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INCONSISTENCY-ADAPTIVE ARITHMETIC

TIMOTHY VERMEIR∗

Abstract
This paper concerns a specific inconsistent arithmetic, formulated
by Jean Paul Van Bendegem and praised for its so-called outstand-
ing properties by Graham Priest. I shall show that this inconsistent
arithmetic, in the form presented by Van Bendegem and Priest, is
subject to three major problems. Next, I shall show that these prob-
lems may be removed by replacing the underlying logic.

1. Introduction

Two articles on a specific system for inconsistent arithmetic are of special
interest in this paper: Strict Finitism as a Viable Alternative in the Founda-
tions of Mathematics by Jean Paul Van Bendegem (appeared in Logique et
Analyse [11], see also [10] for an earlier version), and Graham Priest’s article
in Mind entitled Is Arithmetic Consistent? [8].

The system for inconsistent arithmetic presented in these papers is ob-
tained by collapsing the standard models of arithmetic. The idea is to define
equivalence classes on the domain D, the set of natural numbers, as follows

ε(D) = {[0], [1], [2], . . . [K], [L, L′, L′′, . . .]} (1)

(“K” denotes the number that is classically the predecessor of L. The num-
ber K shall be formally defined in subsection 4.2.) The domain of the col-
lapsed model is the finite ε(D).

∗I am greatly indebted to Diderik Batens and Kristof De Clercq for their helpful com-
ments on earlier versions of this paper. Research for this paper was supported by the Fund
for Scientific Research – Flanders.
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222 TIMOTHY VERMEIR

The resulting model is given the Logic of Paradox (LP)1 as underlying
logic—see [6] and [7]. According to this logic, formulas receive non-empty
subsets of {0, 1} as truth values. The value {1} indicates that a formula is
true (only), the value {0} that it is false (only), and the value {0, 1} that it is
both true and false.

In a collapsed model, an equality t1 = t2 is true if there is a number in
the equivalence class ε(t1) that is equal to a number in the equivalence class
ε(t2). The equality is false whenever there are two numbers, one belonging
to the first equivalence class, and one to the second, which are not equal in
classical arithmetic. It follows that L = L is both true and false, as is the
case for ∼L = L. In the sequel, I shall employ IAC to refer to this particular
system for inconsistent arithmetic.

In [8], Graham Priest proves the following lemma (CA abbreviates Clas-
sical Arithmetic)

Lemma 1 : (The Collapsing Lemma [8]) For any wff ϕ, if ϕ is true/false in
CA, then ϕ is true/false in IAC.

The intuitive interpretation of IAC is that all numbers classically smaller
than L behave consistently, that is classically. L and all of its successors on
the other hand do not: every property P that holds for one of them, inevitably
holds for them all.2 Thus, intuitively, 0 = 1 is false, and 1 = 1 is true
according to IAC, just as the Collapsing Lemma states.

However, lemma 1 should be understood in the light of the logic LP. A
correct understanding of this lemma requires that one realizes that, where
truth and falsity are taken to exclude each other in the classical case, they
definitely do not exclude each other in the context of LP. Hence, the lemma
does not prohibit that a formula is true only in CA, while both true and false
in IAC.

Both authors have claimed a number of things about IAC. Among these
are that the system is finitely axiomatizable and that it comprises all of clas-
sical arithmetic. The central point I want to make in this paper, is that many
of these claims are indeed correct, but only if one replaces LP by a (very)
different logic.

1 Characteristic for this logic is that there is no real implication: the implication is defined
by the classical A → B =def ∼A ∨ B, which, in a paraconsistent environment is not
detachable.

2 As such, these numbers are indistinguishable, and we can thus speak of a finite domain.
The number L is taken to be (by Graham Priest, see [8] and [9]) so large that it does not have
any physical meaning, a number “larger than the number of combinations of fundamental
particles in the cosmos” ([8], page 338).
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In the next section, I shall raise three major objections to the system IAC.
These objections typically derive from properties of the underlying logic LP.
In section 3, two logics are briefly described, namely the logic CLuNs (3.1),
and ACLuNs2 (3.2). These two logics will form the basis of the different
systems that will be constructed in section 4. The following section then
describes a final attempt, and the solution to the problems at hand.

2. Some problems with IAC

Gödel’s theorem and maximal non-triviality

Both Jean Paul Van Bendegem and Graham Priest have emphasized in their
articles on inconsistent arithmetic, that IAC is finite, and is, as a result, not
affected by Gödel’s theorem: both the Gödel sentence and its negation are
true in IAC.

But, there is more to the story of the Gödel-theorem, as is pointed out by
Diderik Batens in his [1].3 The idea behind Gödel’s First Theorem is, in
Batens’ words, that “a domain is only completely described by some the-
ory if the latter is maximally non-trivial (. . . ) Any axiomatization of CA is
incomplete because one may add an axiom to it, and still get a non-trivial
theory.” ([1], section 10).

It can easily be seen that this aspect of the theorem is not avoided by IAC.
If we would add the axiom t = t′, for any number t classically between
0 and L, we obtain a number theory that is non-trivial. Hence, IAC is not
maximally non-trivial, and not complete in the sense described above.

Elaborate axiomatization

As we have just seen, the logic LP, underlying IAC as defined by Van Ben-
degem and Priest, does not include a detachable implication. This is the
cause of a next, quite severe problem from which IAC suffers.

Since there is no detachable implication, there is no means of expressing
rules like “if n and m are not equal, then f(n) and f(m) are not equal”,
where f is one or other function on the natural numbers.

For instance, we want to assure that all classical inequalities (up to L)
remain true in inconsistent arithmetic. All these are captured in the following

3 In this article, it is also shown that there are problems with this particular inter-
pretation of Gödel’s theorem, and the proof Priest hints towards. What to think about
the Gödelnumbering for instance? Surely there are wffs with a Gödelnumber larger than
L. (All unpublished papers cited here, and many more, are available from the URL
http://logica.rug.ac.be/centrum/writings/.)
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triangle, with in total (L · (L + 1))/2 entries:

∼0 = 1
∼1 = 2 ∼0 = 2
∼2 = 3 ∼1 = 3 ∼0 = 3

...
...

...
. . .

∼0(L−1) = L ∼0(L−2) = L . . . ∼1 = L ∼0 = L

The first column can be captured by the axiom (∀x)∼x = x′, the second
by (∀x)∼x = x′′, and so on. This series continues up to the statement that
every number is not equal to its Lth successor: (∀x)∼x = x(L). In the
absence of a detachable implication, each of these L formulas needs to be an
axiom in order to capture these classical theorems.

An interesting consequence of this problem is that, although IAC, which
is a finite theory, is finitely axiomatizable, it is not sensibly finitely axioma-
tizable. If, as Van Bendegem would like it, L just is the largest number, then
there are not enough numbers to enumerate the axioms needed to formu-
late the axiomatization of IAC.4 Enlarging L clearly worsens the problem
instead of solving it.

The abnormality of models

In LP, a wff A is regarded as true in a model M, if 1 ∈ vM(A). As such,
when Priest states that, for instance, 2 + 3 = 5 is true in all IAC-models,
what he actually says is that for all models5

M ∈ MIAC
: 1 ∈ vM(2+3 = 5).

This does not exclude there being models in which this equation is also false,
i.e. there are IAC-models in which vM(2 + 3 = 5) = {0, 1}. 2 + 3 = 5 is a
paradoxical sentence in these models.

This constitutes the third objection against IAC: although the classical
truths hold in all models, there are models in which there are more true
contradictions then necessary, models which are too abnormal.

4 A possible reply is to state that we could combine these L axioms into a very long
conjunction. But needles to say this is not a real way out of the problem, for this particular
axiom would consist of more than L tokens.

5 Sets of models will be denoted by M, with a subscript specifying the formal system
defining the models. This notation will be used throughout the article.
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3. Two paraconsistent logics

3.1. The logic CLuNs

CLuNs is a logic derived from the much poorer paraconsistent logic CLuN,
first described in [2].6 The added ‘s’ denotes the addition of the Schütte-
properties, which relate to negation. For a detailed account on CLuNs, I
refer to [5]. For our purpose, a brief introduction will do.

The basic idea behind CLuN and CLuNs, is that we drop from CL the
consistency-presupposition, leaving only the demand for completeness: of
two formulas A and ∼A, at least one must be true, but possibly both are.
Unlike in Priests LP, a formula can not be true and false at the same time,
but may be true together with its negation: vM(A) = vM(∼A) = 1.

In CLuN, all properties of negation are lost, except for those derivable
by positive logic from |= A ∨ ∼A. The Schütte-properties are a way to
reintroduce some central properties of negation.

The language of CLuNs is the language L of CL, and can be defined
by means of the tuple 〈S, C,V,P1,P2, . . .〉 where S is the set of sentential
letters, C is the set of (letters for) individual constants, V the set of variables,
and Pr the set of predicates of arity r. L also contains bottom, ⊥, implicitly
defined by ⊥ ⊃ A.

The axioms and rules of CLuN (see also [2]) are:

MP From A and A ⊃ B to derive B
R∀ To derive ` A ⊃ (∀α)B(α) from ` A ⊃ B(β),

provided β does not occur in either A or B(α).
R∃ To derive ` (∃α)A(α) ⊃ B from ` A(β) ⊃ B,

provided β does not occur in either A(α) or B.
A⊃1 A ⊃ (B ⊃ A)
A⊃2 ((A ⊃ B) ⊃ A) ⊃ A
A⊃3 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
A⊥ ⊥ ⊃ A
A&1 (A&B) ⊃ A
A&2 (A&B) ⊃ B
A&3 A ⊃ (B ⊃ (A&B))
A∨1 A ⊃ (A ∨ B)
A∨2 B ⊃ (A ∨ B)
A∨3 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))
A≡1 (A ≡ B) ⊃ (A ⊃ B)

6 The name “CLuN” denotes the main idea behind it: it is a weakening of Classical Logic
(CL), allowing for gluts with respect to negation.
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A≡2 (A ≡ B) ⊃ (B ⊃ A)
A≡3 (A ⊃ B) ⊃ ((B ⊃ A) ⊃ (A ≡ B))
A∼1 (A ⊃ ∼A) ⊃ ∼A
A∀ (∀α)A(α) ⊃ A(β)
A∃ A(β) ⊃ (∃α)A(α)
A=1 α = α
A=2 α = β ⊃ (A ⊃ B) where B is obtained by replacing in A an

occurrence of α that occurs outside the scope of a negation by β

An axiomatization of CLuNs is obtained by replacing A=2 by

A=2s α = β ⊃ (A ⊃ B) where B is obtained
by replacing in A an occurrence of α by β

and adding

A∼∼ ∼∼A ≡ A
A∼⊃ ∼(A ⊃ B) ≡ (A&∼B)
A∼& ∼(A&B) ≡ (∼A ∨ ∼B)
A∼∨ ∼(A ∨ B) ≡ (∼A&∼B)
A∼≡ ∼(A ≡ B) ≡ ((A ∨ B)&(∼A ∨ ∼B))
A∼∀ ∼(∀α)A ≡ (∃α)∼A
A∼∃ ∼(∃α)A ≡ (∀α)∼A

For the semantics of CLuNs, it is handy to extend the language L with O,
the set of pseudo-constants, with the same cardinality as the domain of the
largest model one wants to consider. The language L+ is then defined as the
tuple 〈S, C ∪ O,V,P1,P2, . . .〉. Define the set W+ as the set of wffs over
L+. Furthermore, let ∼S be the set {∼A|A ∈ S}, and ∼Pr = {∼πr|πr ∈
Pr}; these are the sets of negated sentential letters and negated predicates
respectively. Note that where in CLuN all ∼-negations “drop from the sky”
(i.e. are not truth-functional), in CLuNs this is only the case for negations
of atomic formulas.

A CLuNs-model M is a couple 〈D, v〉, where D is the domain, and v is
the interpretation function defined by:

S1.1 v : S → {0, 1}
S1.2 v : C ∪ O → D

such that D = {v(α)|α ∈ C ∪ O}
S1.3 v : Pr → P (Dr)

(the power set of the r-th Cartesian product of D)
S1.4 v : ∼S → {0, 1}
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S1.5 for all r > 0, v : ∼Pr → P (Dr)

Hence, the valuation function defined by a model M = 〈D, v〉 is given by
the following:

S2.1 vM : W+ → {0, 1}
S2.2 where A ∈ S , vM(A) = v(A); vM(⊥) = 0
S2.3 vM(πn(α1, . . . , αn)) = 1 iff 〈v(α1), . . . v(αn)〉) ∈ v(πr)
S2.4 vM(A ⊃ B) = 1 iff vM(A) = 0 or vM(B) = 1
S2.5 vM(A&B) = 1 iff vM(A) = 1 and vM(B) = 1
S2.6 vM(A ∨ B) = 1 iff vM(A) = 1 or vM(B) = 1
S2.7 vM(A ≡ B) = 1 iff vM(A) = vM(B)
S2.8 vM((∀α)A(α)) = 1 iff vM(A(β)) = 1 for all β ∈ C ∪ O
S2.9 vM((∃α)A(α)) = 1 iff vM(A(β)) = 1 for at least one β ∈ C ∪ O
S2.10 vM(α = β) = 1 iff v(α) = v(β)
S2.11 where ∼A ∈ ∼S , vM(∼A) = 1 iff vM(A) = 0 or v(∼A) = 1
S2.12 where r > 0, vM(∼πr(α1, . . . , αr)) = 1 iff

vM(πr(α1, . . . , αr)) = 0, or 〈v(α1), . . . , v(αr)〉 ∈ v(∼πr)
S2.13 vM(∼ ∼A) = vM(A)
S2.14 vM(∼(A ⊃ B)) = vM(A&∼B)
S2.15 vM(∼(A&B)) = vM(∼A ∨ ∼B)
S2.16 vM(∼(A ∨ B)) = vM(∼A&∼B)
S2.17 vM(∼(A ≡ B)) = vM((A ∨ B)&(∼A ∨ ∼B))
S2.18 vM((∀x)A(x)) = vM((∃x)(∼A(x))
S2.19 vM((∃x)A(x)) = vM((∀x)(∼A(x))

In [5], the following theorems are proven:

Theorem 1 : CLuNs is sound with respect to the semantics.

Theorem 2 : CLuNs is (strongly) complete with respect to its semantics.

Theorem 3 : CLuNs is maximally paraconsistent.

It is important to emphasize that CLuNs has a detachable implication, ⊃,
unlike Priests paraconsistent logic LP.
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3.2. The logic ACLuNs2

Generally speaking, inconsistency-adaptive logics are paraconsistent, non-
monotonic logics which interpret the set of premises as consistently as pos-
sible.7 They localize the inconsistencies that follow from the premises and
adapt to these. This adaption must be understood as follows: where an in-
consistency is involved, the rules of inference are restricted in order to avoid
triviality. Where such a threat is not present, all rules can be applied to their
full strength.

Inconsistency-adaptive logics are defined from two logics, known as the
lower limit logic (a logic capable of handling inconsistencies) and the upper
limit logic (which defines logical normality). The combination of these two
logics is governed by an adaptive strategy. Until now, all inconsistency-
adaptive logics studied have CL as upper limit logic.8 The logic ACLuNs2,
which we shall describe here, has CLuNs as lower limit logic, and uses the
minimal abnormality strategy.9

An important aspect of inconsistency-adaptive proofs is that they are dy-
namic. This means that all derivations validated only by the upper limit
logic are based on the understanding of the premises provided by a certain
stage of the proof. At a later stage, when our insight has grown (for instance
by means of further analysis of the premises), these derivations must be re-
evaluated using the newly gained knowledge concerning the abnormalities
present in the premises. Consider the simple example of a proof in which p
and ∼p ∨ q occur at a certain stage. From these CL (the upper limit logic)
validates the derivation of q. However, if we would learn at a later stage
that ∼p also holds (from some other premises for instance), we shall need
to revise the derivation of q, since this new information tells us that both p
and ∼p∨ q are true without q necessarily being true. In situations like these,
where we rely on the consistent behaviour of one or more formulas to derive
another formula, we speak of a formula (in this case q) being conditionally
derivable from the premises (the condition in this case being the consistent
behaviour of p). As the example illustrates, conditionally derived formulas
are not necessarily definite.

In ACLuNs2-proofs, the abnormalities are captured by the DEK-conse-
quences of the premises. Where ∃A abbreviates A proceeded by an existen-
tial quantifier over each individual variable free in A, a DEK-formula is a

7 See [2], [4] and [3], among others, for a more detailed account on adaptive logics.

8 Another brand of adaptive logics, the ampliative adaptive logics, are an exception in
this respect.

9 Another well known strategy is reliability, see [2].
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formula of the form

∃(A1&∼A1) ∨ . . . ∨ ∃(An&∼An)

where all Ai are primitive formulas.10 We shall abbreviate this, for the sake
of simplicity, as DEK{A1, . . . , An}; where I write DEK(∆), ∆ is obvi-
ously a finite set. Each such Ai is called a factor of the DEK-formula. A
DEK-formula DEK(∆) is called a minimal DEK-consequence of a set
of premises Γ iff Γ `CLuNs DEK(∆) and there is no Θ ⊂ ∆ such that
Γ `CLuNs DEK(Θ). It can easily be seen that at least one factor of a min-
imal DEK-consequence must behave inconsistently in order to validate the
entire disjunction.

As a result of the De Morgan properties present in CLuNs, ACLuNs2
has the very interesting property that abnormalities are restricted to primi-
tive formulas only. This means that all abnormalities originate from atomic
formulas.

An ACLuNs2-proof consists of a number of lines, each of which contains
five elements: a line number, the formula derived, the lines from which the
formula is derived, the rule used, and the condition on which this line is de-
rived. This condition is a set of primitive formulas the consistent behaviour
of which we rely on in order to derive the formula that is the second element
of the line. In the above example, the fifth element of the line on which q is
derived would be the set {p}. Naturally, conditions are carried along: when
we use a line i, with ∆ as fifth element to derive a formula on line j, ∆ shall
be a subset of the fifth element of line j, independently of the derivation rule
used.

Formally, the minimal abnormality strategy is specified by the integrity
criterion. Let ◦Φs be the set of all φ, where φ contains one factor out of each
minimal DEK-consequence (at stage s). Define Φs from ◦Φs as the set of
those elements of ◦Φs that are not supersets of other elements.

Definition 1 : Line j, with A as second element, fulfills the integrity criterion
(at stage s) iff (i) the intersection of some member of Φs and of the fifth
element of line j is empty, and (ii) for each φ ∈ Φs there is a line k such
that the intersection of φ and the fifth element of line k is empty and A is the
second element of line k.

The derivation rules for ACLuNs2 are the following.

10 This limitation to primitive formulas is not common to all inconsistency-adaptive logics.
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RU If `CLuNs (A1& . . .&Am) ⊃ B and A1, . . . , Am occur in the proof at
a stage s, then add a new line to the proof, consisting of an appropriate
line number, B, the numbers of the lines on which the Ai were derived,
“RU”, and, as fifth element, the union of the fifth elements of all lines
mentioned in the third element.

RC If `CLuNs DEK{C1, . . . , Cn} ∨ ((A1& . . .&Am) ⊃ B) and
A1, . . . , Am occur in the proof at a stage s (where the Ci are primitive
formulas), then add a new line to the proof, consisting of an appropriate
line number, B, the numbers of the lines on which the Ai were derived,
“RC”, and, as fifth element, the union of {C1, . . . , Cn} with the fifth
elements of all lines mentioned in the third element.

At any stage s of the proof, a line i is marked (e.g. by means of a “†”) iff
line i does not fulfill the integrity criterion (at stage s). A marked line is not
considered as part of the proof (at that stage), and hence can not be relied
upon for further derivations.

Even though the proof theory of ACLuNs2 is dynamic, we are able to
define what it means for a formula to be finally ACLuNs2-derived from a
set of premises. A formula A is finally derived in an ACLuNs2-proof from
Γ iff A occurs as the second element of an unmarked line i of the proof,
and if line i is marked in an extension of the proof, then it is unmarked in a
further extension.

Let us examine a simple example.

1. p&r — PREM —
2. p ⊃ (s&q) — PREM —
3. r ⊃ ∼(t ∨ q) — PREM —
4. ∼s ∨ ∼q — PREM —
5. ∼s ∨ t — PREM —
6. p 1 RU ∅
7. s&q 2,6 RU ∅
8. s 7 RU ∅
†9. t 5,8 RC {s}
10. (s&∼s) ∨ (q&∼q) 4,7 RU ∅

At this stage of the proof, Φ10 = {{q}, {s}}, and hence line 9 must be
marked. However, the proof can be further extended:

11. r 1 RU ∅
12. ∼(t ∨ q) 3,11 RU ∅
13. ∼t&∼q 12 RU ∅
14. ∼q 13 RU ∅
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15. ∼t 13 RU ∅
16. q 7 RU ∅
17. q&∼q 14,16 RU ∅

We now have derived a new DEK-formula, DEK{q} which is minimal at
stage 17. As such, Φ17 = {{q}}, and the marking of line 9 must be removed,
and it becomes

9. t 5,8 RC {s}

We can still extend the proof with the following line.

18. (t&∼t) ∨ (s&∼s) 5,8,15 RU ∅

This DEK-consequence is minimal at this stage, and forces us to mark line
9 again.

†9. t 5,8 RC {s}

This proof nicely illustrates the dynamic character of ACLuNs2-proofs:
when more knowledge about the premises became available, by reasoning
from them, markings were added and removed again, until a “stable” situa-
tion was reached after line 18.

For the model theoretic side of ACLuNs2 I shall be very brief. Define the
set of abnormalities of a CLuNs-model M as the set Ab(M) of all primitive
formulas A for which vM(∃(A&∼A)) = 1. The ACLuNs2-models of Γ
are then defined as the set of those CLuNs-models of Γ for which Ab(M)
is minimal. More formally, a CLuNs-model M is an ACLuNs2-model of
Γ iff there is no CLuNs-model M

′ of Γ such that Ab(M′) ⊂ Ab(M). For
all further details concerning the semantics of adaptive logics, I refer the
interested reader to the bibliography.

4. Axiomatizing inconsistent arithmetic

4.1. Introduction: not even an attempt

A good place to start for axiomatizing inconsistent arithmetic is the set
of Peano-axioms, which define (when the underlying logic is CL) Peano-
arithmetic (hereafter PA). As is clear from previous sections, the underlying
logic of any system for inconsistent arithmetic can not be CL, for triviality
would be inevitable. Therefore, the logic CLuNs as defined above will be
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the underlying logic.11 The Peano-axioms are:

AX1 (∀x)∼(0 = x′)
AX2 (∀x, y)(x′ = y′ ⊃ x = y)
AX3 (∀x)(x + 0 = x)
AX4 (∀x, y)(x + y′ = (x + y)′)
AX5 (∀x)(x · 0 = 0)
AX6 (∀x, y)(x · y′ = (x · y) + x)
AX7 (A(0)&(∀x)(A(x) ⊃ A(x′))) ⊃ (∀x)A(x)

Although the underlying logic, CLuNs, is paraconsistent, preventing the
application of ex falso quodlibet, triviality is the result of adding

AX8 L = L′

to the above. The cause of this triviality lies in the combination of AX2 with
AX8: from L = L′ together with (∀x, y)(x′ = y′ ⊃ x = y) one can derive,
in L + 1 steps, the disastrous 0 = 1, trivializing everything along the way.
At that point, we are at total loss.

In what follows, I will define two versions of inconsistent arithmetic,
namely IA1 (in subsection 4.2) and IA2 (in subsection 4.3). These will solve
the first problem that inconsistent arithmetic as defined by Van Bendegem
and Priest, IAC, suffered: incompleteness.

4.2. First attempt: IA1

What we saw earlier on as a benefit that CLuNs has over LP, namely the
presence of a detachable implication, now seems to be the cause of trouble:
it is the detachable character of the implication in AX2 that leads to triviality
when combined with AX8. A possible adjustment to the axioms can thus be
to delete the weaken AX2 to:

AX2’ (∀x, y)(∼x′ = y′ ∨ x = y)

11 The reason we take CLuNs instead of CLuN to be the appropriate logic for our pur-
pose, is that the Schütte-properties allow us to derive more formulas. As such, they make the
gap between classical logic and paraconsistent logics smaller (the Schütte-properties inhere
in CL), making it possible to derive more CA-theorems. The drawback is that these proper-
ties, being related to negation, are the cause of a more extensive spreading of inconsistencies.
This will turn out not to be a problem for inconsistent arithmetic.
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We can define a pseudo-implication as follows

A = B =def ∼A ∨ B (2)

such that the second axiom becomes

AX2’ (∀x, y)(x′ = y′ = x = y)

Note that = is the implication of LP, which Priest writes as “→”.
Since we are at it, we can continue in this fashion of redefining implica-

tions. Define

(A → B) =def (A ⊃ B)&(∼B ⊃ ∼A) (3)

This implication is, in a paraconsistent environment, stronger than the clas-
sical implication ⊃, since it reintroduces modus tollens. We can replace the
last Peano-axiom, defining mathematical induction by

(A(0)&(∀x)(A(x) ⊃ A(x′))) → (∀x)A(x) (4)

This axiom clearly does not lead to any trouble.
However, the gain of replacing the original axiom for mathematical induc-

tion by this new version, is minimal. That is, we win modus tollens, allowing
to derive from (∃x)∼A(x) that ∼A(0) ∨ ∼(∀x)(A(x) ⊃ A(x′)). Even if
this would be an important step forward in a classical setting, we have to
keep in mind that the derivation of a disjunction is in a paraconsistent envi-
ronment not very interesting. Since disjunctive syllogism is not permitted in
CLuNs, the gain is minimal.

We are now able to rewrite the original Peano-axioms in the following
manner:

AX1 (∀x)∼(0 = x′)
AX2’ (∀x, y)(x′ = y′ = x = y)
AX3 (∀x)(x + 0 = x)
AX4 (∀x, y)(x + y′ = (x + y)′)
AX5 (∀x)(x · 0 = 0)
AX6 (∀x, y)(x · y′ = (x · y) + x)
AX7’ (A(0)&(∀x)(A(x) ⊃ A(x′))) → (∀x)A(x)
AX8 L = L′

The resulting theory, being these axioms with CLuNs as underlying logic,
I shall call IA1. We denote the consequence relation of IA1 by `IA1

. If, for
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a formula φ and for all IA1-models M, vM(φ) = 1, then we write |=IA1
φ.

Furthermore, let MIA1
denote the set of IA1-models, i.e. the CLuNs-models

verifying AX1 to AX8 (with the second and seventh axiom replaced as stated
above).

By the properties of CLuNs, we have:

Theorem 4 : For any set of wffs Γ and any wff φ, Γ `IA1
φ iff Γ |=IA1

φ.

IA1 has already solved one of the problems IAC suffered from:

Theorem 5 : Every model M ∈ MIA1
is maximally non-trivial.

Proof. Let M be a model of IA1. If vM(A) = 0, then vM(A ⊃ B) = 1 for
all wffs B. Hence, the set {φ | vM(φ) = 1} ∪ {A} is trivial. �

Incidentally, one can not replace both implications by the stronger one,
which would result in the axiom

(A(0)&(∀x)(A(x) → A(x′))) → (∀x)A(x) (5)

This version of mathematical induction is to weak (due to the strong an-
tecedent) to prove many universally quantified formulas that should come
out true.12

Even though IA1 is maximally non-trivial, there remain some unsolved
problems. One is the third problem mentioned in section 2. Also, we still
suffer from the second of the problems IAC had: the intuitively true inequal-
ities (of the form ∼n = m where neither n nor m is zero) are not provable
in IA1.

4.3. Second attempt: IA2

A possible solution to this particular problem of unprovable inequalities, is
to split the (original) second Peano-axiom. If we define, within our object
language, a predicate S by which we can express that a number behaves

12 An example of this is the property

M(x) =def x < x
′ (6)

where < has the classical definition, that is x < y iff ∃z 6= 0 : x + z = y. Note that L < L
and ∼(L < L) both hold. Let the number K be defined as K ′ = L & ¬K = L, where the
strong negation ¬ is defined by ¬A =def A ⊃ ⊥. Unlike AX 8, (5) does not enable one to
prove (∀x)M(x). Indeed, one can not have ∼M(L) ⊃ ∼M(K) as ∼M(L) is true whereas
∼M(K) is false.
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consistently, then we could split axiom 2 into two distinct axioms, both with
the original (detachable) implication: one for the consistent numbers, and
one for all the numbers which behave inconsistently (these are the numbers
that are both equal and not equal to L). For this purpose we can use the
strong negation, ¬, as defined in footnote 12. Hence we can say that

(∀x)S(x) ≡ ¬(x = L) (7)

Using this, we can define the rest of the numbers, i.e. those who are equal to
L, and thus behave inconsistently:

(∀x)B(x) ≡ ¬S(x) (8)

Note that for every natural number n, either B(n), or S(n) holds, but defi-
nitely not both (due to the strong negation).

With this in mind, we can rewrite the second Peano-axiom so that we can,
once we know that certain numbers behave consistently, proceed as in clas-
sical arithmetic. And if we know for sure that two numbers both behave
inconsistently, we can also use the original second axiom. So now we have

AX2.1 (∀x, y : S(x)&S(y))(x′ = y′ ⊃ x = y)
AX2.2 (∀x, y : B(x)&B(y))(x′ = y′ ⊃ x = y)

This splitting of the second axiom allows us to do as we always do in PA,
except when for one of the two numbers involved predicate S holds, and
for the other B holds. But in all other cases, this is a great step forward,
especially for the “small” numbers. If we know, for instance, that S(m) and
S(n), and m′ = n′, we can derive that m = n. A step we could not make in
IA1.

What is more, we can strengthen these two axioms to include the use of
modus tollens. This does not lead to the derivation of unwanted formulas.
Hence, we can formulate

AX2.1 (∀x, y : S(x)&S(y))(x′ = y′ → x = y)
AX2.2 (∀x, y : B(x)&B(y))(x′ = y′ → x = y)

As for mathematical induction, we can preserve the stronger version (AX7’)
here. The resulting arithmetic will be called IA2. For IA2, we make use of
notations completely analogous to those of IA1.

Theorem 6 : For any set of wffs Γ and any wff φ, Γ `IA2
φ iff Γ |=IA2

φ.
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As for IA1 we can prove the following theorem (the proof is omitted, for
entirely analogous to the proof of theorem 5):

Theorem 7 : Every M ∈ MIA2
is maximally non-trivial.

This theorem allows us to conclude that IA2 is complete in the sense of
[1].

With IA2 we managed to reintroduce the detachable implication ⊃ in the
second axiom. As a consequence, IA2 does not have the problem that IA1

has: it is possible to derive from m′ = n′ that m = n, provided we know that
both m and n are either small (S(m) and S(n)) or big (B(m) and B(n)).
This makes the formalism terribly heavy and certainly is weird with respect
to the usual mathematical practice.13

5. The solution to the problem

The solution to our problems will be twofold: for one, a final adjustment
must be made to the axioms, which will result in the system for inconsistent
arithmetic IA3. A second alteration will involve the underlying logic (see
subsection 5.2).

5.1. Third attempt: IA3

As is clear from the above, the problem that IAC, IA1 and IA2 have in
common is the large, if not to say huge, amount of axioms they need in
order to preserve all classical theorems. When discussing this problem in
the introduction, it was stated that the cause, for IAC, lies in the absence
of a detachable implication in the paraconsistent logic LP. The same holds
for the IA1. For IA2 there is the need to prove either the property S or
the property B for the numbers under consideration, and this prior to the
application of modus ponens and/or modus tollens.

The idea that will be used here, is captured beautifully in the well-known
saying “if you can’t beat them, join them”: if modus tollens is not allowed in

13 The obvious objection against this “problem” is to state that L was chosen to be large
enough to not have any physical meaning, and thus not to be present in arithmetical practice.
Let me reply by saying that many interesting, practical aspects of mathematics, like for in-
stance imaginary numbers, have started out as purely theoretical concepts, with absolutely
no “physical meaning”. One day L could have some significance in our understanding of the
world.
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a paraconsistent logic, like CLuNs, then we can just as well take up the con-
traposed version of AX2 in the list of axioms. As such, we define AX2CP :

AX2CP (∀x, y)(∼x = y ⊃ ∼x′ = y′)

Note that we use the ⊃-implication, since allowing for modus tollens
would be disastrous (from K ′ = L′ we could then derive that K = L).

This axiom, together with AX1, will enable us to derive any desired in-
equality. This solves the second of the problems from section 2: the axiom-
atization of inconsistent arithmetic given by IA3 is finite, and does not need
more than L axioms.

AX1 (∀x)∼(0 = x′)
AX2CP (∀x, y)(∼x = y ⊃ ∼x′ = y′)
AX3 (∀x)(x + 0 = x)
AX4 (∀x, y)(x + y′ = (x + y)′)
AX5 (∀x)(x · 0 = 0)
AX6 (∀x, y)(x · y′ = (x · y) + x)
AX7’ (A(0)&(∀x)(A(x) ⊃ A(x′))) → (∀x)A(x)
AX8 L = L′

As for IA1 and IA2, we can state the following theorems:

Theorem 8 : For any set of wffs Γ and any wff φ, Γ `IA3
φ iff Γ |=IA3

φ.

Theorem 9 : Every model M ∈ MIA3
is maximally non-trivial.

Although IA3 does not suffer the first two of the three problems from
section 2, it is not yet the ideal axiomatization of inconsistent arithmetic. We
lack an axiom stating that if two small numbers n′ and m′ are equal, then n
and m are. This is as a matter of fact only half a problem: the axioms stated
above suffice to derive all truths in inconsistent arithmetic. But, the direct
line between n′ = m′ and n = m is lost: we have to prove independently of
the premise n′ = m′ that n and m are equal. But this is not a problem, since
they are. The problem arises when n and m are variables in an equation: in
that case there is no way to derive the desired equality in IA3.

Furthermore, the third problem of section 2, concerning minimal abnor-
mality, still remains.

These two problems will be solved by what we shall call “IAA”, the sys-
tem for inconsistent arithmetic to be defined in the next section.
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5.2. Final attempt and solution: IAA

To overcome the shortcomings of IA3, we need to abandon the monotonic
paraconsistent logic CLuNs and turn to an inconsistency-adaptive logic,
namely ACLuNs2. As was shown in subsection 3.2, the logic ACLuNs2 se-
lects the minimal abnormal models from the set of CLuNs-models of some
set Γ. We will call the number-theory defined by the Peano-style axioms of
the section above, namely

AX1 (∀x)∼(0 = x′)
AX2CP (∀x, y)(∼x = y ⊃ ∼x′ = y′)
AX3 (∀x)(x + 0 = x)
AX4 (∀x, y)(x + y′ = (x + y)′)
AX5 (∀x)(x · 0 = 0)
AX6 (∀x, y)(x · y′ = (x · y) + x)
AX7’ (A(0)&(∀x)(A(x) ⊃ A(x′))) → (∀x)A(x)
AX8 L = L′

together with ACLuNs2 as underlying logic, IAA.
The effect of this on inconsistent arithmetic is twofold. For one, there

are no models M ∈ MIAA for which vM(n = m) = 1 if n and/or m
are classically smaller than L, and classically different of one another. It is
not very difficult to see why this is the case. When a formula of the form
∼A is stated in the list of axioms, there are, according to the clauses of the
CLuNs-semantics, two possibilities: either A is false (vM(A) = 0), making
∼A consistently true in the model; or A is an abnormality, in which case
vM(A) = vM(∼A) = 1. In the set of all CLuNs-models both possibili-
ties occur. On the other hand, ACLuNs2 selects minimal abnormal models,
which assures that the first possibility is chosen, unless the axioms require
the second one (as is the case for L and all numbers classically greater than
L).

For IAA, this means that if the first axiom states that ∼0 = 5, then in every
model M, vM(0 = 5) = 0. Since there is no axiom stating that 0 = 5 must
also be true, the abnormality is not demanded by the axioms, and thus MIAA

does not include models in which the formula does behave inconsistently.
The eighth axiom L = L′ causes an abnormality, since ∼L = L′ follows

from AX1 and AX2CP . The result is that for all M ∈ MIAA, vM(L = L′) =
vM(∼L = L′) = 1. By the axioms, all equations concerning only numbers
larger than L will behave inconsistently.

A second effect of the selection of minimal abnormal models will be that
some derivation rules will be reintroduced. As we have seen in the section
on ACLuNs2, modus tollens, disjunctive syllogism and some other rules are
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conditionally applicable. This is a great step forward when working with
unknown values, as is quite common in arithmetical practice. When we, for
instance, know that n = m, although we do not have any idea of which
numbers n and m actually are, we can derive in IAA that there predecessors
p(n) and p(m) are equal, provided n = m is a consistent formula, i.e. is not
true together with ∼n = m.

Since the abnormalities in inconsistent arithmetic are restricted to those
formulas containing only numbers equal to or larger than L, the condition

“the formula n = m must behave consistently”

can be reformulated as

“¬n = L and ¬m = L”

As such, the consistency requirement is reduced to the requirement of not
being equal to L.

Let us now investigate whether the system we have constructed is able to
overcome the three objections we raised against the original number theory
IAC. First of all, it is quite obvious that IAA is complete in the sense de-
scribed in subsection 2, in view of the following theorem, the proof of which
is that of theorem 5.

Theorem 10 : Every model M ∈ MIAA is maximally non-trivial.

In addition to this theorem, stating maximal non-triviality for all IAA-
models, we can prove the set of IAA-theorems to be maximally non-trivial.

Theorem 11 : The set of IAA-theorems is maximally non-trivial. That is, for
every formula A, either `IAA A or `IAA ¬A.

Proof. Consider the collapsed model M with domain D = {[0], [1], . . . , [K],
[L, L′, . . .]} that has CLuNs as its underlying logic. Clearly M is a mini-
mally abnormal model (ACLuNs2-model) of IAA. Remark that the domain
D has exactly L elements, that [0] is the only element of D that is not the
successor of any other element, that L is the only element that is its own
successor, and that the addition and multiplication functions behave as ex-
pected.
It is easily seen that any minimally abnormal model M

′ of IAA is isomorphic
to M, and hence is equivalent to M (verifies and falsifies the same formulas).
It follows that {A|vM(A) = 1} = {A|vM′(A) = 1}. But then in view of
Theorem 10, the set of formulas verified by all ACLuNs2-models of IAA
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is maximally non-trivial. In view of the completeness of ACLuNs2 with
respect to its models, CnACLuNs2(IAA) is maximally non-trivial. �

This theorem proves IAA to be complete in the sense of Batens’ [1] as
stated in section 2.

Secondly, there is no need for the elaborate list of axioms that were needed
to state the inequalities true in CA: axioms AX1 and AX2CP ensure that for
every two numbers n and m, if `CA ∼n = m then `IAA ∼n = m.

And thirdly, by the construction of ACLuNs2, with its minimal abnormal-
ity strategy, we know that there are no models M ∈ MIAA in which there
are more true contradictions than required by IAA.

6. Closing remarks

What has happened in this paper? The domain of the IAA-models is the
same as that of the IAC-models and so are the functions (successor, addition
and multiplication) defined on the domain. Even the assignment functions of
both types of models are in a sense equivalent. The central change concerns
the logic: LP was replaced by ACLuNs2. As a result, the three objections
against IAC are avoided. First, IAA is complete in Gödel’s sense: for each
closed formula A, either A or ¬A is an IAA-theorem. Next, IAA has an
axiomatization that is sensible with respect to IAA in that the number of ax-
ioms is IAA-significant. Finally, IAA has no models in which some number
that is classically smaller than L is its own successor.

IAA is different from IAC. So, the point I tried to make in this paper
does not concern the literal system presented by Van Bendegem and Priest,
but rather its intuitive interpretation. The properties that seem to make IAC

attractive stem precisely from this interpretation. For example, the IAC-
models are not attractive because, notwithstanding the collapse from L on,
1 = 0 is false in them, but because it is false only in them. This fact is
warranted by IAA, thanks to the underlying logic ACLuNs2, but cannot be
warranted by IAC because of its underlying logic LP.

E-mail: timothy.vermeir@planetinternet.be
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