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SOME DEFINITIONS OF THE “SMALLEST INFINITY”

Gary P. SHANNON

Abstract

Definitions of the “smallest infinity” are given, and the relationships
between them are considered. Most of these definitions are equivalent in
ZFC, but in ZF some have a distinct meaning.

Definitions of the finite and the infinite have been given by (among others)
Bolzano, Dedekind, Cantor, Sierpiriski, and Tarski (some examples and
history are given in [1], pp. 379-380 and [5], pp. 22-30, 209-213). In this
note the focus is on definitions of the “smallest infinity,” and the relation-
ships between these definitions. In ZFC most of these definitions are equiv-
alent, but in ZF some have a distinct meaning. The definitions given are a
sample of possible definitions, and are based on known definitions and
properties of the finite and the infinite.

If the Axiom of Choice (AC) is assumed then a set is of the “smallest
infinity” iff it is denumerable (that is, denumerably infinite); but without
AC it is known that an infinite set need not have a denumerable subset, and
thus in this setting, a denumerable set is not the “smallest.” Each definition
considered is satisfied by only denumerable sets in some extension of ZF,
but in ZF the definitions need not be equivalent, and may be satisfied by
sets which are not denumerable. In the first part, the definitions that are
considered are satisfied by sets which are denumerable in ZFC. Later,
definitions which are satisfied only by denumerable sets in ZFC+CH are
also considered. All definitions and results are given in ZF, unless
otherwise noted.

A set is finite if it is empty or equipotent with {0,1,...,n} for some n € w.
A set is infinite iff it is not finite. A = B denotes that A and B are equipo-
tent. A < B denotes that there exists a 1-1 map of A into B. “Countable” is
used here to mean finite or denumerable. A C B denotes that A C B and A
# B.If C is a C-chain of subsets, A € C, and A is not the union of its
predecessors in C, then A will be called a successor in C.

A set S is Dedekind-finite iff S is not equipotent with any of its proper
subsets. A set S is Tarski-finite iff every nonempty C-chain in @(S) has a
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maximal element. An infinite set is amorphous if it is not the union of two
disjoint infinite sets. It is known ([4], p. 52) that any amorphous set is
Tarski-finite.

ACR, (ACﬂO) denotes the axiom of choice on denumerable families (on
denumerable families of finite sets).

ACS{  denotes that for any denumerable family of finite nonempty sets
there is a denumerable subfamily for which a choice function exists. It is
known ([2], p. 91) that A'CS{;0 is equivalent to AC-{;O.

DCy, denotes the principle of dependent choices: if R is a relation on a
nonempty set S such that for every x € S there exists y € § with xRy then
there exists a sequence {x,: n € w} of elements of S such that for each n €
W, XpRxpy 1.

A set I is of the smallest infinity iff

DEN: There exists a 1-1 map of w onto 1.

SUB1: [is infinite, and for any subset B of /, if B # I then B is finite,

UNIL: [/ can be expressed as a denumerable union of finite pairwise dis-
joint sets.

EMBI1: [is infinite, and for any set B, if B is infinite then / < B.

LIN:  [is infinite, and there exists a linear order on [ such that every
initial segment is finite.

ITR:  Given a finite set, B, define Vo(B) = B, V., 1(B) = p(V,(B)),

Vu(B) = U Vu(B). Then there exists a finite set B such that I C V(B),

new

and 7 is infinite.

MAPI1: I is infinite and there exists a map f of I onto [ such that no
proper subset of / is mapped by f onto itself.

MAP2: There exists a 1-1 map fof I to I, f not onto, with I-f(I) count-
able, such that no proper subset of / is mapped by f onto itself.

TI1: 1 is infinite, and every C-chain in @(I) which does not have a
maximal element is equipotent to /.

TI2: 1 is infinite, and every C-chain in @ (/) which is infinite is equi-
potent to I.

TI13: There is a C-chain in g(I) which does not have a maximal ele-
ment, and every such C-chain is equipotent to 1.

TI4: 1 is infinite, and every C-chain in @(I) which does not have a
maximal element is denumerable.
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TIS: There exists P C p(I) such that for every finite C-chain, F in P
there exists a C-chain, D in P with F C D, and every infinite C-chain in P
is equipotent to 1. '

It is clear that DEN implies SUB1, UNI, LIN. In addition, as will be shown
below, DEN implies MAP1, MAP2, TI1-TI5; and DEN does not imply
EMERBI1 and ITR.

DEN implies MAPI1. Let I={a,: n € w}. Define f: I — I by flag) = a1,
fazne1) = azps3. flaan+2) = azy. Then fis a 1-1 map of 1 onto I such that no
proper subset of / is mapped onto itself.

DEN implies MAP2. Let I={a,: n € w}. Define f: I - I by fla,)=a2,41.
Then fis a 1-1 map of / to 1, fis not onto, /-f(f) is countable, and no proper
subset of / is mapped onto itself.

DEN implies TI2 (and hence TI1, TI4, TI5, and similarly TI3). Let I={a,: n
€ w} and let C be any infinite C-chain in g(f). If A is a successor in C then
let Wao={n € w: a, € A and a, & B for all B € C such that B C A}. Then
{Wa: A € C, A is a successor in C} is a partition of a subset of w, and
hence is denumerable. It follows that the set of successors in C is denumer-
able. For each nonsuccessor Nin C, let Fy= {D € C: D is a successor, D
C N, and if M is a nonsuccessor such that D C M, then N C M}. Then N =
UFy, and if N and M are distinct nonsuccessors, then Fy N Fp = &. Thus
the number of nonsuccessors in C is denumerable (since {Fy: N is a non-
successor} is a partition of a denumerable set —and hence is denumerable).
Therefore C is denumerable, thus C = [, and thus 7 satisfies TI2.

DEN does not imply ITR since w-w satisfies DEN, but does not satisfy
ITR.

DEN does not imply EMBI1 since in the basic Cohen model ([4], p. 141)
there is an infinite set of reals which does not have a denumerable subset.

In addition, it will be shown that DEN is equivalent to SUBI, LIN,
MAPI1, MAP2, TI3.

SUBI implies DEN (and thus is equivalent to DEN). Assume / satisfies
SUBL. Let x € I. I is infinite, thus /-{x} is infinite, thus /-{x} = [, and thus
I is Dedekind-infinite. Dedekind proved (without AC) that any Dedekind-
infinite set contains a denumerable subset ([5], p. 26), thus [ has a denu-
merable subset, D, thus D = [, and thus [ satisfies DEN.
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UNI does not imply any of DEN, SUBI, EMBI, LIN, ITR, MAP1, MAP2,
TI1-TI3. UNI does not imply DEN (and hence not SUB1, EMBI, LIN,
ITR, MAP1, MAP2) since ACy~does not hold in ZF, and hence the state-
ment that a denumerable union of finite pairwise disjoint sets is denumer-
able also does not hold in ZF,

UNI does not imply TI1-TI3. Assume that / = U{F,;: n € w}, where {F,: n
€ w} is a family of finite, pairwise disjoint sets. Let C,, = U{Fj: k = n}.
Then C = {C,: n € w} is a C-chain in p(/) which does not have a maximal
element, and thus if 7 satisfies TI1 then / = C, and thus [ is denumerable.
Therefore, if in ZF, UNI- TII holds then the union of any denumerable
family of finite pairwise disjoint sets is denumerable —which implies that
AC ;’;U holds in ZF— a contradiction. Thus UNI does not imply TI1 —and
similarly UNI does not imply TI2 and TI3.

UNI does imply TI4. Assume that / = U{F,;: n € w}, where {F,: n € w)} is
a family of finite, pairwise disjoint sets. Let C be a C-chain in g(f) without
a maximal element. Let J/ = UC, and for each n, let E,, = J N F,,. The idea of
the proof is similar to the idea of the proof of DEN—TI2. If D € C then let
Hp = {(nyp): |D N E,| = t,p}. Note that if B, D € C, B C D, then for all
n, thag = typ: and thus if D is a successor in C then there exists a least n
such that 7,p > t,g for all B € C, B C D —denote this n by n¢p. Then each
successor, D, in C can be identified with the unique pair (n¢ptnepp), and
thus the set of successors in C is denumerable. Therefore, as in the proof of
DEN-TI2, it follows that C is denumerable, and thus 7 satisfies TI4.

UNI also implies TI5 —and this is proven later.

EMBI implies DEN (since if [ satisfies EMBI then / can be embedded in
).

EMBI does not imply ITR since if AC holds (e.g. in the constructible
universe), then w-w satisfies EMB1, but does not satisfy ITR.

LIN implies DEN (and thus LIN is equivalent to DEN). Assume / satisfies
LIN. If a € I then {y € I: y < a} is finite, thus {y € I: v <a} = n for some
n € w. Define f: I - w by fla) = n. If a,b € I then it may be assumed that
a <b, thus {y € I: y <a} is a proper subset of {y € I: y < b} , thus fla) <
fb), and thus fis 1-1.

ITR implies DEN. B is finite, so can be well-ordered. By induction, for
each n, V,,11(B) can be linearly ordered (and hence well-ordered since
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Va+1(B) is finite) by the following. Assume V,(B) is well-ordered by <. If
a,b € V,,1(B) then a<b iff the <-least element of (a-b) U (b-a) is in a. Then
define a well-ordering of V,(B) by a<b iff the rank of a is less than the
rank of b, or the rank of a equals the rank of b, and a<b under the well-
ordering of V,(B). This well-ordering defines a 1-1 map of V,,(B) onto w.
Thus if [ satisfies ITR then / < w, and thus 7 satisfies DEN.

ITR does not imply EMB1 since w satisfies ITR, but not EMBI.

MAPI1 implies DEN (and hence is equivalent to DEN). Assume that /
satisfies MAP1. Note that f must be 1-1 since if a # b and fla) = f(b) then
{(fa)y-n€ Z} = {ff/(b): n € Z} =1 (since otherwise {f{(a):n € Z} is a
proper subset of / which maps to itself), thus a = f*(b) = f*(a) for some k €
o, and thus {f(a),.... (@)} is a proper subset of / which maps onto itself, a
contradiction. Let a € [, and let J = {fY(a): n € Z}. fis 1-1, thus Jis a
denumerable subset of [/, and f maps J onto itself, thus J = I. Thus [ is
denumerable, and thus 7 satisfies DEN.

MAP?2 implies DEN (and hence is equivalent to DEN). Assume [ satisfies
MAP?2. Let fbe a 1-1 map of I to 1, f not onto, with / - f{{) countable, such
that no proper subset of / is mapped by f onto itself. Let I - fil) = {a,: n €

J}.JC . Then I :U {f“(ay): k € w} —thus I is denumerable (by
neJ

defining g: I = w X J by g(f(a,)) = (k.,n), and w X J is denumerable), and

thus 7 satisfies DEN.

TI2 clearly implies TTI.

TI1 implies TI2. Assume [ is TI1. Let C be a C-chain in ¢ (f) which is
infinite, and which has a maximal element. Let My be the maximal element
of C. For each n > 0, let M,, be the maximal element of C - {My,....M,_1} (if
it exists). If M,, exists for each n, then {I/ - M,: n € w} is a C-chain in @(I)
which has no maximal element, thus by TII is equipotent to I, thus [ is
denumerable, and thus I satisfies TI2 (since [ satisfies DEN, and DEN
implies TI2). If it is not the case that M), exists for each n, then let n be the
largest natural number such that C* = C - {My,...,M,} does not have a
maximal element. There are two cases to consider. If each successor D €
C* has the property that D = E U {b} for some b € I, then let Dg be a
successor in C*, and for each n, let D,,| be the successor of D,,. Then {D,;:
n € w} is a denumerable C-chain in g(f) which does not have a maximal
element, thus by TII is equipotent to /, thus [ is denumerable, and thus /
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satisfies TI2. If there exists a successor D € C* such that there are at least
two elements in D - U {B € C: B C D}, then let y, be one of these two
elements. For each k£, 0 = k<n, lety, € M- U {B € C: B C My). Let Ej
= {y0,....yk} for 0 = k = n, and define a C-chain Gin p(I) by G = {E: 0 =
k=n}u {DuU {y9,....yn}: D € C*}. Then G = C, and G does not have a
maximal element, thus by TI1 G = [, and thus C = I. Therefore 7 satisfies
TI2.

TI1 does not imply DEN. In ZFA, in the basic Fraenkel model ([4], pp. 48,
52) A is Tarski-finite, and thus vacuously satisfies TI1, but A does not
satisfy DEN since A is not denumerable. This transfers to ZF by means of
the Jech-Sochor Embedding Theorem ([3], pp. 208-212, or [4], pp. 85, 94,
95).

TI1 does not imply UNIL. In the basic Fraenkel model ([4], pp. 48, 52), A
- vacuously satisfies TIl. Let {F,: n € w} be a family of finite, pairwise
disjoint subsets of A. Let £ be any finite subset of A, and choose 7 such
that  fixes E U {a}, m(b) # b, where a,b are elements of F,, - E for some
n. Then 7 & sym({ F,;: n € w)), thus {F,: n € w} is not in the model, thus
A # U{Fy: n € w} in this model, and thus A does not satisfy UNI. Again,
this transfersto ZF.

Note that if [ satisfies TI1, and if there is a C-chain, C, in g(I) without a
maximal element, then for any x € C, C - {x} is also a C-chain in (/)
without a maximal element. Therefore / = C and [ = C - {x} , thus [ is
Dedekind infinite, and thus Xg < 7. Let {b,: n € w} C I, and let D, =
{by,....hn}. Then D = {Dy;: n € w} is a denumerable C-chain in p(I) with-
out a maximal element, thus / = D, and thus / is denumerable. Also, by this
argument, TI3 implies DEN (and hence TI3 is equivalent to DEN).

TII1 implies TI4 since if 7 satisfies TI1, and if there exists a C-chain with-
out a maximal element, then by the above, I is denumerable, and thus /
satisfies TI4. If there does not exist a C-chain without a maximal element
then 7 is Tarski-finite, and thus / vacuously satisfies both TI1 and TI4.

TI1 clearly implies TIS.

TI4 does not imply TI1. In the second Fraenkel model ([4], pp. 48, 49) (A =
U{Pp: n € w}, Pp={ay, b,}; G is the group of all permutations of A which
preserve P,; in order for x to be in the model, there is a finite subset E of A
such that fix(E) C sym(x)), A does not satisfy TI1 since the chain C = {C,:
n € w} where C,, = U{Py: k¥ = n} does not have a maximal element, but is
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not equipotent with A, since A is not denumerable. A does satisfy TI4. Let
C be any C-chain in @(A) such that C does not have a maximal element.
First note that for all D € C, and for all but finitely many natural numbers
n, either P, C D or P, N D = J (since if not then there exists {k,: n € w}
and D, € C with the property that P, N Dy is a singleton, and then this
defines a choice function on {Pg,: n € w} —but such a choice function
cannot exist in this model). Assume that for all # = k and forall D € C, P,
C Dor P, n D = (. The idea of the proof is similar to the idea of the proof
of DEN—TI2. If D is a successor in C then let Gp = {n = k: P,, C D or P,
NE= forall EE C,E C D}. If D and E are successors in C, D # E,
then Gp N Gg =, and thus there is a 1-1 correspondence between the
successors in C and a partition of a subset of w. Therefore the set of
successors in C is denumerable, and as in the proof of DEN - TI2, it fol-
lows that C is denumerable, and thus A satisfies TI4. Thus in ZFA, Tl4
does not imply TI1, and again, this transfers to ZF.

In the following, DCN(S) denotes that the principle of dependent choices
holds in the set S. TI5(S) denotes that S satisfies TI5. It will be shown that
if § is not denumerable, then TI5(S) is equivalent to ~DCR(S)-

Assume ~DCR(S5). Then there exists a relation R on S such that for all x
€ § there exists y € § such that xRy, and there does not exist a sequence
{x4: n € w} such that for all n, x,Rx,|. Note that if b|{Rb2R...Rb,, then
there does not exist i<j such that b;Rb; (since if such an i, exist then let
k=(j-i)}+1 and define x5+, = b; —then for all n, x,Rx,+;— which contra-
dicts the assumption of ~DCR((S5)). Let P be the set of all finite subsets
{x1,....xp} of S such that x;Rx;1 for | =i = n-1. By the previous note,
there is only one way to order these subsets such that x;Rx;, . There does
not exist an infinite C-chain in / since if there were then the union would
be a sequence {x,: n € w} of elements of S such that for all n, x,,Rx,;; —a
contradiction. Thus § vacuously satisfies TI5.

To prove the converse, first note that in ZF, DCNO(S) implies ACNU
(9(S)) (since given {B,: n € w} , a denumerable family of subsets of S, de-
fine aRb iff there exists i such that « € C; and b € C;,; then DCR((S)
implies that there exists {x,: n € w} such that x, € B,, —and thus ACKR,
(#(8)) holds). Now, assume that S satisfies TI5, and suppose to the contrary
that DCR(S). S satisfies TIS, thus there exists P C ¢(S) such that every
finite C-chain in P can be extended in P, and such that every infinite C-
chain in P is equipotent to S. If P has an infinite C-chain, then (as in the
proof of TII - TI2) it will be assumed that it does not have a maximal
element (the proof is similar if the chain does not have a minimal element).
Assume {D,: a € J} is an infinite chain that does not have a maximal
element, and define R on S by xRy iff there exist 8, y € J such that D5 C
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Dy, x € Ds, y € Dy- Ds. DCR(S) implies that there is a sequence {x,: n
€ w} such that for all n € w, x,Rx;,+1. Foreachn € w, let G, = {D,: x,, €
D, and x; & D, for k>n} . By ACR(9(9)), for each n € w choose Dy, €
Gy. Then {Dy,: n € w} is a denumerable chain in P —and since § satisfies
TI5, § must be denumerable— a contradiction. Thus P cannot contain an
infinite C-chain. Given that P does not contain an infinite C-chain, let Cy
€ P.Let D) = {A € P: Cyp C A and there does not exist B € P such that Cy
C B C A}. Given Dy, define D, ;| = {A € P: there exists £ € D,, with E C
A and there does not exist B € P with E C B C A}. Since every finite C-
chain in P can be extended in P, for each G € D,, there exists H € D,
such that G C H. Then, by ACR((S5)), for each n, choose C, € D, such
that C,, C Cp4q. Then {C,;: n € w} is an infinite C-chain in P. § satisfies
TIS, thus this chain must be equipotent to S, and thus S is denumerable —a
contradiction— and thus ~DCy(S). Therefore if S is not denumerable,
then TIS(S) is equivalent to ~DCR(S).

It follows from the previous result that S is denumerable iff TI5(S) and
DCyR((S) both hold.

Using the equivalence of TI5(S) and ~DCR;($) it can now be shown that
UNI implies TIS5. Assume that [ is a denumerable union of finite, pairwise
disjoint sets. If ACf holds then 7 is denumerable, and thus (since DEN
implies TI5), I Satlsﬂes TIS. If ACf does not hold in / then ~DCR(/), and
thus by the above, [ satisfies TI5.

Also using the equivalence of TI5(S) and ~DCy(S) it will now be shown
that TI4 does not imply TI5. Construct a permutation model, M, in which
A, the set of atoms, is uncountable; G is the set of all permutations of A;
and x € M iff there exists a countable subset D of A such that fix(D) C
sym(x) (that is, M is a model with countable supports). DCx(A) holds by
means of the countable supports —and thus A does not satls?y TIS. Tt will
be shown that A does satisfy TI4 by showing that if {C,: @ € J} is an

infinite C-chain in g(A) thenU C is countable (since this implies that
ael

{Cu: o € J} is countable). Suppose, to the contrary, that U C, is not

aelJ

countable. Let D be any countable subset of A. Choose x,y € U Co)-D

ael
such that there exists _ with x € Cyand y & C, (then for all « € J, if x &
Cytheny & Cp). Let = (xy). Then 7 € fix(D), but w & sym{C,: a € J}
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since 7(Cy) & {Cy: @ EJ} (since x & n(Cy), buty € 7(C,)). Therefore if

U C is not countable then {C,: @ € J} does not have a countable

a&l

support —and hence {C,: @ € J}'is not in the model. Therefore U Cu
1=

must be countable, and hence A satisfies TI4. Thus in ZFA, TI4(/) does not

imply TI5(I), and again this transfers to ZF.

Note that if TI6 is the statement formed from TIS5 by requiring that P be a
set of finite subsets of 7, then the idea of the proof of the equivalence of
TI5(S) and ~DCR,(S) can be used to prove that if S is not denumerable
then TI6(S) is equivalent to ~DCR(S). Therefore if S is not denumerable
then TI6(S) is equivalent to TIS(S). But if S is denumerable then S satisfies
both TI5 and TI6, and hence TIS and TI6 are equivalent.

TI5 does not imply TI4. Let C = {C4: @ € w1} be a family of finite,
pairwise disjoint sets. Let G be the set of finite partial choice functions on

{Cn: n € w} (then G is a subset of p(H), where H = U {{Cax)yr &Lyl
aEw,

Let M be a model in which there is not a choice functionon D = {Cp:n €

w}. There is not an infinite C-chain in G (since if there were then the union

would be a choice function on a denumerable subfamily of D, and thus

ACS{ holds, which implies that AC{ holds —a contradiction). Every

finite C-chain in G can be extended, thus H satisfies TI5. H does not

satisfy TI4, since if Dg = U {(Cax):x € Cp}, thenD={Dy: a €E w1} is
asd
an infinite chain in H, but is not denumerable.

In ZFC, w satisfies each of the definitions considered thus far, and in ZFC,
if a set satisfies any of these definitions, then the set must be denumerable.
Furthermore, in ZFC, all of the previous definitions (except ITR) are equiv-
alent.

The two definitions that follow are more general, and in ZFC, may be satis-
fied by sets which are not denumerable. [ is of the smallest infinity iff

EMB?2: [ is infinite and 280 < |
EMB3: ] is infinite and X < I.
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The following relationships are given in ZF.

UNI implies EMB2 (and similarly implies EMBS)%smce if{FprnE w}isa
collection of finite, pairwise disjoint sets, and if 2™0 < U{F,: n € w}, then
R=<uU{Fp:n€w}.C={F,;: F,nR # )} is a denumerable subcollection
of {F,: n € w}, and the usual ordering on R defines a choice function on C
(by choosing the least element of F,, N R). Therefore if N0 <y {Fpon €&
w}, then ACSf holds in ZF, and thus ACf holds in ZF, a contradiction.

TI4 implies EMB3 (and similarly EMB2) since if [ satisfies TI4, and | <
I, then it is possible to construct an uncountable C-chain, C, in p(I)
—which implies (by TI4) that C is denumerable— a contradiction.

TI5 does not imply EMB3 (and similarly does not imply EMB2). Let M be
a model in which there is an w-tree of subsets of a set / without an infinite
branch, and let J =/ u X|. Then J satisfies TI5 (by letting P be the w-tree),
but J does not satisty EMB3.

EMB2 does not imply any of the other definitions, since N| satisfies EMB2
but does not satisfy any of the other definitions. Similarly, EMB3 does not
imply any of the other definitions, since 2M0 satisfies EMB3 but does not
satisfy any of the other definitions.

In ZFC+CH, each of EMB2 and EMB3 is satisfied by only denumerable
sets: however, in ZFC, this need not be true.

In addition, one possible criterion for a definition of the “smallest infini-
ty” 1s that if [ is of the “smallest infinity” then g([) is not of the “smallest
infinity” —and neither of EMB2 nor EMB3 satisfies this criterion in ZF. In
ZFA, in the basic Fraenkel model ([4], p. 48), both A and @(A) are Dede-
kind finite thus both A and @(A) satisfy EMB2 and EMB3 —and this trans-
fers to ZF.

Note that for each of the definitions given, except ITR, if / satisfies the
definition, and J = I, then J also satisfies that definition. Also, if f and J
each satisfy any of DEN, SUBI, LIN, MAP1, MAP2, TI3, ITR, EMBI,
then I = J —but this is not true of the other definitions.

The following are two variations of the definitions given which do not
define the “smallest infinity” in ZFC or in ZFC+CH.
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MAP3: There exists a map fof / to [, f not onto, such that no proper subset
of I is mapped onto itself (there exist functions on R that satisfy this
property).

TI7: TIS with “equipotent to I” replaced by “equipotent to w” (if I = w; X
w, and P = the set of 1-1 functions from subsets of w;| to w, then I is
uncountable, but all of the infinite C-chains in P are denumerable).

The following diagram illustrates the relationships in ZF between the dif-
ferent definitions given. In this diagram, no statement implies one that is
given above it.

EMB1 7

< ITR

|
|

DEN=SUBI=LIN=MAPI=MAP2=TI3

.

UNI

¢/ TII=TI2

1

v

TI4 P, TIS=TI6
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