Note that the unconditional versions of Th.1c
and Th.2c arise by skipping C and C∗ in the formulas.

In the next subsection we will show that the special principle S#.1c, deal-
ing with a fixed hypothesis, e.g. the raven hypothesis, is realized by r(H, E)
as a special case of Th.1c if we are willing to express some relevant back-
ground beliefs by the probabilistic assumption:

Ap-ravens p is based on random sampling in the relevant universe

Finally, it is easy to check that SQ.2c (an EMG EM-confirms “all E are Q”
as much as “all E are G”), dealing with fixed evidence, e.g. in the emerald
case, is trivially realized as a special case of (the first part of) Th.2c:
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r(“all E are Q”, G; EM) = r(“all E are G”, G; EM) = 1/p(G/EM)

If we are, moreover, willing to express the green/grue-case of the weak irrel-
evance assumption (WIA-emeralds) by the probabilistic assumption:

WIAp(-emeralds) p(“all E are G”) > p(“all E are Q”)

it is easy to derive the probabilistic version of the refined intuition (4&5). Of
course, if p(“all E are G”) = 0, the refined intuition cannot be realized, but
the degree of confirmation of both hypotheses will remain 1/p(G/EM).

Since, assuming Ap-ravens, S#.1c-ravens is realized by r(H, E), the raven
paradoxes are qualitatively solved in the same way as before, because all de-
sired results already followed qualitatively, assuming S#.1c-ravens and A-
ravens (see below). Similarly, in the light of the fact that SQ.2c-emeralds
is realized by r(H, E), and assuming WIAp-emeralds, the grue problem is
qualitatively solved in the same way as before, since all desired results al-
ready followed qualitatively, assuming SQ.2c-emeralds and WIA-emeralds.16

As a matter of fact, Sober (1994) inspired us to our proposal for the re-
finement of Goodman’s basic intuition, viz., (4&5) of (Kuipers, 1998), Sec-
tion 2.2. In fact, he derived from WIAp-emeralds the quantitative counterpart
of that refinement.

In sum, the ‘r-theory’ of confirmation can generate the qualitative theory
of deductive confirmation in the most encompassing way.

2.2. The raven paradoxes reconsidered

Whereas it is not interesting to write down the quantitative analysis of the
grue problem, it is instructive, also for later purposes, to spell out the quan-
titative solution of the raven paradoxes. Recall RH, the hypothesis that all
ravens are black. Table 1 introduces a matrix of numbers for the sizes of the
four cells constituting the relevant conceptual possibilities.

#R #R total
#B a b a + b
#B c d c + d
total a + c b + d a + b + c + d

Table 1: Numbers of ‘raven possibilities’

16 Note in particular that assigning the probability value 0 to “for all E: M iff G” amounts
to adding the strong irrelevance assumption (SIA) as described in (Kuipers, 1998). In that
case, the posterior probability and the posterior odds of the grue hypothesis are and remain
0.
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Of course, these numbers are assumed to be finite but further unknown.
There are only some comparative background beliefs. In particular, the as-
sumption A-ravens stating that the number of ravens is much smaller than
that of non-black objects, which amounts to a + c << c + d, and this is
equivalent to a << d (and hence to a+ b << b+d). We assume, moreover,
that a and b are positive and, of course, that c is 0 if RH is true and posi-
tive if RH is false. All results to be presented basically presuppose and use
Ap-ravens, according to which testing is random sampling in the relevant
universe. In the following, ‘sampling’ is to be read as ‘random sampling’
and the explicit occurrence of ‘c’ means that it ‘resulted from’ the condition
that RH is false. Hence, from now on c > 0.

Recall that r(H, E) = p(E/H)/p(E)(= p(H/E)/p(H)).17 Writing ‘Q’
for p(RH), which may or may not be assumed to be positive, and using
the appropriate conditional versions whenever relevant (in which case C is,
of course, supposed to be neutral ‘evidence’ for RH, that is, p(RH/C) =
p(RH) = Q), the crucial expression becomes:

r(RH, E; C) = p(E/RH&C)
p(RH/C)p(E/RH&C)+p(¬RH/C)p(E/¬RH&C)

= 1
Q+(1−Q)p(E/¬RH&C)/p(E/RH&C)

The results are as follows18 :

(1p) a black raven, a non-black non-raven and a black non-raven, re-
sulting from sampling in the universe of objects (hence C tautol-
ogous), non-deductively confirm RH, all with the same r-value:
(a + b + c + d)/(a + b + Qc + d) (e.g., for a black raven, via
p(BR/RH) = a/(a+b+d) and p(BR/¬RH) = a/(a+b+c+d))

(2p) a black raven resulting from sampling ravens cd-confirms
RH with r-value r(RH, BR; R) = (a + c)/(a + Qc), via
p(BR/RH&R) = 1 and p(BR/¬RH&R) = a/(a + c), and a
non-black non-raven resulting from sampling non-black objects
cd-confirms RH with r-value r(RH, BR; B) = (c+d)/(Qc+d)
(similar calculation)

17 Note that, since d(H, E) = p(H)(r(H, E)−1), r(H, E) is also the crucial expression
in calculating the relevant d-values.

18 The assumption that c is some positive number when RH is false is of course a simpli-
fication. However, it is easy to check that the proofs can be refined by conditionalization on
the hypotheses that c = 1, 2, 3, ..., with the result that the claims remain valid, independent
of the prior distribution for the hypotheses.
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(3p) sampling black objects or non-ravens always leads to neutral ev-
idence, i.e., r-value 1, for black objects, via p(BR/RH&B) =
p(BR/¬RH&B) = a/(a + b)

(4p) ad (2p): a black raven resulting from sampling ravens cd-
confirms RH much more than a non-black non-raven resulting
from sampling non-black objects, for (a + c)/(a + Qc) >>
(c + d)/(Qc + d) iff a << d, where the latter condition follows
from A-ravens.

Note that all r-values, except those in (3p), exceed 1, and that this remains
the case when p(RH) = Q = 0. It is easy to check that (4p) essen-
tially amounts to a special case of Th.1c, realizing S#.1c-ravens: an RB
R-confirms “all R are B” more than an RB B-confirms it iff the background
beliefs imply that #R < #B.

It should be noted that this analysis deviates somewhat from the more or
less standard Bayesian solutions of the paradoxes. In the light of the many
references to Horwich (1982), he may be conceived to have given the best
version. In Appendix 2 we argue that our solution, though highly similar,
has some advantages compared to that of Horwich.

2.3. The severity of tests

The raven example provides a nice illustration of the fact that, at least in the
case of a HD-test, the degree of confirmation can also be conceived as the
‘degree of severity’ of the test. When H entails E, r(H, E) expresses the
degree of success or the degree of confirmation H has obtained or can ob-
tain from an experiment that results in E or non-E. In the latter reading, it
expresses a potential degree of success. The smaller p(E), the more success
H can obtain, but the less probable it will obtain this success. Both aspects
are crucial for the intuition of the severity of tests. The more severe a test
is for a hypothesis, the less probable that the hypothesis will pass the test,
but the more success is obtained when it passes the test. More specifically,
the degree of severity of a HD-test is according to Popper (1959, Appen-
dix *ix, 1963, Addendum 2, 1983, Section 32) (a measure increasing with)
the probability that the test leads to falsification or a counter-example, or, to
quote Popper (1983, p. 247), “the improbability of the prediction measures
the severity of the test”. This specification amounts to taking p(¬E) as the
degree of severity, or some function increasing with p(¬E), as do Popper’s
proposals in Addendum 2 of (Popper, 1963). One of Popper’s proposals
for the degree of severity of an HD-test is the r-value 1/p(E), where it is
again important that p(E) is calculated before the experiment is performed,
or at least before its result is known. Like Popper, we see no reason not to
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generalize this definition to p(E/H)/p(E)19 for non-(conditionally) deduc-
tive tests. However, it is primarily HD-tests where we seem to have specific
qualitative severity intuitions, some of which will be studied now.

First, rephrasing the results (1p)–(4p) concerning the raven paradoxes in
the previous section in severity terms, the analysis explains and justifies,
essentially in a deductive way, why scientists prefer, if possible, random
testing of ravens, that is, randomly looking among ravens to see whether
they are black, and, in general, choose that way of conditional random testing
among the ones that are possible, which is the most severe.

Second, a standard objection to Bayesian theories of confirmation in gen-
eral is the so-called ‘problem of old evidence’. If we know already that E
is true, and then find out that H entails E, the question arises whether E
still confirms H . The problem is, of course, that our up to date probabil-
ity function will be such that p(E) = 1, and hence p(E/H) = p(E) = 1
and p(H/E) = p(H). Hence, the r-degree then leads to the neutral value
1. This reflects the intuition that there is no severe test involved any longer.
Despite this severity diagnosis, E does nevertheless represent a success or
confirming evidence of the degree 1/p′(E), where p′ refers to the probabil-
ity function before E became known or, similarly, the probability function
based on the background knowledge minus E. The latter, counterfactual, de-
fence is more or less standard among Bayesians (Howson & Urbach, 1989;
Earman, 1992), but the additional severity diagnosis is not.

Third, there are two other intuitions associated with severity. The first
one is the famous ‘diminishing returns’ intuition of Popper: “There is some-
thing like a law of diminishing returns from repeated tests” (Popper 1963,
p. 240). It expresses the idea that the returns and hence the severity of re-
peated tests decreases in one way or another. Let us look at the raven ex-
ample. Let Rn represent n random drawings (with replacement) of ravens
and let Bn indicate that these n ravens are black. Of course we have that
p(Bn/RH&Rn) = 1. Moreover, replacing p(RH) again by Q, p(Bn/Rn) =
p(RH) ·p(Bn/RH&Rn)+p(¬RH) ·p(Bn/¬RH&Rn) = Q+(1−Q)p(Bn/
¬RH&Rn). Suppose first that Q > 0. Assuming that ¬RH implies that there
is a positive probability (1− q) of drawing a non-black raven, p(Bn/¬RH&
Rn) = qn goes to 0, for increasing n, and hence r(RH, Bn; Rn) will increase
to 1/Q. Hence, r(RH, Bn+1; Rn+1)− r(RH, Bn; Rn) has to go to 0, that
is, the additional returns or degree of confirmation obtained by an extra (suc-
cessful) test goes to 0. In terms of severity, the additional degree of severity
by an extra test goes to 0. A similar diminishing effect arises, of course,

19 Popper calls the r-value in general the ‘explanatory power’ of H with respect to E. Al-
though Popper does not do so, it would have been plausible for him to call it the ‘explanatory
success’ as soon as E has turned out to be the result of the test. We simply call it the degree
of success.
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when we consider the ratio r(RH, Bn + 1; Rn + 1)/r(RH, Bn; Rn), which
will go to 1. However, if Q = 0 the situation is different: r(RH, Bn; Rn) =
1/p(Bn/¬RH&Rn) = 1/qn. Hence, r increases without limit, so does the
extra returns/ confirmation/ severity 1/qn+1 − 1/qn = (1/qn+1)(1 − q),
whereas the ratio r(RH, Bn + 1; Rn + 1)/r(RH, Bn; Rn) remains constant
(1/q). In sum, the r-measure perfectly reflects the intuition of diminishing
returns, assuming that Q = p(RH) is positive.

The last severity intuition to be considered, may be called the ’superiority
of new tests’, that is, the idea that a new test is more severe than a mere
repetition. It is a specific instance of the more general ‘variety of evidence’
intuition. However, it appears to be not easy to give a rigorous explication
and proof of the general intuition (Earman 1992, p. 77–79). But for the
special case, it is plausible to build an objective probabilistic model which
realizes the intuition under fairly general conditions. The set-up is a direct
adaptation of an old proposal for the severity of test (Kuipers, 1983). Let us
start by making the intuition as precise as possible. Suppose that we can dis-
tinguish types of (HD-)test-conditions and their tokens by means other than
severity considerations. E.g. ravens from different regions, and individual
drawings from a region. Any sequence of tokens can then be represented as
a sequence of N and M, where N indicates a token of a new type, i.e. a new
test-condition, and M a token of the foregoing type, i.e. a mere repetition.
Each test can result in a success B or failure non-B. Any test sequence starts,
of course, with N. Suppose further that any such sequence Xn, of length n,
is probabilistic with respect to the outcome sequence it generates. Note that
RH is still supposed to imply that all n-sequences result in Bn, and hence
that one non-B in the outcome sequence pertains to a falsification of RH. A
plausible interpretation of the intuition now is that the severity of a XnN-
sequence is higher than that of a XnM-sequence, that is:

1
Q+(1−Q)p(Bn+1/¬RH&XnN) > 1

Q+(1−Q)p(Bn+1/¬RH&XnM)

which is equivalent to:

p(Bn + 1/¬RH&XnN) < p(Bn + 1/¬RH&XnM)

to be called the superiority condition.
The remaining question is whether this condition holds under general as-

sumptions. For this purpose, we will construct an urn-model which reflects
the ideas of new tests and mere repetitions. Suppose there is a reservoir
with an unknown finite number of urns, each containing an unknown finite
number of balls, which number may or may not differ from urn to urn. Our
hypothesis to be tested states that all balls in the reservoir, and hence in each
urn, are black. Restricting our attention to random selections of urns and
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balls with replacement, the possibilities for probabilistic test sequences are
as follows: start with a random selection of an urn, draw randomly and suc-
cessively a number of balls out of that urn with replacement, replace the urn
and start over again, with the same or a different number of ball selections out
of the next urn. It turns out to be non-trivial (see Kuipers 1983, 219–220) to
prove the superiority condition assuming one very plausible condition, viz.
if RH is false, the ratio of black balls may not be the same in all urns.

In sum, in the case of deductive confirmation, the ratio degree of confirma-
tion may well be conceived as the degree of severity of the HD-test giving
rise to the confirmation, for it satisfies the main qualitative features associ-
ated to current severity intuitions.20

2.4. Qualitative non-deductive confirmation

The plausible question now arises whether it is possible to give a qualitative
explication of non-deductive confirmation, that is, an explication of non-
deductive confirmation in terms of ‘plausibility’. It will be easier to concen-
trate first on confirmation in general, or general confirmation, after which
non-deductive confirmation can be identified with general confirmation of
non-deductive nature.

But first we will check whether and to what extent the r-theory realizes
the success definition of general confirmation and the further general prin-
ciples that were presented Section 1.2 of (Kuipers, 1998). For this purpose,
we have to replace ‘E confirms H ′ by r(H, E) > 1 and ‘plausibility’ by
‘probability’. According to the success definition of confirmation (SDC), we
should have that r(H, E) > 1 iff p(E/H) > p(E). This holds, by defini-
tion, whenever p(E) > 0. According to the updating principle of plausi-
bility (UPP) we should have that p(H/E) > p(H) iff r(H, E) > 1, which
holds whenever p(H) > 0.21 The joint consequence, that is, the principle
of symmetry (PS), p(H/E) > p(H) iff p(E/H) > p(E), holds whenever
both p(H) and p(E) are positive. Finally, r(H, E) realizes the principle of

20 In view of the nature of our analysis and the relation d(H, E) = p(H)(r(H, E) − 1),
it is clear that d(H, E) also realizes the severity intuitions dealt with, though in a somewhat
less transparant way.

21 Note that the principle of partial entailment, suggested at the end of Section 1.1, may
be seen as a special case of SDC or UPP as soon as we assume that “H partially entails E”
implies that H makes E more plausible or that E makes H more plausible, respectively.
Similarly, the principle of inductive extrapolation, also suggested there, is realized by UPP
as soon as we assume that “H inductively extrapolates upon E” implies that E makes H
more plausible. In this case, the implication that H makes E more plausible does not seem
as natural as the reverse implication, hence, the principle is not as easy to see as a special
case of SDC.
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comparative symmetry (PCS), now pertaining to some trivial equivalences of
the conditions r(H∗, E) > (or >>, or =)r(H, E), straightforwardly by its
two-sided definition, where the inequalities only hold as far as the relevant
prior probabilities are non-zero and the relevant conditional probabilities can
be interpreted under ‘p-zero conditions’.

For the remaining comparative principles we first state trivial generaliza-
tions of Th.1 and Th.2:

Th.1G If 0 < p(H) < 1 and p(E∗/H) =≥> p(E/H) > 0 then
r(H,E∗)
r(H,E) = p(E∗/H)

p(E/H)
p(E)
p(E∗) = p(H/E∗)

p(H/E) =≥> p(E)
p(E∗)

Th.1G suggests

P.1G a) If H makes E∗ as plausible as E then E∗ confirms H as
much as E if (and only if) E∗ is as plausible as E
b) If H makes E∗ at least as plausible as E then E∗ con-
firms H at least as much as E if E∗ is at most as plausible
as E
c) If H makes E∗ more plausible than E then E∗ confirms
H more than E if E∗ is less plausible than E

Th.2 can be generalized to:

Th.2G If 0 < p(H) < 1 and p(E/H∗) =≥> p(E/H) > 0 then
r(H∗,E)
r(H,E) = p(E/H∗)

p(E/H) =≥> 1 and
p(H∗/E)
p(H/E) = p(E/H∗)

p(E/H)
p(H∗)
p(H) =≥> p(H∗)

p(H)

Th.2G suggests

P.2G a) If H∗ makes E as plausible as H then E confirms H∗ as
much as H (with the consequence that the relative plausibil-
ity of H∗ with respect to H remains the same)
b) If H∗ makes E at least as plausible as H then E confirms
H∗ at least as much as H (with the consequence that the
relative plausibility of H∗ with respect to H remains at least
the same)
c) If H∗ makes E more plausible than H then E confirms
H∗ more than H (with the consequence that the relative
plausibility of H∗ with respect to H increases)
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It is not difficult to check that P.1 and P.2 are subcases of P.1G and P.2G,
respectively.22

In sum, the qualitative explication of general confirmation can be given by
SDC, UPP, PCS, P.1G and P.2G. As announced, it is now plausible to present
general confirmation of a non-deductive nature as the resulting qualitative
explication of non-deductive confirmation.

Although it is apparently possible to give qualitative explications of gen-
eral and non-deductive confirmation, we do not claim that these explications
are independent of the corresponding quantitative explications. In particular,
we would certainly not have arrived at P.1G and P.2G without the quantitative
detour. To be sure, this is a claim about the discovery of these principles; we
do not want to exclude that they can be justified by purely non-quantitative
considerations.

Similarly, although it is possible to suggest that the two (qualitative) proper
connotations formulated for deductive confirmation can be extrapolated to
general and non-deductive confirmation, we would only subscribe to them,
at least for the time being, to the extent that their quantitative analogues
hold. However, in this respect the quantitative situation turns out to be rather
complicated, hence, its re-translation in qualitative terms becomes even more
so. Fortunately, the proper connotations looked for do not belong to the core
of a qualitative theory of general confirmation.

Accordingly, although there is no intuitively appealing qualitative explica-
tion of general and non-deductive confirmation, there is a plausible qualita-
tive explication of their core features in the sense that it can be derived via
the quantitative explication. In other words, we have an indirectly, more
specifically, quantitatively justified qualitative explication of general and
non-deductive confirmation.

It is important to argue that its justification is at least as strong as the jus-
tification of the quantitative explication ‘under ideal circumstances’, that is,
when the probabilities make objective sense. At first sight, it may seem that
we have to take into account our relativization of the quantitative explication
by emphasizing and criticizing the artificial character of most of the proba-
bilities. However, this is not the correct evaluation. As soon as we agree that
the quantitative explication is the right one in cases where these probabilities

22 And hence their respective deductive applications, i.e., the special principles S.1 (if
H |= E |= E∗ then E d-confirms H more than E∗) and S.2 (if H∗ |= H |= E then E
d-confirms H∗ as much as H). Since the special conditional principles dealing with ravens
and emeralds concerned specific types of (conditional) deductive confirmation, we do not
need to generalize them.
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make (objective) sense23 , the qualitative consequences are justified in gen-
eral, since they are not laden with artificial probabilities. In other words, the
justification of the qualitative explication is at least as strong as the justifi-
cation of the quantitative explication in cases were the relevant probabilities
make sense.

An interesting question is to what extent the d-theory, counting d(H, E) >
0 as confirmation, leads to another explication of general and non-deductive
confirmation. It is almost evident that d realizes SDC, UPP, PS, PCS, and
P.1G for p-normal hypotheses, that it does not leave room for confirmation of
p-zero hypotheses, that is, it is non-inclusive, and finally that it is impure in
the sense that it is in conflict with P.2G. More specifically, the d-theory favors
more probable hypotheses among equally successful ones. In other words,
the d-theory gives rise to an alternative explication of deductive, general
and non-deductive confirmation. We leave the question of whether the two
resulting sets of principles should be considered as expressing the ‘robust
qualitative features’ of two different concepts of confirmation or simply as
two different ways in which the intuitive concept of confirmation can be
modelled as an open problem to the reader.

3. Acceptance criteria

Finally, we will briefly discuss the acceptance of hypotheses in the light of
quantitative confirmation. The subject of probabilistic rules of acceptance
has received much attention in the last decades. For a lucid survey of ‘cog-
nitive decision theory’, see Festa (1999b). As Festa documents, there is
a strong tendency to take ‘cognitive utilities’, such as information content
and distance from the truth into consideration. However, in our set-up, we
only need rules of acceptance in the traditional sense of rules for ‘inductive
jumps’, that is, rules that use conditions for acceptance that may be assumed
to give good reasons for believing that the hypothesis is true simpliciter. The
story of theory evaluation and truth approximation, presented in (Kuipers,
2000), only presupposes such traditional rules of acceptance, in particular,
for general observational hypotheses (first order jumps) and for compara-
tive hypotheses, comparing success (comparative second order jumps) and

23 Think of a context in which not only the evidence results from some kind of random
sampling, but also the population resulted from some earlier random sampling in a larger
universe, and hence the division of true and false hypotheses. The urn-model argument in
favor of the P.2-feature of the r-degree of confirmation in Section 1.3 and the urn-model
illustration of the superiority of new tests in Section 2.3 were of this kind.
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truth approximation claims of theories (comparative referential and theoreti-
cal jumps). Hence, let us finally consider the role the degree of confirmation
may play in the acceptance of hypotheses as presumably true.

Let us first note that the acceptance of H (as true) on the basis of E is
a ‘non-Bayesian move’, that is, assuming that E does not verify H , i.e.,
p(H/E) < 1, acceptance of H amounts to the replacement of p(H/E)
by the new prior probability p′(H) = 1, at least for the time being. It is
also plausible to think that, if p(H) > 0, and if there is something like
a threshold for acceptance, this threshold is independent of p(H). That
is, there is assumed some number ε (<1/2), such that H is accepted when
p(H/E) > 1 − ε. As is well-known, the suggested rule immediately leads
to the lottery-paradox: for a sufficiently large lottery, one may know that
there is just one winning ticket, and at the same time, have to accept for each
of the tickets that it is not the winning one, hence that there is no winning
ticket. However, the paradox is based on a priori reasoning, hence evidence
and posterior probabilities do not play a role in it. So let us assume that the
Bayesian approach to confirmation can formally be combined with a sophis-
ticated kind of non-Bayesian high probability rule of acceptance indepen-
dent of the prior probabilities (see e.g. (Pollock 1990) for some interesting
attempts).

The question now is, what role does the degree of confirmation play in
such rules? The answer is, of course, none, for the degree of confirmation
amounts to an expression of the increase of the probability of the hypothesis,
in a pure or an impure form, and not to the resulting posterior probability,
which is simply calculated by Bayes’ rule. Hence, whether we construe
the degree of confirmation in one way or another, it does not matter for the
acceptance of a hypothesis as ‘true simpliciter’.

To be sure, it may well be that our confirmation intuitions are laden with a
mixture of the suggested two aspects, that is, the increase and the resulting
probability. From the ‘pure’ point of view, we will say that a more probable
hypothesis is not more confirmed by the same deductive success than a less
probable one, it just gets a higher posterior probability, and hence will earlier
pass the threshold for acceptance. Specifically, the conjunction intuition and
the refined grue intuition are done justice by the fact that the corresponding
strange hypotheses will obtain at most a small non-zero posterior probability,
never high enough to pass the threshold, as long as we do not find rock-
blocks of cheese on the moon or color changing emeralds.

Accordingly, the Bayesian approach to posterior probabilities guarantees
that different definitions of the degree of confirmation will not lead to differ-
ences in acceptance behavior, as long as the resulting posterior probabilities
are crucial for the rules of acceptance.

However, p-zero hypotheses will not get accepted in this way, since their
posterior probability remains zero. So, let us see what role the r-degree
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of confirmation might play in acceptance rules for p-zero hypotheses. We
have already remarked that, although it may make perfect sense to assign
non-zero probabilities to genuine hypotheses, it nevertheless occurs that sci-
entists would initially have assigned zero probability to certain hypotheses,
of which they are nevertheless willing to say that they later have come across
confirming evidence for them, and even that they have later decided to ac-
cept them. Now one may argue that this can be reconstrued in an ‘as if’ way
in standard terms: if the scientist would have assigned at least such and such
a (positive) prior value, the posterior value would have passed the threshold.
To calculate this minimal prior value, both d(H, E) and r(H, E) would be
suitable. However, only r(H, E) is a degree for which this ‘as if’ degree
would be the same as the ‘original’ degree, for r(H, E) does not explic-
itly depend on p(H)24 . In contrast to this feature, the original d-degree of
confirmation assumes its neutral value 0.

If one follows this path, it is also plausible to look for a general acceptance
criterion that does justice to the, in most cases, relative arbitrariness of the
prior distribution. Let us, for that purpose, first assume that for cases of
objective probability one decided to take as the acceptance threshold 1 − ε,
for 0 < ε < 1/2. One plausible criterion now seems to be the r-degree of
confirmation that is required for the transition from p(H) = ε to p(H/E) ≥
1 − ε, that is, r(H, E) = (1 − ε)/ε. The suggested criterion can be used for
p-normal as well as p-zero hypotheses. However, as Jeffrey (1975) rightly
remarks, most genuine scientific hypotheses not only start with very low
initial probability, but will remain to have a low posterior probability. Hence,
if ε is very small, they may not pass the threshold. However, passing the
threshold is essentially independently defined from p(H). For deductive
confirmation, it is easily checked to amount to the condition p(E) < ε/(1−
ε). Hence, for somebody for whom p(H) = ε, deductive success E should
be almost as surprising as H itself. Whether the criterion is useful in other
cases has still to be studied.

24 Of course, r(H, E) may be conceived as depending on p(H), by using p(E) =
p(H)p(E/H) + p(¬H)p(E/¬H) to calculate p(E). However, nothing forces us to use
this particular ‘decomposition’ of p(E). The relative independence of r(H, E) from p(H)
may be conceived as an additional, pragmatic advantage of the r-degree: people may agree
about it, without having to agree about p(H).
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Concluding remarks

The possibility of a quantitative, i.c. probabilistic, theory of confirmation
is one thing; its status and relevance is another. Although probabilistic rea-
soning is certainly practiced by scientists, it is also clear that specific prob-
abilities usually do not play a role in that reasoning. Hence, in the best
instrumentalist traditions, as remarked before, the required probabilities in a
quantitative account correspond, as a rule, to nothing in reality, i.e., neither
in the world that is studied, nor in the head of the scientist. They simply pro-
vide a possibility of deriving the qualitative features of scientific reasoning.

If our reservations amounted to the claim that the quantitative accounts
are not yet perfect and have still to be improved, it would be plausible to
call them tentative explanations and even justifications of the corresponding
kinds of qualitative reasoning. However, nothing of that kind seems to be the
case. Hence, it remains questionable to what extent these formal accounts
can be said to reveal quantitative cognitive structures that underlie scientific
reasoning. The situation would change in an interesting way if the r-theory
itself, or some alternative quantitative theory, could be given a justification.
In particular, we do not exclude that such a justification could be given in
terms of functionality for truth approximation. However, although (Kuipers,
2000) deals with truth approximation, it does not touch the problem of such
a justification.

In the meantime, we may only conclude that the r-theory should primarily
be conceived as a quantitative explication of a qualitative cognitive struc-
ture, to be used only for its qualitative consequences. As has been argued,
the justification of these qualitative consequences is at least as good as the
justification of the quantitative explication ‘under ideal circumstances’, that
is, when the probabilities make objective sense.

Appendix 1: Corroboration as inclusive and impure confirmation

As is well-known, Popper preferred to talk about ‘(degree of) corroboration’,
instead of ‘(degree of) confirmation’, but the question is whether his views
essentially deviate from the Bayesian approach. Jeffrey (1975) argued al-
ready that this is not the case. In this appendix, we will more specifically
argue that Popper’s quantitative theory of corroboration amounts to an in-
clusive and impure Bayesian theory.

Popper’s main expositions about corroboration can be found in Popper
(1959, 1963, 1983), where Section 32 of Popper (1983) summarizes his main
ideas. He formulates six conditions of adequacy for a quantitative degree
of corroboration, here denoted by c(H, E), which he conceives as the best
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proposal. We will first list (the core of) these conditions, in which it is im-
portant to realize that p(¬H) and p(¬E) may be conceived as measures for
the (amount of) empirical content of H and E, respectively.

(i) −1 ≤ c(H, E) ≤ p(¬H) ≤ 1
(ii) −1 = c(H&¬H, E) = c(H,¬H) ≤ c(H, E) ≤

c(H, H) ≤ p(¬H) ≤ 1
(iii) c(H ∨ ¬H, E) = 0
(iv) if H entails E and E∗ and if p(E) < p(E∗) then

c(H, E∗) < c(H, E)
(v) if (H∗ entails H such that) 0 < p(H∗) < p(H) < 1 then

c(H, H) < c(H∗, H∗)25

(vi) if (H∗ entails H such that) 0 ≤ p(H∗) < p(H) < 1 and
p(E/H∗) ≤ p(E/H) then c(H∗, E) < c(H, E)

The following definition is the simplest one fulfilling these six conditions
Popper has found.

c(H, E) = p(E/H)−p(E)
p(¬H)p(E/H)+p(E)

Note that c(H, H) = p(¬H) and that c(H, E) = p(¬E)/(p(¬H) + p(E))
in the case of ‘deductive corroboration’, that is, when H entails E.

Note first that c(H, E) is inclusive, in the sense that it can assign sub-
stantial values when p(H) = 0 and p(E/H) can nevertheless be inter-
preted. In that case, c(H, E) amounts to (p(E/H)−p(E/¬H))/(p(E/H)+
p(E/¬H)), which reduces to p(¬E/¬H)/[1 + p(E/¬H)] in the deductive
case. The inclusiveness of c(H, E) is important in view of a specific dispute
of Popper with the Bayesian approach as far as it assigns non-zero probabil-
ities to genuine universal hypotheses. However, several authors have argued
that Popper’s arguments against p-normal hypotheses (Popper 1959, Appen-
dix *vii and *viii) fail, e.g., Earman (1992, section 4.3), Howson and Urbach
(1989, section 11.c) and Kuipers (1978, Ch. 6).26

It is easy to check that c(H, E) satisfies the qualitative principle P.1 of de-
ductive confirmation rephrased in terms of deductive (d-)corroboration:

P.1cor if E and E∗ d-corroborate H then E d-corroborates H more
than E∗ iff E∗ is more plausible than E in the light of the
background beliefs

26 Moreover, there is the interesting suggestion of Jeffrey (1975, p. 150) to assign infin-
itesimal numbers, developed in non-standard analysis, to p-zero hypotheses in the standard
sense.
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Surprisingly enough27 , it satisfies the (rephrased) impure alternative to P.2
favoring more probable hypotheses when equally successful:

P.2Icor if E d-corroborates H and H∗ then E d-corroborates H
more than H∗ iff H is more plausible than H∗ in the light
of the background beliefs

To study the qualitative features of ‘general’ corroboration, we will look in
some detail at the conditions (i)–(vi). The first three conditions deal with
quantitative special values, and are mainly conventional, except that (i) and
(ii) together require that, for each H , c(H, H) is the maximum value, by
Popper called the degree of corroborability, which should not exceed p(¬H).
Although Popper restricts (iv) to d-corroboration, giving rise to P.1cor, his
definition of c(H, E) satisfies the generalization of P.1cor to

P.1Gcor if H makes E at least as plausible as E∗ and if E is less
plausible than E∗ in the light of the background beliefs,
then E corroborates H more than E∗

which corresponds to P.1G. Condition (v) amounts, in combination with
(i) and (ii), to the idea that a less probable hypothesis should be able to
get a higher maximum degree of corroboration than a more plausible one.
The Bayesian measures d(H, E) and r(H, E) also satisfy this idea, where
d(H, E) has the same maximum value, viz. d(H, H) = p(¬H), while that
of r(H, E), r(H, H), equals 1/p(H). Finally, condition (vi) amounts to the
qualitative idea

P.2IGcor if H makes E at least as plausible as H∗ and if H is more
plausible than H∗ in the light of the background beliefs,
then E corroborates H more than H∗

Recall that the d-degree of confirmation was impure as well, more specifi-
cally, also favoring plausible hypotheses. Hence, it is no surprise that it also
satisfies the analogues of (vi), P.2Icor and P.2IGcor.

The foregoing comparison suffices to support the claim that the resulting
qualitative theory of Popper roughly corresponds to the impure qualitative

27 Note that from the informal expositions of Popper one might sometimes get the idea that
he is pleading for the opposite of P.2Icor, favoring less plausible hypotheses when equally
successful, that is, the stronger hypothesis should be praised more by the corroborating ev-
idence than the weaker one. However, he is well aware of this consequence of (vi), for he
speaks (Popper 1983, p. 251) of an aspect in which degree of corroboration resembles prob-
ability. Hence, it may be assumed that Popper, at least on second thoughts, subscribed to
P.2Icor.
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Bayesian theory based on d(H, E) for p-normal hypotheses. However, in
contrast to d(H, E), c(H, E) is inclusive.

Appendix 2: Comparison with standard analysis of the raven paradox

As suggested in Section 2.3, there is a more or less standard Bayesian so-
lution of the paradoxes of which Horwich (1982) may be assumed to have
given the best version28 . Hence, we will compare our solution with his. Af-
ter criticizing Mackie’s account (Mackie 1963) and pointing out that an un-
conditional approach will miss conditional connotations of the (first) raven
paradox, he introduces the idea of conditional sampling, and obtains roughly
the same confirmation claims as reported in (2p) and (4p). However, as we
will explain, his precise quantitative versions of (2p) and (4p) are wrong, and
he misses the core of (1p) and (3p). The latter shortcoming is mainly due to
overlooking a plausible relation between the two relevant matrices. The for-
mer shortcoming is due to a systematic mistake in the intended calculation
of r-values.

There is one difference in Horwich’s approach which is not really impor-
tant. He does not interpret the matrix as a survey of the sizes of the cells, but
as reporting subjective probabilities of randomly selecting a member of the
cells. It is easy to transform our matrix in this sense by dividing all numbers
by their sum (a + b + c + d), without changing any of the results.

The first serious difference is the following. We use the matrix for two
purposes, with c > 0 for calculating p(E/¬RH&C)-values, to be called
the ¬RH-matrix, and with c = 0 for calculating p(E/RH&C)-values, to be
called the RH-matrix. The latter provides the numerator of r(RH, E; C) =
p(E/RH&C)/p(E/C), whereas its denominator p(E/C) is calculated by

(*) p(E/C) = p(RH/C)p(E/RH&C) + p(¬RH/C)p(E/¬RH&C)
= Qp(E/RH&C) + (1 − Q)p(E/¬RH&C)

Recall that the simplification derives from the plausible assumption that
p(RH/C) = p(RH) = Q, that is, C is neutral evidence for H.

Horwich, instead, interprets the a/b/c/d/-matrix as directly prepared for
p(E/C)-values, to be called the HOR-matrix. Hence, he leaves open whether
c is zero or positive. This is problematic, however, for some of his general
conclusions (see below) only hold if one assumes that c in the HOR-matrix is
positive, hence that RH is false, hence that it is in fact the ¬RH-matrix. As a
consequence, though he intends to directly base the p(E/C)-value occurring

28 He does not explicitly deal with the second paradox, but implicitly the situation is clear.
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in r(RH, E; C) on the HOR-matrix, he bases it in fact on the ¬RH-matrix.
However, a genuine Bayesian approach requires to calculate p(E)-values on
the basis of (*), and hence on both the RH- and the ¬HR-matrix, to be called
the proper calculation.

The second main difference is that Horwich introduces an independent
RH-matrix for calculating p(E/HR&C), to be indicated as the HOR-RH-
matrix, with α, β, γ = 0, δ, representing the relevant probabilities under
the assumption that RH is true. Horwich waves away the idea of a relation
between his two matrices. However, in his probability interpretation of the
a/b/c/d-matrix, it seems rather plausible to take α, β, and δ proportional
to a, b, and d, respectively, such that they add to 1. This corresponds to
identifying the non-zero values in our RH-matrix with a, b, and d in the size
interpretation of our ¬RH-matrix, as we in fact did. Why should the relative
probabilities for two cells differ depending on whether a third cell is empty
or non-empty? When two matrices are related in the suggested way they
will be said to be tuned. Hence, our RH- and ¬RH-matrix are tuned and our
results (1p)–(4p) directly follow from the proper calculation presupposing
these tuned matrices.

Let us call (r-)values tuned when they are based on two tuned matrices,
otherwise they are called untuned. Due to the improper calculation, Horwich
calculates in fact untuned values for the ratio p(E/HR&C)/p(E/¬HR&C),
to be called the r0-value (with index 0, for it corresponds to the r-ratio when
p(RH) = Q = 0), instead of the intended untuned r+-values, p(E/RH&C)/
p(E/C), based on some Q > 0. Of course, when the calculated values are
tuned one gets tuned r0-values instead of tuned r+-values.

Now we can sum up Horwich’s deviations from his intended proper Bayes-
ian treatment of the raven paradoxes. By the improper calculation, Hor-
wich got the wrong r-values of (2p) and (4p); he got in fact the r0-values,
r0(RH, BR; R) = (a + c)/a and r0(RH, BR; B) = (c + d)/d, which he did
not intend, for he apparently assumes throughout that Q is non-zero. Note
that the intended qualitative results of (2p) and (4p), i.e., (2) and (4) of Sec-
tion 2.1 of (Kuipers, 1998), only follow when c is positive, for if c = 0, both
r0-values are 1. Hence, contrary to his suggestion of using the HOR-matrix
(in which c may or may not be 0), Horwich uses in fact the ¬RH-matrix
(with c > 0) for the (improper) calculation of p(E/C).

Moreover, by not assuming tuned matrices, he missed the results (1p) and
(3p). Regarding (1p), he does not even calculate the values for unconditional
confirmation corresponding to the uniform one we obtained, viz., (a + b +
c + d)/(a + b + Qc + d). The improper calculation would have given,
assuming the size-interpretation of all numbers, αF/a, βF/b, and δF/d, with
F = (a + b + c + d)/(α + β + δ), for a black raven, a non-black non-raven
and a black non-raven, respectively. If these values are not tuned they differ
from each other. If they are tuned, they assume a uniform value, but the
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wrong one, viz., the corresponding r0-value (a + b + c + d)/(a + b + d).
Finally, regarding (3p), Horwich does calculate the (r0-)values for sampling
non-ravens and black objects corresponding to the uniform one we obtained,
viz., 1. If these values are not tuned, they differ for all four possible results,
a non-raven that is black or non-black, and a black object that is a raven or a
non-raven. However, if they are tuned, this gives, more or less by accident,
the right uniform value 1, reported in (3p), for the r0- and the r+-value for
neutral confirmation are both equal to 1.

University of Groningen
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