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EROTETIC ARGUMENTS FROM INCONSISTENT PREMISES∗

JOKE MEHEUS†

Abstract
The aim of this paper is to generalize two basic concepts of Wiśniew-
ski’s theory of questions, namely question evocation and question
generation, to the inconsistent case. For both concepts, I shall pre-
sent three alternative definitions. Each of these is based on a priori-
tized adaptive logic. I shall show that, for the consistent case, each
of the alternative definitions leads to the same results as the origi-
nal ones, and that, for the inconsistent case, no other changes are
introduced than those required for the sensible handling of incon-
sistencies. I shall also show that, in the generalized case, a new kind
of question evocation can be defined (here called strong evocation).
I shall demonstrate that if a question is strongly evoked by some in-
consistent set of premises, then each of its direct answers provides
guidance on how the inconsistencies should be resolved.

1. Aim and Survey

One of the most interesting problems in erotetic logic concerns the way in
which questions arise from sets of statements. A central contribution in this
respect is Wiśniewski’s theory of questions (see [22], [23], and especially
[24]). This theory provides a semantic explication of all the main concepts. It
moreover has important applications, not only with respect to understanding
erotetic arguments in natural language, but also with respect to the study of
problem solving, discovery, and creativity.

∗Research for this paper was carried out during a stay at the Kotarbiński University in
Zielona Gora that was financed by the Fund for Scientific Research—Flanders, and was in-
directly supported by the Flemish Minister responsible for Science and Technology (contract
BIL98/73). I am greatly indebted to Andrzej Wiśniewski for the many discussions on the
topic, and to Diderik Batens, Jacek Malinowski, Dagmar Provijn and the referees for some
significant corrections.
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50 JOKE MEHEUS

Wiśniewski’s theory also exhibits a shortcoming. Some of the most impor-
tant applications concern erotetic arguments that have inconsistent premises.
For instance, it is typical of many creative processes that questions arise
from inconsistencies. However, as Wiśniewski’s theory is based on Classi-
cal Logic (henceforth CL), it can only handle cases in which one is dealing
with consistent sets of premises.

The aim of this paper is to present a generalization of two central concepts
of Wiśniewski’s theory, namely question evocation and question generation,
to the inconsistent case. An important requirement for this generalization
will be that for the consistent case the alternative definitions lead to exactly
the same results as the original ones, and that for the inconsistent case, no
other changes are introduced than those required for the sensible handling of
inconsistencies. Wiśniewski’s definitions of question evocation and question
generation are briefly discussed in Section 2. In Section 3, I examine the
requirements for the generalization to the inconsistent case.

As we shall see, the generalization will be obtained by replacing CL by
an appropriate prioritized adaptive logic. A logic is prioritized iff its conse-
quence relation is defined with respect to n-tuples of sets of closed formulas,
Σ = 〈Γ0, . . . , Γn〉, in which each Γi has a different preference ranking. As
we shall see below, the logics required for the present application need to
handle only couples of subsets 〈Γ0, Γ1〉 in which Γ0 and Γ1 are subsets of
W , the set of closed formulas of the standard predicative language L, and in
which Γ0 is preferred over Γ1. I shall present three different adaptive logics
that satisfy this requirement, and show for which situation each of them is
best suited.

A brief introduction to adaptive logics is presented in Section 4, and an
intuitive characterization of the three logics in Section 5. In Section 6, I
present the first logic, and in Sections 7–9, I discuss the definitions of ques-
tion evocation and question generation to which this logic leads. The alter-
native definitions (in terms of the second and third logic) are discussed in
Section 10. Section 11 contains some conclusions and open problems.

The three logics presented here are special cases of those presented in [9].
In view of the specific purpose of this paper, I shall restrict the discussion
to the semantics. The proof theories of the three systems (as well as the
Soundness and Completeness proofs) may be obtained by straightforwardly
transforming the results from [9].

2. Wiśniewski’s analysis

In [24], Wiśniewski makes a distinction between two kinds of erotetic argu-
ments. They differ from one another with respect to the semantical relation
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EROTETIC ARGUMENTS FROM INCONSISTENT PREMISES 51

between the questions (which are the conclusions) and the premises. In ar-
guments of the first kind, the question is evoked by the premises; in those of
the second kind, it is generated by it.

A question Q is said to be evoked by a set of declarative sentences Γ
iff two conditions are met. First, Q should be sound relative to Γ: if all
members of Γ are true, then Q should have a true direct answer. Next, Q
should be informative relative to Γ: none of the direct answers to Q should
be derivable from Γ. If an evoked question is risky (in the sense that it is not
truly answerable in every case), it is said to be generated by Γ.

As Wiśniewski shows, this general characterization can be applied to any
logic of questions that satisfies some minimal conditions (see [24, pp. 226–
230]). Its language L should consist of a declarative part (some standard
formalized language) and an erotetic part (that allows for the formation of
questions). The declarative part should be provided with a proper semantics
that is rich enough to define some concept of truth (with regard to mod-
els of some kind, algebraic structures, games, . . . ). The only condition the
erotetic part should meet is that to each question an at least two-element set
of (declarative) sentences is assigned that form its direct answers.

Let QL be any logic that satisfies the above requirements, and let L be the
language of QL in which W is the set of declarative wffs (henceforth, d-wffs)
of L. Using the concept of partitions from [20], the semantics of QL can be
characterized in a general way. I shall use A, B, C, A1, . . . as metalinguistic
letters for d-wffs and Greek capital letters as metalinguistic letters for sets of
d-wffs. The letters Q1, Q2, Q3, . . . will be used as metalinguistic variables
for questions.

A partition of (the declarative part of) L is a couple P = 〈T, F 〉 in which
T and F are sets of d-wffs such that T ∩ F = ∅ and T ∪ F = W . A
QL-partition is a partition of L that is determined by the semantics of QL.
A d-wff A is true in a QL-partition P = 〈T, F 〉 iff A ∈ T ; otherwise A
is false. Both entailment and multiple-conclusion entailment (henceforth,
mc-entailment)1 are defined with respect to the QL-partitions in which all
the premises are true. Thus, Γ |=QL A iff A is true in each QL-partition
P = 〈T, F 〉 such that Γ ⊆ T . And, where Γ ||= ∆ stands for “Γ mc-entails
∆”, Γ ||=QL ∆ iff at least one member of ∆ is true in every QL-partition
such that Γ ⊆ T .2

1 The notion of multiple-conclusion entailment helps to define the concepts of question
evocation and question generation in a way that is as general as possible (that is, for instance,
not restricted to sets of premises that are ω-complete).

2 In [24], Wiśniewski defines entailment and mc-entailment with respect to the admissible
partitions of QL (a non-empty subclass of the QL-partitions). The admissible partitions may
be, for instance, those that guarantee ω-completeness. However, as admissible partitions can
be defined whenever partitions can, and as the discussion in the present paper does not require
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52 JOKE MEHEUS

The adequacy requirements for erotetic arguments are now easily defined.
Let QL-soundness (respectively QL-informativeness) refer to soundness (re-
spectively informativeness) according to QL, and let dQ stand for the set of
direct answers to Q.

Definition 1 : A question Q is QL-sound relative to a set of d-wffs Γ iff
Γ ||=QL dQ.

Definition 2 : A question Q is QL-informative relative to a set of d-wffs Γ iff
for each A ∈ dQ, Γ |6|=QL {A}.

Also the definitions of question evocation and question generation are
straightforward. Let Γ |=EQL

Q stand for “Q is evoked by Γ according
to QL” and Γ |=GQL

Q for “Q is generated by Γ according to QL”.

Definition 3 : Γ |=EQL
Q iff

(i) Γ ||=QL dQ, and
(ii) for each A ∈ dQ, Γ |6|=QL {A}.

Definition 4 : Γ |=GQL
Q iff

(i) Γ ||=QL dQ,
(ii) for each A ∈ dQ, Γ |6|=QL {A}, and

(iii) ∅ |6|=QL dQ.

Although this is not required by the above definitions, Wiśniewski’s en-
tire theory is based on logics of questions that are extensions of CL. As
a consequence, the theory is inadequate to understand how questions arise
from inconsistent premises. It is easily observed why. Let CL∗ be any logic
of questions based on CL. Definitions 1–4 entail that all possible questions
are CL∗-sound relative to an inconsistent set of d-wffs Γ, but that none of
them is CL∗-informative relative to Γ, and hence, that, according to CL∗, no
question is evoked or generated by an inconsistent set of d-wffs.

Wiśniewski himself draws attention to this problem ([24, pp. 215–216]).
The situation he considers is the following. Suppose that some accepted set
of premises {A1, . . . , An} entails B, and that there are also good reasons (for
instance, empirical ones) to accept ¬B. As Γ = {A1, . . . , An, (A1 ∧ . . . ∧
An) ⊃ B,¬B} is inconsistent, no question is evoked by Γ on the above

that a set of admissible partitions is isolated, I keep the definitions as simple as possible. For a
discussion of the importance of admissible partitions, see [24, pp. 104–105]—the discussion
there proceeds in terms of “normal interpretations”.
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analysis. Still, when confronted with a set of premises like this, inquirers
may infer questions from it, for instance, “Is ¬A1 the case or . . . or ¬An?”.

The way out proposed by Wiśniewski is the following. In situations like
this, he claims, inquirers do not use the sentences A1, . . . , An in their erotetic
inferences, but ‘keep them in suspense’. The set of premises that is used for
the erotetic inferences, namely Γ′ = {(A1 ∧ . . . ∧ An) ⊃ B,¬B}, is con-
sistent. Moreover, the question “Is ¬A1 the case or . . . or ¬An?” is evoked
by Γ′ (according to any logic of questions based on CL). In view of this,
Wiśniewski suggests that the definitions of evocation should be changed in
such a way that the question “Is ¬A1 the case or . . . or ¬An?” is evoked by
the inconsistent set Γ. Although the details are not spelled out, the under-
lying idea seems to be that a question Q is evoked by an inconsistent set of
premises Γ iff (i) it is evoked by a consistent Γ′ ⊂ Γ, and (ii) every member
of Γ − Γ′ is ‘kept in suspense’.

At first sight, this proposal seems highly attractive. However, as it stands,
there are several problems with it. The first is that it presupposes that one
is able to distinguish beforehand (that is, before the inconsistencies are re-
solved) between premises that should be accepted unequivocally (and that
together form a consistent subset), and those that should be kept in suspense.
In interesting cases, this is usually far from evident. For instance, when deal-
ing with an inconsistent scientific theory, it often takes years before one is
able to make this distinction. Meanwhile, however, questions are derived
from the inconsistent theory.3

The second problem is related to this. Wiśniewski’s analysis seems to
suggest that the decision which premises should be kept in suspense and
which not is merely taken on external grounds. (There are no logical reasons
why A1, . . . , An should be kept in suspense rather than (A1∧ . . .∧An) ⊃ B
or ¬B.) This, however, may lead to unwanted results. Consider, for instance,
the set Γ that consists of
(1) (∀x)(Px ⊃ Qx)
(2) Pa
(3) Pb ∨ Rb
(4) ¬Pa
(5) ¬Pb
(6) (∀x)(Qx ⊃ (Rx ∨ Sx))

and suppose that (1)–(3) are (on the basis of non-logical grounds) clearly
preferred over (4)–(6). In view of this, it seems reasonable to keep (4) in
suspense in favour of (2). But what about (5) and (6)? As these are logically
independent from the inconsistency between (2) and (4), it seems unjustified
not to use them in one’s erotetic inferences, even if they do not have the same

3 Interesting illustrations of this phenomenon can be found in [21], [11], and [15].
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preference ranking as (1)–(3). Evidently, the choices made in this respect
determine which questions arise from an inconsistent set of premises. If (4)–
(6) are kept in suspense, then, on Wiśniewski’s proposal, the question “Is
Pb the case or Rb?” would be both sound and informative relative to Γ, and
hence, would be evoked by it. The question “Is Ra the case or Sa?” would
under the same conditions not be sound relative to Γ, and hence, would not
be evoked by it. If, however, (5) and (6) are used in the erotetic inferences,
then the former question would not be evoked, but the latter would.

A final problem is related to the fact that Wiśniewski’s proposal is ex-
tremely sensitive to the formulation of the premises. Consider again (1)–(6),
and suppose that it can be decided, on the basis of external grounds, that only
(4) should be kept in suspense. Suppose now that (4)–(6) are replaced by
(7) (¬Pa ∧ ¬Pb) ∧ (∀x)(Qx ⊃ (Rx ∨ Sx))

In that case, Wiśniewski’s proposal leaves no other alternative than to keep
(7) in suspense. But then, there is also a change in the set of evoked ques-
tions. For instance, the question that has Ra and Sa as its direct answers
is no longer evoked. If the different premises derive from different sources,
this sensitivity may be seen as desirable. However, where this is not the case,
it may lead to arbitrary results.

3. Generalizing to the Inconsistent Case

When dealing with an inconsistent set of premises, the requirements for
erotetic arguments are not clear. What does it mean that a question is sound
relative to a set of inconsistent premises? Can we require that the question
must have a true direct answer if all the premises are true? And, what does
it mean that it is informative? Can we demand that it should be possible for
each direct answer to be false, even if all the premises are true?

To some readers these questions may seem rhetorical. How is it possible
that all members of an inconsistent set of premises are true? Several obser-
vations are important here. First, whether a statement A is true depends not
only on the state of the world, but also on the language L that is used to
express A, and on the correspondence relation R that links L to the world.
Secondly, no matter how the world looks like, it is possible to design a lan-
guage L and a correspondence relation R such that the true description of
the world is inconsistent. Thirdly, inconsistent theories may be empirically
successful—they may, for instance, provide explanations for a wide range of
phenomena, and moreover lead to important predictions. Fourthly, finding a
consistent alternative for an inconsistent scientific theory (that is at least as
successful) may take years, even decades. If the inconsistent theory is suffi-
ciently successful, it will in the meantime be used for explaining, predicting,
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and problem solving. Finally, by using a logic that does not validate Ex Falso
Quodlibet, reasoning from an inconsistent theory can be just as rational as
that from a consistent one.4

In view of all this, it should not surprise us that in some cases inquirers
make inferences from an inconsistent set of premises, without being inter-
ested (at least for the time being) in modifying that set. In cases like this, it
makes perfectly good sense to say that all members of the inconsistent set
are accepted as true.

There is, however, also another type of situation. When dealing with an
inconsistent set of premises, one may want to replace this set by a consistent
alternative. This may be because one is convinced that, given the language L
and the correspondence relation R, some premises must be false. It may also
be because one wants to change the underlying language and correspondence
relation in such way that a consistent description becomes possible. Also in
this second type of situation, inferences are made from an inconsistent set (at
least as long as it is unclear which premises should be rejected or modified
in order to restore consistency).5 The difference is, however, that not all
members of the inconsistent set are accepted as true, and that the subset of
premises that are accepted as true (if any) is intended to be consistent.

In order to answer the questions from the beginning of this section, it is
important that we make a distinction between these two types of situation.
In the first type, all premises are accepted as true. Hence, soundness and
informativeness can be defined in the same way as in the consistent case
(provided, of course, that one chooses a logic of questions that can sensibly
handle inconsistencies). So, the only change needed is that in the Definitions
1–4, the underlying logic does not validate Ex Falso Quodlibet.6 The second
type of situation is somewhat more complex. It not only requires that one
chooses an appropriate logic that can handle inconsistencies, but also that
one reconsiders the notions of “soundness” and “informativeness”. In the
rest of this paper, I shall only deal with situations of this second type.

4 Some readers may begin to wonder why scientists bother about consistency. One possi-
ble explanation is that consistent theories, everything else being equal, are more economical
than inconsistent theories—see also [7].

5 Several case studies from the history of the sciences show that even in cases where sci-
entists aim at finding a consistent alternative, consistency is not restored by simple excision.
To the contrary, as long as there are no good reasons to resolve the inconsistencies in a partic-
ular way, scientists continue to make inferences from the inconsistent set—see, for instance,
[15] and [21].

6 Preferably, the logic should guarantee that, for the consistent case, one obtains the same
results as Wiśniewski. As is shown in [12], this may be realized by replacing CL by an
appropriate inconsistency-adaptive logic.
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If it is unclear which members of an inconsistent set should be accepted
as true and which not, it seems attractive to interpret all members of that set
as possibly true. This reinterpretation has the advantage that the inconsistent
set becomes consistent (and is thus safeguarded from triviality). It moreover
expresses that the truth of the premises is no longer taken at face value.7

Though very natural, the reinterpretation faces two problems. The first is
that it does not take into account external preferences. Even if it is unclear
how the inconsistencies should be resolved, one may have external grounds
to accept some premises as true. The second problem is that one may obtain
an interpretation that is much too poor—even if external preferences would
be taken into account. Consider, for instance, Γ = {p, ¬p, q, q ⊃ (r ∨
s)}. Even if no member of Γ has a higher external preference than any of
the others, it seems intuitively unjustified to accept both q and q ⊃ (r ∨
s) as possibly true only. As both formulas are logically independent from
the inconsistency between p and ¬p, they can be retained in any consistent
alternative to Γ, and hence, there seems to be no reason to question them.

So, what we seem to need is an interpretation of the premises that is “as
rich as possible”. If one has external reasons to accept some sentence as true,
then this sentence should come out true. Moreover, if it can be decided, on
the basis of a logical analysis, that some sentence is likely to be retained in
any consistent alternative, then this sentence too should come out true.

Evidently, the logical grounds for deciding that some sentence is likely
to be retained when the inconsistencies are resolved are dependent on the
application context. Suppose, for instance, that Γ = {p ∧ q, ¬p ∧ (q ⊃
(r ∨ s)), s ∨ t}, and that each member of Γ stands for the information
that originates from a certain source. In some cases, the fact that the first
two sources contradict each other may be seen as a reason to question the
credibility of those sources, and hence, to suspend judgment on every item
of information that originates from them. In other cases, one will question
only those items that are explicitly contradicted. Here, unlike in the former
kind of cases, one will accept q and q ⊃ (r ∨ s) as true.8

7 This is the so-called discussive approach to inconsistent theories that was first proposed
by Stanisław Jaśkowski—see [14]. The idea behind discussive logics is quite simple: A
follows ‘discussively’ from a (possibly inconsistent) set of premises Γ iff ♦A follows from
{♦A | A ∈ Γ} by some appropriate modal logic (for instance, S5 ). It is easily observed
that discussive logics are paraconsistent (♦A, ♦¬A 6|= B), and that they do not allow for
the derivation of contradictions. A disadvantage is, however, that they invalidate all genuine
multiple-premise rules, and hence, that they are extremely poor. In [17], an adaptive version
is presented for Jaśkowski’s discussive logic D2 . This logic, called D2 r , preserves all qual-
ities of discussive logics, but moreover validates all multiple-premise rules for sentences that
behave consistently. The logics presented here are prioritized versions of D2 r .

8 Also in cases where the origin of the information is unimportant, one usually wants to
retain as many items of information as possible.
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So, when trying to find a consistent alternative for an inconsistent set of
premises, one tends to accept all sentences as true that, relative to external
preferences and the application context, are likely to be retained after the
inconsistencies are resolved. This observation is important to answer the
questions from the beginning of this section. When judgment is suspended
on the truth or falsity of some of the premises, it makes no sense to define
soundness and informativeness with respect to all premises. It does make
sense, however, to define these notions with respect to the sentences that are
likely to be retained after the inconsistencies are resolved. Let us use the term
“the consistent core of Γ” to refer to the consequences of Γ that are likely
to be retained in any consistent alternative.9 The requirements of question
evocation can be defined in a very natural way with respect to this consistent
core. Thus, a question Q is sound relative to a (possibly inconsistent) set of
premises Γ iff Q must have a true direct answer if all the members of the
consistent core of Γ are true. Q is informative relative to Γ iff each of its
direct answers can be false if all members of the consistent core of Γ are
true.

Example 1. Consider Γ = {p ∧ q, ¬p, q ⊃ (p ∨ r)}, and suppose that the
consistent core of Γ consists of the CL-consequences of {q, q ⊃ (p∨r)}. In
that case, the generalized definitions warrant that the question Q that has p
and r as its direct answers is sound and informative relative to Γ. This seems
intuitively justified. If one has (internal or external) reasons to believe that
p ∨ r will be retained after the inconsistencies are resolved, one has reasons
to believe that Q is truly answerable. Moreover, as neither p nor r belongs
to the consistent core of Γ, one has reasons to believe that each of the direct
answers to Q may be false.

Given these generalized definitions of soundness and informativeness, the
situation is very similar to the consistent case. For instance, like in the con-
sistent case, questions that have only contradictions as direct answers should
neither be evoked nor generated—see also Section 7.10 There are, however,
two important differences.

The first difference concerns the conditions under which questions arise.
In the consistent case, questions are evoked because the available informa-
tion exhibits certain ‘gaps’. If a question Q is evoked by a set of premises

9 In view of the above considerations, it is evident that the consistent core of an inconsis-
tent set of premises may vary from one application context to another.

10 Note that this is different in situations in which all members of an inconsistent set are
accepted as true. There, it makes perfectly good sense to infer questions that have only
contradictions as direct answers.
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Γ, then Γ is incomplete, and each direct answer to Q provides information
that cannot be obtained from Γ itself. This property is retained in the incon-
sistent case, but some of the evoked questions satisfy an additional require-
ment, namely that each of their direct answers provides information on how
the inconsistencies should be resolved. This is illustrated by the following
example.

Example 2. Consider Γ = {p ⊃ r, ¬q ⊃ ¬r, p, ¬q}, and suppose that the
consistent core of Γ consists of CL-tautologies only. In that case, the ques-
tion that has p∧ q, p∧¬q, ¬p∧ q, and ¬p∧¬q as its direct answers is sound
and informative relative to the consistent core of Γ. However, it also has the
property that each of its direct answers, when added to the consistent core
of Γ, limits the choices that have to be made in order to restore consistency.
As long as no logically contingent sentence is added to the consistent core
of Γ, it can only be inferred that at least one of the members of Γ has to be
rejected. If p ∧ q (respectively p ∧ ¬q) is added to it, it can be inferred that
¬q (respectively p ⊃ r or ¬q ⊃ ¬r) has to be rejected. (The situation is
analogous for the two other direct answers.)

By lack of a better term, I shall say that a question that satisfies the addi-
tional requirement (namely that each of the direct answers provides guidance
on how the inconsistencies should be resolved) is eliminative relative to Γ. If
a question Q is sound, informative and eliminative with respect to Γ, I shall
say that it is strongly evoked by Γ. In Section 8, I shall define both notions
in a more precise way.

The second difference with the consistent case concerns the requirement
that an answered question should no longer arise. In the consistent case, this
is realized in a very simple way: whenever a question is answered, its answer
is added to the set of premises. The only complication in the generalized
case is that answers should be added to the consistent core of the premises.
Compare also with the discussion of Example 2: if the true answer would
not be added to the consistent core, then the same question would continue
to arise.

Let me end this section with a short summary. When generalizing the idea
of erotetic arguments to the inconsistent case, a distinction has to be made
between two types of situations: those in which the inconsistencies are (for
the time being) accepted as true, and those in which this is not the case.
In this paper, I only deal with the second type of situation. Important for
this type is that the requirements for erotetic arguments have to be defined,
not with respect to the inconsistent set Γ, but with respect to the consistent
core of Γ. This consistent core is defined by a combination of external and
internal criteria, and is dependent on the application context.
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One of the main properties of the logics discussed below is that they enable
one to localize the consistent core of an inconsistent set Γ. In Section 5, we
shall see how this is realized. But first, I need to explain the basic concepts
of adaptive logics.

4. Adaptive Logics

The first adaptive logic was designed by Diderik Batens around 1980 (see
[1]), and was an inconsistency-adaptive logic. As their name indicates,
inconsistency-adaptive logics localize the specific inconsistencies that fol-
low from a theory, and ‘adapt’ themselves to these. If some consequences of
a theory behave inconsistently, applications of the rules of inference to these
consequences are restricted. However, for consequences of the theory that
behave consistently, all rules of CL can be applied in their full strength.11

Later, the idea of an adaptive logic was generalized to other types of logical
abnormalities (such as negation-incompleteness)—see [5] for an overview.
An important recent development within the adaptive logic programme is the
generalization to ampliative forms of reasoning. All three logics presented
in this paper are ampliative adaptive logics.

All adaptive logics are based on the idea that a specified set of presuppo-
sitions is followed ‘as much as possible’, that is, unless and until they are
explicitly violated. If a presupposition is violated, the rules of inference are
restricted in order to avoid triviality. However, where this is not the case, the
rules can be applied in their full strength. Adaptive logics are thus especially
suited for the formal study of reasoning processes that are non-monotonic
and/or dynamic.12 It is indeed typical of such processes that inferences are
made on the condition that some presupposition is satisfied. If this condition
is no longer fulfilled, there may be a restriction of the rules of inference, and
hence, a revision of previously derived conclusions. For instance, when deal-
ing with an inconsistent set of premises Γ, inferences may be drawn on the
presupposition that a sentence A behaves consistently. If this presupposition

11 What this comes to is that inconsistency-adaptive logics do not invalidate a set of rules
of inference, but invalidate specific applications of such rules. Inconsistency-adaptive logics
thus differ in important respects from monotonic paraconsistent logics. Most of these are
obtained by dropping the consistency requirement of CL, and by restricting the rules of
inference accordingly.

12 A reasoning pattern is called dynamic if the mere analysis of the premises may lead
to the withdrawal of previously drawn conclusions. Note that a dynamic reasoning process
is not necessarily non-monotonic. In [6], for instance, Batens shows that the pure logic of
relevant implication can be characterized by a dynamic proof theory.
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is violated—that is, when it is discovered that A behaves inconsistently—
conclusions that were previously drawn may be rejected.

Adaptive logics differ from each other with respect to the kinds of presup-
positions that can safely be violated (that is, without arriving at triviality).
Thus, an inconsistency-adaptive logic can handle theories that are inconsis-
tent, but not necessarily theories that are negation-incomplete.13 Moreover,
adaptive logics differ from each other with respect to the interpretation of
the phrase “as much as possible”. Thus, some inconsistency-adaptive logics
lead to a richer consequence set than others.

All currently available adaptive logics are defined in terms of three ele-
ments: an upper limit logic, a lower limit logic, and an ‘adaptive strategy’.
The upper limit logic is an extension of the lower limit logic. The former
thus introduces a set of presuppositions on top of those of the latter. These
additional presuppositions are the ones that are defeasible: they are followed
‘as much as possible’, but are abandoned when necessary to avoid triviality.
The third element, the adaptive strategy, determines the interpretation of the
phrase “as much as possible”.

When a set of premises violates one of the presuppositions of the upper
limit logic, it will be said to behave abnormally with respect to the upper
limit logic. It is important to note that “abnormality” does not refer to the
purported standard of reasoning, say CL. It refers to properties of the ap-
plication context—to presuppositions that are considered desirable, but that
may be overruled.

Adaptive logics can be divided into two categories: corrective and am-
pliative. In a corrective adaptive logic, the standard of reasoning is deter-
mined by the upper limit logic; specific deviations from this standard are
minimized. All currently studied corrective adaptive logics have CL as their
upper limit logic, and hence, adapt themselves to specific violations of CL-
presuppositions. Examples in this category are the inconsistency-adaptive
logics from [2] and [16]. In an ampliative adaptive logic, the standard of
reasoning is determined by the lower limit logic; specific extensions of this
standard (that are considered desirable within the application context at is-
sue) are maximized.14 Examples of ampliative adaptive logics are the logic
of compatibility (see [8]), logics of diagnosis (see [9]), and logics of abduc-
tion (see [18] and [19]).

13 Some adaptive logics adapt themselves to violations of several kinds of presupposi-
tions. In [3], an example is discussed of an adaptive logic that can handle violations of every
presupposition of CL.

14 Formally, this is realized by choosing some upper limit logic that incorporates the de-
sired presuppositions, and by minimizing the deviations from these presuppositions. So, from
a formal point of view, corrective and ampliative logics are very similar.
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The semantics of an adaptive logic is obtained in the following way. Let
AL be an adaptive logic, and let LL and UL be its lower limit logic and its
upper limit logic. The AL-models of a set of premises Γ are obtained by
selecting a subset of the LL-models of Γ. The selection is determined by
the adaptive strategy. The Minimal Abnormality Strategy, for instance, se-
lects those LL-models of Γ that are minimally abnormal (in a set-theoretical
sense) with respect to the upper limit logic. If some theory Γ behaves nor-
mally with respect to the upper limit logic, the AL-models of Γ coincide
with the UL-models of Γ.

It is important to note that, although adaptive models are always defined
with respect to a set of premises Γ, a logic of questions based on an adaptive
logic would satisfy the requirements discussed in Section 2. The only change
needed is that, in an adaptive logic, entailment and mc-entailment are defined
with respect to the models of the lower limit logic that validate the premises,
and that are moreover selected by the adaptive strategy.

5. The General Idea

As mentioned in Section 3, the adaptive logics presented here enable one to
localize the consistent core of a possibly inconsistent set of premises. This
is realized in two steps. First, their consequence relation is defined, not with
respect to a set of premises Γ, but with respect to a couple of sets of premises
Σ = {Γ0, Γ1} such that Γ0 contains all members of Γ that should be accepted
as true on the basis of external grounds, and Γ1 contains all members of Γ
for which such grounds are missing. Next, the logics are designed in such a
way that their interpretation of Σ is ‘as rich as possible’. What this comes
to is that they add to Γ0 as many CL-consequences of Γ1 as possible. The
logics thus guarantee that all sentences come out true that are accepted as
true on the basis of external reasons or that should be accepted as true on the
basis of logical considerations, and hence, that all sentences come out true
that belong to the consistent core of Γ.

The three logics differ from each other regarding the interpretation of the
phrase “as rich as possible”. As a consequence, the logics define (in general)
a different consequence set for a given Σ. Importantly, however, all three
systems define the same consequence set as CL, whenever Γ0 ∪ Γ1 is con-
sistent. The logics thus warrant that, for the consistent case, the generalized
definitions of question evocation and question generation lead to the same
results as Wiśniewski’s definitions.
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Where Σ = {Γ0, Γ1} is a couple of sets of d-wffs, all three logics interpret
Σ in terms of S5 .15 An S5 -model M will be regarded as an S5 -model of
Σ = {Γ0, Γ1} iff it verifies A for every A ∈ Γ0, and verifies ♦A for every
A ∈ Γ1. This is in line with the idea that the members of Γ0 are accepted as
true, and those of Γ1 as possibly true.

As mentioned at the beginning of this section, the logics add to Γ0 as
many CL-consequences of members of Γ1 as possible. This is realized by
presupposing that A is derivable from ♦A unless and until proven otherwise.
Where this presupposition is violated, the logics behave like S5 . So, their
lower limit logic is S5 . Their upper limit logic is the trivial system Triv—
compare p. 65 of [13]. It is obtained by adding to S5 the axiom “♦A ⊃
A”. The upper limit logic thus presupposes the normal situation—the one in
which A is derivable from ♦A.

To semantically characterize the logics, we need a criterion for selecting
a subset of the S5 -models of Σ. In order to do so, we first need to specify
which formulas are abnormal with respect to the upper limit logic. Next, we
have to define the ‘abnormal part’ of a model: the set of (open and closed)
abnormalities that are verified by the model. Finally, we have to choose an
adaptive strategy to interpret the ambiguous phrase “as normally as possi-
ble”.

In all three logics, a formula behaves abnormally iff it violates the pre-
supposition that A is derivable from ♦A. Hence, as a first approximation,
we may say that some formula A behaves abnormally iff ♦A ∧ ¬A is S5 -
derivable from the premises. There are, however, three small complications.

The first is that, whenever Σ = {Γ0, Γ1} is abnormal (in the sense that its
Triv -consequence set is trivial), it is possible that no single abnormality is
S5 -derivable from Σ, but that some disjunction of abnormalities is. Suppose,
for instance, that Σ = 〈∅, {p ∨ q, ¬p, ¬q}〉. In that case, no formula of the
form ♦A ∧ ¬A is S5 -derivable from Σ, but several disjunctions of such
formulas are—for instance, (♦¬p ∧ p) ∨ (♦¬q ∧ q). In view of this, a
formula A will be said to behave abnormally iff ♦A ∧ ¬A is a disjunct of
a ‘minimal’ disjunction of abnormalities that is S5 -derivable from Σ. A
disjunction of abnormalities that is S5 -derivable from Σ will be called a
“Dab-consequence”; a Dab-consequence will be called “minimal” iff no
result of dropping some disjunct from it is an S5 -consequence of Σ.

The second complication concerns the generalization to the predicative
case. Consider, for instance, Σ = 〈{(∀x)Px}, {(∃x)¬Px}〉. From this, no
quantifier-free Dab-consequence is S5 -derivable, but (∃x)(♦¬Px ∧ Px)

15 As I mentioned in the introduction, the logics presented here are special cases of the
ones presented in [9]. The latter interpret n-tuples of sets of premises Σ = {Γ0, . . . , Γn} in
terms of the modal logic T . When only couples of sets of premises are considered, as is the
case here, the interpretation in terms of S5 leads to the same results as that in terms of T .
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is. This suggests that, where ∃A abbreviates A preceded by a sequence of
existential quantifiers (in some preferred order) over the variables that occur
free in A, abnormalities are of the form ∃(♦A ∧ ¬A).

The last complication is that, in all three systems, abnormalities have to be
restricted to atoms (primitive formulas and their negations). This is related
to the fact that their lower limit logic spreads abnormalities. If, for instance,
♦p ∧ ¬p is true in an S5 -model M, then so is either ♦(p ∧ q) ∧ ¬(p ∧ q)
or ♦(p∧¬q)∧¬(p∧¬q). This problem is well known from other adaptive
logics (see, for example, [4] and [17]), and will be explained in some more
detail below.

In view of all this, the abnormal part of an S5 -model M is easily defined.
It is the set of atoms A, such that ∃(♦A ∧ ¬A) is verified by M. The
formulas that behave abnormally and the abnormal part of an S5 -model are
the same for all three logics. The only difference between them concerns the
choice of the adaptive strategy.

As explained above, the idea behind all three logics is to validate as many
applications of ♦A / A as possible. It immediately follows from this that
an atom A is derivable from Σ, whenever ♦A is S5 -derivable from it, and
A behaves normally. It also follows that an atom A is not derivable from Σ,
whenever Σ has S5 -models and ♦A ∧ ¬A is true in all of them. In neither
of these cases, the interpretation of the phrase “as much as possible” causes
any difficulty. What is less clear, however, is how the phrase should be
interpreted in cases where one is dealing with disjunctions of abnormalities
that cannot be reduced to single abnormalities. It is with respect to cases like
this that the three logics lead to different results. This will be illustrated by
means of the following example.

Example 3. Suppose that Σ = 〈{¬p ∨ ¬q, ¬p ∨ ¬r}, {p, q, r}〉. From
this, two minimal disjunctions of abnormalities are S5 -derivable, namely
(♦p ∧ ¬p) ∨ (♦q ∧ ¬q) and (♦p ∧ ¬p) ∨ (♦r ∧ ¬r). What this comes to is
that the abnormal behaviour of p is connected to that of q and also to that of
r: it can be inferred that at least one of p and q (respectively p and r) behaves
abnormally, but it cannot be inferred which ones. As we shall see, each of
the three logics is based on a different strategy to handle cases like this.

The first logic, DR, follows the most cautious strategy. Whenever a for-
mula behaves abnormally, it is considered as unreliable, and the selected
models are those in which only unreliable formulas behave abnormally. So,
in example 3, no DR-model verifies other abnormalities than ♦p ∧ ¬p,
♦q ∧ ¬q, and ♦r ∧ ¬r. However, some DR-models verify both ♦p ∧ ¬p
and ♦q ∧¬q, others verify both ♦p∧¬p and ♦r ∧¬r. This is the so-called
Reliability Strategy.
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The second logic, DM , is based on the Minimal Abnormality Strategy. A
model M is selected according to this strategy iff there is no model M′ such
that the abnormal part of M′ is a proper subset of the abnormal part of M. It
is easily observed that, whenever the abnormal behaviour of one formula is
connected to that of another, DM leads to a richer consequence set than DR.
In the above example, for instance, there are only two kinds of DM -models
of Σ: those that verify one abnormality, namely ♦p ∧ ¬p, and those that
verify two abnormalities, namely ♦q ∧ ¬q and ♦r ∧ ¬r. As a consequence,
all DM -models verify p ∨ q as well as p ∨ r. What this comes to is that
DM minimizes the number of abnormalities. As (♦p ∧ ¬p) ∨ (♦q ∧ ¬q) is
S5 -derivable from Σ, at least one of p and q must behave abnormally. How-
ever, unlike DR, DM excludes the situation in which both p and q behave
abnormally. For similar reasons, DM also excludes the situation in which
both p and r behave abnormally.

Also the third logic, DC , minimizes the number of abnormalities. How-
ever, where DM does so in a set-theoretical sense, DC selects the models
that are minimally abnormal in a numerical sense. Thus, the DC -models of
Σ are its S5 -models that verify the smallest number of abnormalities. So,
in the above example, the DC -models of Σ are those S5 -models that verify
♦p ∧ ¬p as the only abnormality. As a consequence, all DC -models verify
both q and r.

I end this section with two remarks. The first is related to the ampliative
character of the three logics. Each of the logics is based on the idea that
the premises of an inconsistent set should be accepted as possibly true only,
unless there are external reasons to accept them as true. This functions as
the standard of correct reasoning for the application contexts at issue. At the
same time, however, the logics enable one to extend this standard as much
as possible: whenever it is justifiable (within the given context) to accept a
sentence as true, the logics warrant that it is interpreted as such.

The second remark concerns a comparison with Wiśniewki’s proposal
to handle the inconsistent case. Central to Wiśniewksi’s proposal is that
some premises of the inconsistent set are ‘kept in suspense’. In the present
approach, this is formalized by reinterpreting these premises as possibly
true. However, unlike in Wiśniewski’s proposal, sentences kept in suspense
are used in one’s inferences, unless and until they behave abnormally. As
we shall see below, this guarantees that, even in cases where all premises
are kept in suspense, one is able to make erotetic inferences. Another im-
portant difference is that the approach presented here does not proceed in
terms of a selection of the premises. We shall see that, because of this,
erotetic arguments are less sensitive to the formulation of the premises than
in Wiśniewski’s proposal.
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6. The Logic DR

As explained in the previous section, all three logics add to the CL-conse-
quences of Γ0 as many CL-consequences of members of Γ1 as possible. In
DR, this is realized by making a minimal number of assumptions about the
application context—it is not assumed that the inconsistencies can, in some
way or the other, be minimized. The idea is that each Σ = 〈Γ0, Γ1〉 defines
a set of unreliable formulas, and that no (CL-consequence of an) unreliable
formula is added to Γ0. If no formula is unreliable with respect to Σ, then
all CL-consequences of Γ1 are added to Γ0.

I mentioned above that DR has S5 as its lower limit logic, and Triv as
its upper limit logic. As I shall rely on rather unusual semantics for S5 that
characterizes the S5 -models in terms of CL-models, I briefly describe this
semantics.16

Let L be the standard language of CL, and F , F p and W the sets of
formulas, primitive formulas and wffs (closed formulas) of L. Let M =
〈D, v〉 be a standard CL-model, with D the domain and v the assignment
function. In order to simplify the clauses for the quantifiers, the latter are
handled in terms of the pseudo-language L+. This is obtained by extending
the set of constants C of L with a (non-denumerable) set of pseudo-constants
O, and by requiring that any member of D is named by at least one member
of C ∪ O:

v : C ∪ O −→ D (where D = {v(α) | α ∈ C ∪ O})

The standard modal language LM is extended to LM+ by introducing the set
of pseudo-constants O next to the set of constants C. WM refers to the set
of wffs of LM .

A S5 -model is a couple M = 〈Σ∆, M0〉, where ∆ is a set of wffs of L,
Σ∆ is the set of CL-models of ∆, and M0 ∈ Σ∆. The valuation function
determined by a S5 -model M is defined by the following clauses:
C1 where A ∈ Fp, vM(A, Mi) = vMi

(A)
C2 vM(¬A, Mi) = 1 iff vM(A, Mi) = 0
C3 vM(A ∧ B, Mi) = 1 iff vM(A, Mi) = vM(B, Mi) = 1
C4 vM((∀α)A(α), Mi) = 1 iff vM(A(β), Mi) = 1 for all β ∈ C ∪ O
C5 vM(�A, Mi) = 1 iff vM(A, Mj) = 1 for all Mj ∈ Σ∆.

The other logical constants are defined as usual. A model M verifies
A ∈ WM iff vM(A, M0) = 1. A is valid iff it is verified by all models. A
model M is an S5 -model of Σ = 〈Γ0, Γ1〉 iff, for all A ∈ L, M verifies A
if A ∈ Γ0, and M verifies ♦A if A ∈ Γ1. I shall write Σ |=S5 A to denote
that all S5 -models of Σ verify A.

16 This S5 -semantics was first presented in [8].
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The above S5 -semantics is easily adjusted to characterize the semantics of
the upper limit logic. The Triv -models are the S5 -models M = 〈Σ∆, M0〉,
such that, for some maximal consistent subset Θ ⊂ W , Σ∆ = ΣΘ.

Let us now turn to the semantics of DR. The DR-models of Σ = 〈Γ0, Γ1〉
are its S5 -models in which only unreliable formulas behave abnormally. If
Γ0 ∪ Γ1 is consistent, then the DR-models of Σ are its Triv -models.

Let Fa be the set of atoms (primitive open and closed formulas and their
negations) and let Dab(∆) refer to the disjunction

∨
{∃(♦A∧¬A) | A ∈ ∆}

provided that ∆ ⊂ Fa. I shall say that Dab(∆) is a Dab-consequence of
Σ iff all S5 -models of Σ verify Dab(∆). A Dab-consequence Dab(∆) of
Σ will be called minimal iff there is no ∆′ ⊂ ∆ such that Dab(∆′) is a
Dab-consequence of Σ.

I first define the abnormal part of a model:

Definition 5 : Ab(M) =df {A ∈ Fa | M verifies ∃(♦A ∧ ¬A)}.

The set of formulas that are unreliable with respect to Σ is defined by:

Definition 6 : U(Σ) =
⋃
{∆ | Dab(∆) is a minimal Dab-consequence of

Σ}.

DR-entailment is defined in terms of the reliable models of Σ:

Definition 7 : A S5 -model M of Σ is reliable iff Ab(M) ⊆ U(Σ).

Definition 8 : Where A ∈ W , Σ |=DR A iff all reliable S5 -models of Σ verify
A.

Note that Definition 8 restricts DR-entailment to non-modal formulas. In
view of the specific application discussed in this paper, these are the only
consequences that we are interested in. In view of the next section, I also
define the notion of mc-entailment for DR:

Definition 9 : Where ∆ ⊂ W , Σ ||=DR ∆ iff, for every reliable S5 -model
M of Σ, there is some A ∈ ∆ such that M verifies A.

In order to see what the DR-semantics comes to, consider the following
simple example.

Example 4. Suppose that Σ = 〈{¬r∨ t}, {p∧ (¬q ∨ r), ¬p∧ q, p∨ s}〉. In
that case, all S5 -models verify ¬r∨ t as well as ♦(p∧ (¬q∨ r)), ♦(¬p∧ q)
and ♦(p ∨ s). But then, as U(Σ) = {p,¬p}, all DR-models of Σ verify
q, r and t. Note, however, that some DR-models verify s and others verify
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¬s. Hence, p ∨ s is not a DR-consequence of Σ. All this is in line with the
idea that the CL-consequences of members of Γ1 should be added to the CL-
consequences of Γ0, except for those that follow by CL from an unreliable
formula.

Note that if the abnormalities were not restricted to atoms, selecting the
required models would be impossible. This is illustrated by the following
example.

Example 5. Consider Σ = 〈{¬p}, {p, q}〉. As q behaves normally, it should
be verified by all DR-models of Σ. However, if abnormalities were not
restricted to atoms, one of the minimal disjunctions of abnormalities would
be

∨
{♦(p∨¬q)∧¬(p∨¬q), ♦q∧¬q}. Hence, q would be unreliable, and

according to the Reliability Strategy, models that verify ♦q ∧ ¬q would not
be eliminated. As a consequence, q would not be a DR-consequence of Σ.

As I mentioned above, DR is a special case of one of the logics presented
in [9] (there called T sr ). The proofs of the following two theorems are
obtained by straightforwardly transforming the corresponding proofs for T sr

from [9]. A wff A is said to be contradictory iff there is no S5 -model M
that verifies A.

Theorem 1 : If Γ0 is consistent, and no A ∈ Γ1 is contradictory, then Σ =
〈Γ0, Γ1〉 has DR-models (Reassurance).

Theorem 2 : If Γ is consistent, then, for every Γ0, Γ1 such that Γ0 ∪ Γ1 = Γ,
〈Γ0, Γ1〉 |=DR A, iff Γ |=CL A.

The proofs of the following theorems are obvious in view of the DR-
semantics, and are left to the reader:

Theorem 3 : If Γ0 is inconsistent or some A ∈ Γ1 is contradictory, then
Σ = 〈Γ0, Γ1〉 does not have DR-models.

Theorem 4 : If Σ = 〈Γ0, Γ1〉 has DR-models, then, for every A ∈ W ,
Σ 6|=DR A or Σ 6|=DR ¬A.

Theorem 5 : A |=CL B iff 〈A, ∅〉 |=DR B iff 〈∅, A〉 |=DR B.

I shall say that a sentence A ∈ W belongs to the consistent core of Σ
(relative to DR) iff Σ |=DR A. Note that the consistent core of a (possi-
bly inconsistent) sets of premises is thus defined in the most cautious way:
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whenever a sentence follows (by CL) from an unreliable sentence, it is not
included in the consistent core.

7. Evocation

In this section, I present the generalized definition of question evocation, and
show that all the basic properties of Wiśniewski’s definition are retained. The
definition proceeds in terms of the logic of questions DR∗ that has DR as
its declarative part. The language of DR∗ is L∗, and is obtained by enrich-
ing L with questions. Like Wiśniewski, I do not prejudge on the way in
which questions are constructed in L∗, but only assume that some minimal
conditions are satisfied. I assume (i) that to each question of L∗ an at least
two-element set of sentences of L is assigned that form its direct answers,
and (ii) that each finite, at least two-element set of sentences is the set of
direct answers to some question of L∗. Here is the definition of question
evocation on the basis of DR∗:

Definition 10 : Σ = 〈Γ0, Γ1〉 |=EDR∗ Q iff
(i) Σ ||=DR∗ dQ, and

(ii) for each A ∈ dQ, Σ |6|=DR∗ {A}.

In view of the definition of DR∗, Definition 10 warrants that a question
Q is evoked by an inconsistent set of premises Γ = Γ0 ∪ Γ1 iff it is sound
and informative relative to the consistent core of Γ. In the following theorem
(and henceforth), it is assumed that the declarative part of CL∗ is CL, and
that its erotetic part is the same as that of DR∗. The proof is obvious in view
of Theorem 2.

Theorem 6 : If Γ = Γ0 ∪ Γ1 is consistent, 〈Γ0, Γ1〉 |=EDR∗ Q iff Γ0 ∪
Γ1 |=ECL∗ Q.

Theorem 6 warrants that, for the consistent case, Definition 10 leads to
exactly the same results as Wiśniewski’s definition of evocation.

Let us now turn to the basic properties of evocation examined by Wiśniew-
ski. Like Wiśniewski, I shall make a distinction between three types of prop-
erties.

7.1. The evoking sets

The first type of properties is related to the kinds of sets that evoke questions.
An important result in this respect is that the notion of incompleteness can be
defined in terms of evocation—a set of premises Γ is said to be incomplete
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iff for some sentence A, neither A nor ¬A is entailed by Γ (see [24, p. 130]).
This result is retained in the generalized case. The only difference is that the
evoking set may be prioritized.

Theorem 7 : Σ = 〈Γ0, Γ1〉 is incomplete iff, for some question Q, Σ |=EDR∗

Q.

Proof. Suppose first that Σ is incomplete. In that case, there is some sentence
A, such that Σ 6|=DR∗ A and Σ 6|=DR∗ ¬A. Hence, where Q is the question
that has A and ¬A as its direct answers, Σ |=EDR∗ Q.

Suppose next that, for some question Q, Σ |=EDR∗ Q. It follows that, for
some A ∈ dQ, Σ 6|=DR∗ ¬A (by (i) of Definition 10), and Σ 6|=DR∗ A (by
(ii) of Definition 10).

Note that, in the inconsistent case, the question whether some set of prem-
ises Γ is complete is dependent on the preference ranking of the members of
Γ. Suppose, for instance, that ∆ is a maximal consistent subset of W , and
that for some A ∈ W , ∆ ∪ {A} is inconsistent. In that case, 〈∆, {A}〉 is
complete, but 〈∅, ∆ ∪ {A}〉 is not.

On Wiśniewski account each evoking set is consistent. The reason is that,
according to CL, any inconsistent set is complete. Evidently, this property no
longer obtains in the generalized case. Note, however, that it still holds true
that 〈Γ0, Γ1〉 is complete whenever Γ0 is inconsistent or some A ∈ Γ0 ∪ Γ1

is contradictory (see Theorem 3). Hence, we have:

Theorem 8 : If Σ = 〈Γ0, Γ1〉 |=EDR∗ Q, then Γ0 is consistent and no A ∈ Γ1

is contradictory.

7.2. The evoked questions

Also the properties concerning the kinds of questions that can be evoked are
retained in the generalized case. Here, I shall only discuss the evocation of
so-called self-rhetorical questions.17 Intuitively, the term “self-rhetorical” is
used to refer to any question that is rhetorical for ‘logical reasons’. In the
consistent case, examples of rhetorical questions are questions that have only
contradictory direct answers, and questions that have tautologies as direct
answers.

I shall proceed in two steps. First, I shall show that in the generalized case
the same questions are considered as self-rhetorical as in the consistent case.

17 Other important properties in this category concern the evocation of so-called normal
questions and proper questions (see [24, pp. 131–132]). In view of the results presented here,
it can easily be shown that also these properties are retained in the generalized case.
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Next, I shall show that, like in the consistent case, no self-rhetorical question
is evoked.

In order to define the notion of a self-rhetorical question, I first need to
define the notion of a presupposition of a question. Usually, a sentence A is
said to be a presupposition of a question Q iff, for every B ∈ dQ, B |= A.
When generalizing to DR∗, we have to take into account that entailment is
defined with respect to couples of sets of premises. However, in view of
Theorem 5, 〈B, ∅〉 |=DR∗ A iff 〈∅, B〉 |=DR∗ A. Hence, where Qp

DR∗ refers
to the set of presuppositions of Q according to DR∗, it is safe to stipulate:

Definition 11 : For every A ∈ W , A ∈ Qp
DR∗ iff, for every B ∈ dQ,

〈B, ∅〉 |=DR∗ A.

Theorem 5 and Definition 11 yield:

Theorem 9 : For every question Q, and every A ∈ W , A ∈ Qp
DR∗ iff A ∈

Qp
CL∗ .

Definition 11 also yields:

Theorem 10 : For every question Q, Qp
DR∗ is inconsistent iff some A ∈ dQ

is contradictory.

Hence, in view of Theorem 10, 2 and 3 we have:

Theorem 11 : For every question Q, 〈Qp
DR∗ , ∅〉 |=DR∗ A iff 〈∅, Qp

DR∗〉 |=DR∗

A iff Qp
CL∗ |=CL∗ A.

I can now define when a question is self-rhetorical according to DR∗. In
the standard account, a question Q is said to be self-rhetorical iff, for some
A ∈ dQ, A is entailed by Qp. In view of Theorem 11, A is entailed by
〈Qp

DR∗ , ∅〉 iff it is entailed by 〈∅, Qp
DR∗〉. Hence, I stipulate:

Definition 12 : A question Q is self-rhetorical according to DR∗ iff, for some
A ∈ dQ, 〈Qp

DR∗ , ∅〉 |=DR∗ A.

In view of Theorem 11 and Definition 12, we have:

Theorem 12 : A question Q is self-rhetorical according to DR∗ iff it is self-
rhetorical according to CL∗.
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Note that Theorem 12 is not evident. If, for instance, DR∗ would allow
for the derivation of contradictions, then Theorem 12 would not hold true.18

I now show that, according to DR∗, no evoked question is self-rhetorical.

Lemma 1 : If Σ |=EDR∗ Q, then, for every A ∈ Qp
DR∗ , Σ |=DR∗ A.

Proof. Suppose that for some A ∈ Qp
DR∗ , Σ 6|=DR∗ A. In view of Definition

11, it follows that Σ |6|=DR∗ dQ. But then, Σ 6|=EDR∗ Q.

Lemma 2 : If 〈Qp
DR∗ , ∅〉 |=DR∗ A then A ∈ Qp

DR∗ .

Proof. Obvious in view of Definition 11.

Theorem 13 : If Σ |=EDR∗ Q, then Q is not self-rhetorical.

Proof. Suppose that Σ |=EDR∗ Q, and that Q is self-rhetorical. By Definition
12, it follows that for some A ∈ dQ, 〈Qp

DR∗ , ∅〉 |=DR∗ A, and hence, by the
supposition and Lemma 1 and 2, that Σ |=DR∗ A. But then, Σ 6|=EDR∗ Q.

The following two corollaries immediately follow from Definition 12 and
Theorem 13:

Corollary 1 : If Σ |=EDR∗ Q, then Q has at least two direct answers that are
not contradictory.

Corollary 2 : If Σ |=EDR∗ Q, then no direct answer to Q is a tautology.

Let a question that has only contradictory direct answers be called a “com-
pletely contradictory question”, and one that has only tautologies as direct
answers a “completely tautological question”. In view of Corollaries 1 and
2, we have that, like in the consistent case, the following properties hold:

Theorem 14 : If Σ |=EDR∗ Q, then Q is not a completely contradictory ques-
tion.

Theorem 15 : If Σ |=EDR∗ Q, then Q is not a completely tautological ques-
tion.

18 In some cases, it may be justified to change the meaning of self-rhetorical questions. If,
for instance, all members of an inconsistent set are accepted as true, then a question that has
only contradictions as direct answers should no longer be considered as self-rhetorical.
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7.3. Relations between evoking sets and evoked questions

The third type of properties examined by Wiśniewski concern relations be-
tween evoking sets and the effects of these on the relations between evoked
questions. Here, the generalization to the inconsistent case yields some in-
teresting new results.

As is clear from Definition 3, a question that is evoked by a set Γ, is not
evoked by every subset, respectively superset, of Γ. In the consistent case,
and with CL as the underlying logic, the conditions under which Q is evoked
by a subset or a superset of Γ are quite trivial. If Q is evoked by Γ, then Q is
evoked by a subset of Γ iff Q is sound with respect to this subset; it is evoked
by a superset of Γ iff it is informative with respect to this superset (see [24,
p. 132]). One of the consequences is that, in the consistent case, only in-
formativeness is a non-monotonic notion. A question may be informative
relative to Γ, whereas it is not informative relative to some Γ′ ⊃ Γ. How-
ever, a question that is sound relative to Γ is sound relative to any superset
of Γ. When generalizing to the inconsistent case, things become a bit more
complicated. We shall see, however, that all complications are intuitively
justified.

In the inconsistent case, we are dealing with couples of sets of premises
Σ = 〈Γ0, Γ1〉. Let us first consider the cases where Γ1 is kept constant. Here,
the situation is the same as for the consistent case. Deleting members of Γ0

may have the effect that some questions are no longer sound with respect
to Σ. However, it cannot have the effect that some questions are no longer
informative with respect to Σ. Adding members to Γ0 may have the effect
that some questions are no longer informative with respect to Σ, but not that
some questions are no longer sound with respect to Σ. Hence, we have:

Theorem 16 : If Σ = 〈Γ0, Γ1〉 |=EDR∗ Q, Γ′
0 ⊂ Γ0, and Γ′

1 = Γ1, then
Σ′ = 〈Γ′

0, Γ
′
1〉 |=EDR∗ Q provided that Σ′ ||=DR∗ dQ.

Theorem 17 : If Σ = 〈Γ0, Γ1〉 |=EDR∗ Q, Γ′
0 ⊃ Γ0, and Γ′

1 = Γ1, then
Σ′ = 〈Γ′

0, Γ
′
1〉 |=EDR∗ Q provided that for each A ∈ dQ, Σ′ |6|=DR∗ {A}.

Let us now turn to the cases where Γ1 is not kept constant. Evidently, the
properties expressed by Theorem 16 and 17 also obtain, mutatis mutandi,
for these cases. But, there is something more. A question that is informa-
tive with respect to 〈Γ0, Γ1〉 may no longer be informative with respect to
〈Γ0, Γ

′
1〉, where Γ′

1 ⊂ Γ1. It is not difficult to see why: taking subsets of Γ1

may have the effect that U(Σ′) ⊂ U(Σ). When this happens, the number of
statements that should be accepted as true increases, and hence, some ques-
tions may no longer be informative relative to Σ′. Consider, for instance,
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Σ = 〈∅, {p,¬p}〉, and Σ′ = 〈∅, {¬p}〉. The question that has p and ¬p as its
direct answers is informative with respect to Σ, but not with respect to Σ′.
For similar reasons, a question that is sound with respect to 〈Γ0, Γ1〉 may
fail to be sound with respect to 〈Γ0, Γ

′
1〉, where Γ′

1 ⊃ Γ1. This typically
happens when U(Σ′) ⊃ U(Σ). For instance, the question that has q and r
as its direct answers is sound with respect to 〈{p}, {¬p ∧ (q ∨ r)}〉, but not
with respect to 〈{p}, {¬p ∧ (q ∨ r)} ∪ {¬q, ¬r}〉—q ∨ r is DR∗-derivable
from the former, but not from the latter. In view of all this, we have:

Theorem 18 : If Σ = 〈Γ0, Γ1〉 |=EDR∗ Q, Γ′
0 = Γ0, and Γ′

1 ⊂ Γ1, then Σ′ =
〈Γ′

0, Γ
′
1〉 |=EDR∗ Q provided (i) Σ′ ||=DR∗ dQ, and, (ii) U(Σ′) = U(Σ).

Theorem 19 : If Σ = 〈Γ0, Γ1〉 |=EDR∗ Q, Γ0 = Γ′
0, and Γ′

1 ⊃ Γ1, then
Σ′ = 〈Γ′

0, Γ
′
1〉 |=EDR∗ Q provided (i) that for each A ∈ dQ, Σ′ |6|=DR∗ {A},

and, (ii) U(Σ′) = U(Σ).

What Theorem 19 comes to is that, in the inconsistent case, not only infor-
mativeness is a non-monotonic notion, but also soundness. This, however, is
in line with what one might expect. Adding new inconsistencies may result
in a decrease of the number of statements accepted as true. Hence, for some
questions it may no longer be justified to believe that they must have a true
direct answer.

8. Strong Evocation

I mentioned in Section 3 that, in the generalized case, some evoked questions
are eliminative relative to their evoking set: each of their direct answers
provides guidance on how the inconsistencies should be resolved. Questions
that satisfy this additional requirement are said to be strongly evoked. Let
Σ |=SEDR∗ Q denote that Q is strongly evoked by Σ according to DR∗.
Here is the definition:

Definition 13 : Σ |=SEDR∗ Q iff
(i) Σ ||=DR∗ dQ,

(ii) for each A ∈ dQ, Σ |6|=DR∗ {A},
(iii) dQ ⊆ U(Σ), and
(iv) for each A ∈ dQ, Σ |6|=DR∗ {¬A}.

It is easily observed that strong evocation is a special case of evocation:

Theorem 20 : If Σ |=SEDR∗ Q, then Σ |=EDR∗ Q.
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I leave it to the reader to check that the equivalents of Theorems 8, 13, 14,
and 15 hold true for strong evocation.

I explained in Section 7 that completeness can be defined in terms of evo-
cation. An important result is that consistency can be defined in terms of
strong evocation. I shall say that a set of premises is contradictory iff some
member of Γ is contradictory.

The proofs of the following two lemmas are obvious:

Lemma 3 : If Γ is inconsistent, but non-contradictory, then every DR∗-model
of 〈∅, Γ〉 verifies at least one formula of the form ∃(♦A ∧ ♦¬A), such that
A ∈ Fp.

Lemma 4 : A S5 -model M verifies ∃(♦A ∧ ♦¬A) iff it verifies ∃(♦A ∧
¬A) ∨ ∃(♦¬A ∧ A).

Theorem 21 : Γ is inconsistent, but non-contradictory iff, for some question
Q, Σ = 〈∅, Γ〉 |=SEDR∗ Q.

Proof. For the left-right direction, suppose that the antecedent holds true.
By Theorem 1, it follows that Σ = 〈∅, Γ〉 has DR∗-models. But then, by
Lemma 3 and 4 and the definition of U(Σ), there is some A ∈ F a, such that
A,¬A ∈ U(Σ), and Σ 6|=DR∗ ∃A and Σ 6|=DR∗ ∃¬A. Hence, the question
that has ∃A and ∃¬A as its direct answers fulfills the conditions (i)–(iv) of
Definition 13.

For the right-left direction, it suffices to observe that, if the antecedent
holds true, Σ has DR∗-models, and U(Σ) 6= ∅. Hence, Σ is non-contradic-
tory, but inconsistent.

I now show that, if some question Q is strongly evoked by Σ, then each
direct answer to Q can be used to transform Σ in a Σ′ that is less abnormal.

Theorem 22 : If Σ = 〈Γ0, Γ1〉 |=SEDR∗ Q, then for every A ∈ dQ, (i)
Σ′ = 〈Γ0 ∪ {A}, Γ1〉 has DR∗-models, and (ii) there is a minimal Dab-
consequence Dab(∆) of Σ, such that, for some ∆′ ⊂ ∆, Dab(∆′) is a
minimal Dab-consequence of Σ′.

Proof. Suppose that the antecedent holds true, and choose some arbitrary
A ∈ dQ. By (iv) of Definition 13, it follows that Σ′ = 〈Γ0 ∪ {A}, Γ1〉 has
DR∗-models.

As dQ ⊆ U(Σ), there is some Θ ⊆ Fa, such that Dab({A} ∪ Θ) is a
minimal Dab-consequence of Σ. Moreover, as A is verified by some DR∗-
models of Σ, Θ is non-empty. But then, as the DR∗-models of Σ′ are the
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DR∗-models of Σ that verify A, and hence falsify ♦A ∧ ¬A, Dab(Θ) is a
minimal Dab-consequence of Σ′.

9. Generation

As explained above, question generation is a special kind of question evoca-
tion. A question is generated by a set of sentences iff it is evoked by that set,
and is risky. In view of the previous sections, the generalized definition of
question generation is straightforward:

Definition 14 : Σ = 〈Γ0, Γ1〉 |=GDR∗ Q iff
(i) Σ ||=DR∗ dQ,

(ii) for each A ∈ dQ, Σ |6|=DR∗ {A}, and
(iii) 〈∅, ∅〉 |6|=DR∗ dQ.

In [24, pp. 155–160], Wiśniewski examines a series of properties of ques-
tion generation. Each of these is retained in the generalized case or is subject
to changes analogous to those discussed in Section 7. I only list those prop-
erties that highlight the main differences with question evocation.

Like in the consistent case, it is easy to prove that the empty set does not
generate questions:

Theorem 23 : If Σ = 〈Γ0, Γ1〉 |=GDR∗ Q, then Γ0 ∪ Γ1 6= ∅.

In the consistent case, it can moreover be proved that sets of tautologies
do not generate questions. In the generalized case, something stronger holds.
Sets that entail only tautologies do not generate questions:

Theorem 24 : If Σ |=GDR∗ Q, then for some A ∈ W , Σ |=DR∗ A, and
〈∅, ∅〉 6|=DR∗ A.

Proof. Obvious in view of Definition 14 and the fact that, if the consequent
would not hold true, then, for every A ∈ W , Σ |=DR∗ A iff 〈∅, ∅〉 |=DR∗ A.

As an illustration of Theorem 24, consider Σ = 〈∅, {p,¬p}〉. Even though
the second element of Σ contains sentences that are not tautologies, no such
sentence is entailed by Σ. Hence, no question is generated by Σ.

Theorem 25 : Σ = 〈Γ0, Γ1〉 generates at least one question iff Σ is incom-
plete, and, for some A ∈ W , Σ |=DR∗ A, and 〈∅, ∅〉 6|=DR∗ A.
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Proof. The left-right direction is obvious in view of Theorem 7 (and the fact
that each generated question is an evoked question) and Theorem 24. For
the other direction, suppose that the antecedent holds true. In that case, there
is some A ∈ W , such that A is entailed by Σ and A is not a tautology, and
there is some B ∈ W , such that neither B nor ¬B is entailed by Σ. But
then, the question that has A ∧ B and A ∧ ¬B as its direct answers fulfills
the conditions (i)–(iii) of Definition 14, and hence is generated by Σ.

Like in the consistent case, the generalized definition warrants that the
non-contradictory direct answers to a generated question do not contradict
each other:

Theorem 26 : If Σ = 〈Γ0, Γ1〉 |=GDR∗ Q, then there are no non-contradictory
A, B ∈ dQ such that, for every S5 -model M, M verifies A iff M falsifies
B.

Proof. It suffices to observe that if the consequent would not hold true, then
〈∅, ∅〉 |=DR∗ dQ.

10. The Logics DM and DC

In this section, I briefly present the logics DM and DC , and discuss the al-
ternative definitions of question evocation and question generation to which
these logics lead.

As explained in Section 5, DM is obtained by selecting those S5 -models
of Σ that are minimally abnormal in a set-theoretical sense. We thus have:

Definition 15 : A S5 -model M of Σ is minimally abnormal iff there is no M′

such that Ab(M′) ⊂ Ab(M).

As for DR, entailment and mc-entailment are restricted to non-modal for-
mulas:

Definition 16 : Where A ∈ W , Σ |=DM A iff all minimally abnormal S5 -
models of Σ verify A.

Definition 17 : Where ∆ ⊂ W , Σ ||=DM ∆ iff, for every minimally abnormal
S5 -model M of Σ, there is some A ∈ ∆ such that M verifies A.

In order to define the logic DC , we need some additional definitions. First,
let f(A) be the result of relettering the free variables in A in such a way
that they occur in some standard order (for instance, the first occurring free
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variable is always x, the second always y, . . . ). Next, let A ≺ B denote that
∃B follows by (non-zero applications of) existential generalization from ∃A,
and g(∆) that {f(A) | A ∈ ∆; for no B ∈ ∆, f(B) ≺ f(A)}. Finally, let
ΦΣ be the set of all g(∆) such that ∆ contains one factor of each minimal
Dab-consequence of Σ.

The logic DC is obtained by selecting those members of ΦΣ that are nu-
merically smallest. Let Φ#

Σ be the set of members of ΦΣ that do not have a
larger cardinality than any other member of ΦΣ.

Definition 18 : A S5 -model M of Σ is a DC -model of Σ iff Ab(M) ∈ Φ#
Σ .

Definition 19 : Where A ∈ W , Σ |=DC A iff all DC -models of Σ verify A.

Definition 20 : Where ∆ ⊂ W , Σ ||=DC ∆ iff, for every DC -model M of
Σ, there is some A ∈ ∆ such that M verifies A.

The alternative definitions for question evocation are obtained from Defi-
nition 10 by replacing DR by DM , respectively DC . Those for strong evo-
cation and generation are obtained in the same way from Definitions 13 and
14. I leave it to the reader to check that all theorems proved in sections 7–9
are also provable for the alternative definitions.

The alternative definitions on the basis of DM are adequate for situations
in which one has reasons to minimize set-theoretically the number of things
that went wrong. In situations like this, DM leads to results that are intu-
itively more justified than those obtained by DR. The following example
illustrates this.

Example 6. Consider Σ = 〈{¬p ∨ ¬q, p ⊃ r, q ⊃ r, p ⊃ (s ∨ t), q ⊃
(s ∨ t)}, {p, q}〉. The only minimal Dab-consequence that follows from Σ
is (♦p ∧ ¬p) ∨ (♦q ∧ ¬q). If one has reasons to believe that p and q cannot
both be mistaken, then the question “Is p or q the case?” should be evoked
by Σ. Under the same conditions, the question “Is r the case or ¬r?” should
not be evoked by Σ—if either p or q is true, then so is r—but the question
“Is s or t the case?” should. All three results are obtained by DM , but none
of them is obtained by DR.

In some situations, one has reasons to minimize the number of abnormal-
ities in a numerical sense. This may be, for instance, because one wants to
restore consistency by a minimal number of changes. In cases like this, the
logic DC leads to better definitions of question evocation and question gen-
eration than the logics DR and DM . Also this is best illustrated by means
of an example.
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Example 7. Suppose that Σ = 〈{¬p ∨ ¬q,¬p ∨ ¬r, q ⊃ (s ∨ t)}, {p, q, r}〉.
The minimal Dab-consequences that are S5 -derivable from Σ are (♦p ∧
¬p) ∨ (♦q ∧ ¬q) and (♦p ∧ ¬p) ∨ (♦r ∧ ¬r). What this comes to is that p
or q is mistaken, and that p or r is mistaken. If one has reasons to minimize
the number of things that are mistaken, then one should conclude that p is
mistaken, and that neither q nor r is. But then, neither “Is q or ¬q the case?”
nor “Is r or ¬r the case?” should be evoked by Σ. Both questions are evoked
by DR and DM , but not by DC . Under the same conditions, the question
“Is s or t the case?” should be evoked by Σ. Also this result can only be
obtained by DC .

11. Conclusions and Open Problems

In this paper, I presented an analysis of how questions arise from inconsistent
premises. I started from the theory of Wiśniewski, and showed in what way
it can be generalized to the inconsistent case. For the consistent case, the
generalized theory leads to exactly the same results as Wiśniewski’s.

I distinguished between two different kinds of situations. When dealing
with an inconsistent set of premises, one may accept all members of this set
as true (at least for the time being), or one may suspend judgment on the
truth of at least some of the premises. In this paper, I only examined the
second type of situation in detail.

The generalization presented here is based on a specific type of prioritized
adaptive logics. One of the main properties of these logics is that they local-
ize the consistent core of a (possibly inconsistent) set of sentences. They do
so in a way that takes into account not only logical considerations but also
external preferences.

The generalization revealed some interesting new properties of question
evocation. It became clear, for instance, that in the inconsistent case, a dis-
tinction has to be made between two kinds of evocation. A question may be
evoked because the information exhibits certain ‘gaps’, or it may be evoked
because of the inconsistencies. The second type of evocation I called strong
evocation. I showed that if a question is strongly evoked from an inconsis-
tent set of premises, then each of its direct answers is helpful in resolving
the inconsistencies.

There are several open problems that deserve further study. A first impor-
tant open problem concerns the comparison of the two types of situation. In
this paper, I mentioned already several differences between them—for in-
stance, with respect to the question whether completely contradictory ques-
tions should be allowed for. It would be interesting to study this in some
more detail. A second series of open problems concerns a further analysis of
the notion of strong evocation. According to the definition presented here,
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the direct answers to strongly evoked questions are always atoms. It would
be interesting to generalize this definition, and to examine some further prop-
erties of this concept. A final series of problems is related to Wiśniewski’s
notion of question generation. In this paper, I briefly showed how this con-
cept can be generalized to the inconsistent case, but did not distinguish be-
tween two types of question generation. In line with the results on question
evocation, this distinction definitely seems worthwhile to explore.19

Centre for Logic and Philosophy of Science
Ghent University, Belgium

E-mail: Joke.Meheus@rug.ac.be

REFERENCES

[1] Diderik Batens. Dynamic dialectical logics. In Graham Priest, Richard
Routley, and Jean Norman, editors, Paraconsistent Logic. Essays on
the Inconsistent, pages 187–217. Philosophia Verlag, München, 1989.

[2] Diderik Batens. Inconsistency-adaptive logics. In Ewa Orłowska, ed-
itor, Logic at Work. Essays Dedicated to the Memory of Helena Ra-
siowa, pages 445–472. Physica Verlag (Springer), Heidelberg, New
York, 1999.

[3] Diderik Batens. Zero logic adding up to classical logic. Logical Studies,
2:15, 1999. (Electronic Journal: http://www.logic.ru/LogStud/
02/LS2.html).

[4] Diderik Batens. Minimally abnormal models in some adaptive logics.
Synthese, 125:5–18, 2000.

[5] Diderik Batens. A survey of inconsistency-adaptive logics. In Batens
et al. [10], pages 49–73.

[6] Diderik Batens. A dynamic characterization of the pure logic of rele-
vant implication. Journal of Philosophical Logic, 30:267–280, 2001.

[7] Diderik Batens. In defence of a programme for handling inconsisten-
cies. In Joke Meheus, editor, Inconsistency in Science. Kluwer, Dor-
drecht, in print.

[8] Diderik Batens and Joke Meheus. The adaptive logic of compatibility.
Studia Logica, 66:327–348, 2000.

[9] Diderik Batens, Joke Meheus, Dagmar Provijn, and Liza Verhoeven.
Some adaptive logics for diagnosis. To appear.

19 Unpublished papers in the reference section are available at the internet address
http://logica.rug.ac.be/centrum/writings/.



“04meheus”
2002/3/5
page 80

i

i

i

i

i

i

i

i

80 JOKE MEHEUS

[10] Diderik Batens, Chris Mortensen, Graham Priest, and Jean Paul
Van Bendegem, editors. Frontiers of Paraconsistent Logic. Research
Studies Press, Baldock, UK, 2000.

[11] Bryson Brown. How to be realistic about inconsistency in science.
Studies in History and Philosophy of Science, 21:281–294, 1990.

[12] Kristof De Clercq. Evocation from inconsistent premises. To appear.
[13] G.E. Hughes and M.J. Cresswell. A New Introduction to Modal Logic.

Routledge, London, New York, 1996.
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