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CORRECTIONS AND ADDITIONS TO MY PAPER “A NOTE ON
UNPROVABILITY-PRESERVING SOUND TRANSLATIONS”,
MORE GENERAL CONSTRUCTIONS™

Takao INOUE

Abstract

In this paper, we shall be concerned with the embedding-construction
problem from a given proof-theoretic embedding and with some crite-
rion to distinguish one embedding with another.

We shall first point out some false argument in the second section of
the paper [12] of the above title. However, thanks to certain construc-
tions introduced in the present paper, the main results of the section,
i.e. the affirmative answers to the problem posed in it (= Question 2 in
[12]) remain valid and so does the rest of the paper [12]. Further we
shall generalize the obtained results on constructions with atomic for-
mulas to those with more general unprovable formulas. In addition, we
shall show that a certain set obtained by such a construction forms a
lattice isomorphic to a certain sublattice of the Nishimura-Rieger lat-
tice of formulas of one variable p of intuitionistic propositional logic
for any p.

For all the logics treated in this paper, i.e. classical and intuitionistic
logics and modal logics S4 and S5, some of the constructions give even
an affirmative answer to Question 1 of [12]: i.e., “Let X and Y be given
consistent formal systems. For any embedding 7 of X in Y, is there a
construction ‘6 such that by the construction ‘¢, we can obtain a set
with cardinality k = Ng of mutually non-C-equivalent embeddings
from 17"

Further we shall give a necessary and sufficient condition for an
affirmative answer to Question 1. We shall also show that a certain set
of such constructions forms a lattice for certain formal systems.

This paper is the overture to my forthcoming paper [14] (on a gener-
alized Godel’s theorem on embedding) and our further work on the
theme of this paper.

*This paper is dedicated to the late Dr. Diana Raykova. This paper is the revised and en-
larged version of Part I of [13].
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1. Introduction

On December 31, 1993, about two hours before the New Year, so before
new year’s fireworks began, it was still quiet outside. I was then in my
room. I took a book [34] in mathematical logic from one of my bookselves
and comfortably sat to browse it through as a pastime. Soon after I began, I
noticed an interesting intuitionistically valid formula ((((p D g¢) D p) D p)
D g) D q on page 104 of it. Thar was the Mints’s formula, a counter-
example of Komori’s conjecture (see [32]) for intuitionistic logic and it is
that of my Theorem 2.1 (and thus Corollary 2.2) in [12], too.

That is, it is not correct that for any atomic formula p # L of intuitionis-
tic predicate (propositional) logic IQC (IPC) without equality, FiQcapc) A
D p. D p = rcaec) A. However, thanks to three constructions
introduced in this paper, the main results of the section, i.e. the affirmative
answers to the problem posed in it (see §2 of this paper), to be precise,
Theorems 2.3, 2.5 and Corollaries 2.4, 2.6 in [12], remain valid and so does
the rest of the paper [12].!

We shall see the first construction in §2 of the present paper, using the
original argument of [12] as much as possible. The second construction is
useful for a case involved in Gddel translation. The idea of the third con-
struction is based on the disjunction property of intuitionistic systems. The
second and the third ones will be introduced in §4. In the same section, we
shall extend the first construction to more general unprovable formulas,
incorporating with falsum. And we shall prove general theorems for the
extended construction, in particular Theorem 4.6. The third and the fourth
sections of this paper, therefore, mean the substitute of the second one of
[12].

In §5, making use of the developed techniques in §4, we shall show as a
generalization of the affirmative answer that a certain set obtained by such
a construction forms a lattice isomorphic to a certain sublattice of the
Nishimura-Rieger lattice of formulas of one variable p of intuitionistic
propositional logic for any p.

In §6, we shall introduce a natural notion, non-U-equivalence as another
criterion to distinguish one embedding with another. Under certain weak
conditions, non-U-equivalence and non-C-equivalence are equivalent.

In §7, we shall apply the idea for the third construction to classical prop-
ositional logic and modal logic S4.

In §8, we shall show that some of constructions introduced in the previ-
ous sections eventually give an affirmative answer to Question 1 for all the

lPropcrly saying, the rest of it does not depend on the results of the previous section.
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logics treated in this paper, i.e. classical and intuitionistic logics and modal
logic S4 and S5. :

In §9, we shall give a necessary and sufficient condition for an affirma-
tive answer to Question 1.

In §10, we shall show that a certain set of constructions forms a lattice for
certain formal systems.

In §11, that is, in the last section, we shall close this paper with some
general comments.

In the following section, we shall review the definitions and the problems
of [12] in a slightly more general setting. So one can read the present paper
independently of [12].

2. Preliminaries

Definition 2.1 Let X be a formal system. By Fy we denote the set of all
well-formed formulas of X. By Fy we denote the set of all atomic formulas
of X. If L € Fx, we understand F)'~ as Fy - { L}, where L is falsum,
otherwise Fy~ = Fy.

Definition 2.2 Let X and Y be formal systems. Let D be a subset of Fy. By a
sound translation 7 from X to Y with respect to D, we mean a mapping from
D to Fysuch that 7is sound with respect to D: i.e.foranyA € D, Fx A =
Fy 7(A), where Fy A means that A is a theorem of X. We shall call a sound
translation 7 from X to Y with respect to D to be a sound translation T from
XtoY,if D= Fyholds.

By an unprovability-preserving translation T from X to Y with respect to
D, we mean a mapping from D to Fy such that 7 preserves unprovability
with respect to D: i.e. forany A € D, 4y A = 4y 1(A), where 4y A means
that A is not a theorem of X. We shall call an unprovability-preserving
translation 7 from X to ¥ with respect to D to be an unprovability-preserv-
ing translation 7 from X to Y, if D = Fy holds.

A mapping from Fy to Fy is called to be an unprovability-preserving
sound translation with respect to D, if it is a sound with respect to D and it
also preserves unprovability with respect to D.

In the ordinary terminology, an unprovability-preserving translation is
called a faithful one. We shall call an unprovability-preserving sound trans-
lation from X to ¥ with respect to a subset D of Fy to be an embedding of X
in Y with respect to D. As usual, we shall call an unprovability-preserving
sound translation from X to Y to be an embedding of X in Y, if D = Fy holds.
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Definition 2.3 We call an embedding of a formal system X in X to be an
autoembedding of X.

We understand “auto” similarly when we apply it to other translations.

We shall recall the definition of non-C-equivalence.? In this paper, we do
not restrict the notion only to unprovability-preserving translations on the
contrary to that of [12].

Definition 2.4 Let X and Y be consistent formal systems.3 Suppose that
truth-functional* equivalence = is one of the logical symbols of ¥, or it is
definable in Y. For any translations 7 and 7, from X to Y, they are said to
be non-C-equivalent if there is a formula A of X (called a C-ditcher of 1|
and T7) such that neither x A nor Fx 71(A) = 7(A) holds. Otherwise we
say that they are C-equivalent.

We soon intuitively understand that if 7| and 7, are non-C-equivalent,
then they are different translations.

The following questions with respect to cardinality x = Ng were posed in
[12].

Question 1. Let X and Y be given consistent formal systems. For any em-
bedding 7 of X in Y, is ihere a construction 6 such that by the construction
‘€, we can obtain a set with cardinality x = Ny of mutually non-C-equiva-
lent embeddings from 77

2This definition contains some possible ambiguities: for example, “what does a formal
system precisely mean?” and so on. But we do not here pursuit to make all the possible
ambiguities in it clear, because we can understand the content of it with common sense of
logicians, and because even this rather ambiguious definition will be useful for a general
consideration as will be seen in §9.

It is very difficult to say what logic (or a formal system) is, for example. I think that we
are able to do something general and theoretical about logic before we know the precise
answer to such a question. But in some situation, in order to develop rigorous treatments, it
is necessary to define what a logic is precisely. For example, in the study of intermediate
propositional logic, a logic is defined as a subset of the set of all theorems of CPC which
includes the set of all theorems of IPC and is closed under the rule of substitution and mo-
dus ponens. | think that the rigor required for definitions depends on what we study and how
we approach to it as we can learn from the history of mathematics.

3To make sure, a formal system X is said to be consistent if there is a formula A of X such
that 4y A holds.

4The word "truth-functional” is intended to indicate that the equivalence is not strict one.
for example in modal logic. But it is an interesting problem to ask whether strict equivalence
can effectively play a role for (non-)C-equivalence.
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Question 2: Let X and Y be given consistent formal systems. Suppose that
an embedding 7of X in Y is given. Is there a construction 6 such that by the
construction ‘€, we can obtain a set with cardinality x = N of mutually
non-C-equivalent embeddings from 7?

Remark: For Questions | and 2, we assume that every embedding obtain-
ed by the construction is defined using at least one value 7 (A) for some A
€ Fy.

In §3, we shall give an affirmative answer to Question 2, when given X, Y,
T and k are the following: (all the predicate logics treated below are for-
mulated without equality)

(P1) X =Y = intuitionistic first-order predicate (propositional) logic
IQC (IPC); 7 = the identity translation id (idem); k = No,

(P2) X = classical first-order predicate (propositional) logic CQC
(CPC); Y =1QC (IPC); 7= Godel translation (idem) from CQC
(CPC) to IQC (IPC) (see [8] and refer e.g. to [17]); k = Ny.

In the seventh section, we shall also give an affirmative answer to Ques-
tion 2, when given X, ¥, Tand « are the following:

(P3) X=Y=CPC, t=id, k=N,

(P4) X =Y =modal logic 84; 7= id; k = Ny,

(P5) X =1IPC,; Y = modal logic S4; 7 = Godel translation from IPC to
S4 (see [9]); k= Ny,

(P6) X = modal logic S5; Y = modal logic S4; 7= Matsumoto’s trans-
lation from S5 to 84 (see [23]); k= No.

In §8, we shall give an affirmative answer to Question 1 for (P1)-(P6),
making use of the constructions used for Question 2.6

We follow [42, vol. I, p. 36] for the formulation for IQC (IPC) without
equality, although we take different notations for them, e.g. for metavari-
ables and logical symbol D in place of —. So we shall employ A, v/, D, L,

5These cases are only examples.

6Although the cardinality « of construction in the above cases (P1)-(P6) is Np, I already
noticed as an answer to one of questions of Prof. D. van Dalen that there are some construc-
tions with k= 2™ . By a personal communication, Prof. M. Takano also let me know some
construction with k = 2°° . However, I do not want to treat those cases with the cardinality
of continuum in the present paper, which will be left to another paper.
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V and 3 as primitive logical symbols of IQC. We shall often write — A for
A D 1. For CQC, we shall take /A, v/, D, —, Vand 3 as primitive.

To make sure, we shall recall the definition of Godel translation from
CQC (CPC) to IQC (IPC).

Definition 2.5 Let X be CQC (CPC) and Y IQC (IPC). Then we define a
translation (+)° from X to Y (called Gddel translation) as follows: for any
formula A of Fy,

(1) A° = — —A for A atomic,

(2) (MA)°= 1A,

(3) (A#B°=A°#B°, #€ (N, D},
(4) (Av B)°= 2 (0A° A B9,
(5) (VxA)° = VxA°,

(6) (FxA)° = aVx—A°,

The following theorem is very well-known and will be often used in this
paper.

Theorem 2.1 (Godel-Gentzen-Bernays) ([8]) Godel translation (+)° is an
embedding of CQC (CPC) in IQC (IPC).

The following well-known lemma will be also useful.

Lemma 2.1 (cf. [17, p. 495]) Gédel translation (-)° and a translation
— = ((*)°) are C-equivalent embeddings of CQC-(CPC) in 1QC (IPC).

Kleene’s Gentzen-style sequent calculus G3 for IQC ([17, p. 481]) will
play an important role for this paper. Throughout this paper, we shall use
the following theorem for G3, usually without mentioning.

Theorem 2.2 (Gentzen) (cf. [17]) When n= 1, if Ay, ..., A,, = B is provable
in G3, then Ay N\ ... NA,. D B is provable in IQC. If - A is provable in
G3, then A is provable in IQC.7

Definition 2.6 Let X be a formal system. For any formula A € Fy, <A>
stands for the set of all atomic subformulas occurring in A.% For any for-

TNote: if A - is provable in G3, then — A is provable in IQC.

8We shall follow the definition of subformula in [17, p. 449] for the predicate case.
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mula A E Fy,if L € Fy,then< A > stands for <A> - { L}, otherwise
< A>™ = <As.

The following lemma is the intuitionistic analogue of the Ono-Kleene’s
theorem (see [33] and [18]) (cf. [22] and [17]). The lemma will be seen
below as a strong tool to prove the faithfulness of a given translation in a
general setting.

Lemma 2.2 Let X be IEC (IPC). For any A, B € Fy, iftx A D B holds
with < A>" 0 < B>™ =& then by —A or by B.

Proof. This lemma can be proved as a corollary of the interpolation theo-
rem for IQC (IPC). That is, by the interpolation theorem, we have an inter-
polation formula C with the assumpuon of Lemma 2.2 such that by A D C
and y C D B hold. Because of < A>™ n < B> = &, the C, which is
built up only by L and logical symbols, must be equivalent to L orto — L,
since L behaves just like classical falsity even in intuitionistic logic. If +y
C = 1, then Fy —A holds, otherwise +y B holds.?

We can also prove this lemma, reducing it to the modal analogue of it
with the Godel translation from intuitionistic to modal logics (for the de-
tails, see [15]). [J

3. Embedding of classical in intuitionistic logics, Part |

This section and the following two sections mean the corrected and ex-
tended version of the second section of [12]. That is, we shall, in a correct
way, give affirmative answers to Question 2 in the case of (P1) and (P2),
respeclive]y

Only in this section, in order to make use of Kleene's version G3 of
Gentzen's sequent calculus LK, we shall take a formulation without 1| (fal-
sum) for IQC (IPC) with the rest of the formulation intact.

We shall only take care of the predicate case of (P1) in great detail. The
other cases of them are, mutatis mutandis, similarly dealt with.

Let us begin with a proposition. For any set S, by IS| we denote the cardi-
nality of §.

91 learned this proof from Prof. A. S. Troelstra.
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Proposition 3.1 Let X be IQC (IPC).!0 Then we have | Fy'| = 1 "1 = No.

Proof. For IPC, it is trivial. For IQC, we can easily modify the argument
in [43, p. 108] (note that our language for it allows countably many indi-
vidual variables, countably many predicate symbols, countably many func-
tion symbols and countably many constants). (For cardinal arithmetic, see
e.g. [21, pp. 28-30, in particular, Lemma 10.21 on p. 30].) [J

The following construction 7, gives an answer for (P1) and (P2).

Definition 3.1 Let ¥ be IQC (IPC). Let 7 be an embedding of a consistent
formal system X in Y. For any p € F,'", we define a translation Tup) as
follows: for any A € Fy,

_JHA)yopop if pe< 1(A) >,
Tpy(A) = {T(A) otherwise

It is obvious that for any atomic p, id,(p) 1s sound, since for any formula A
of IQC, Fioc A D (A D p. D p) holds. We shall prove that for any atomic
p. idyp) is unprovablility-preserving. Let A be a formula of X. Suppose
FIQC td,(p)(A). If p € <A>, then we immediately have Fx A since 7is an
embedding. So, suppose p & <A>. We shall consider the provability of
id,(py in Kleene’s Gentzen-style sequent calculus G3 for IQC (see [17, p.
481] or Appendix of [12]) for which Gentzen’s normal form theorem
(Hauptsatz or cut elimination theorem) holds. So there is some proof (fig-
ure) of id,(p)(A). Every successful proof of it should look the following:

— ADp—
ADp— A P p=p
ADp—->p

- ADpop.
Hence, we obtain Fjgc A D p. D A. Since
(ADp.DA)D.pDA
is a theorem of IQC, we have Figc p D A. Since p € <A> holds, by
Lemma 2.2, A should be provable in IQC.

0For this proposition, we take the original formulation for the logics with L. The propo-
sition of course holds for ones without L, too.
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Taking the contraposition of the argument considered above, we can con-
clude that id ;) is unprovability-preserving. For any atomic formulas p #
g, idpy(r) = idy{4)(r) 1s not a theorem of IQC if r # p or r # g (this
atomic formula r is a C-ditcher of idyp} and id,(4}). Thus the construction
id{p) yields countably many mutually non-C-equivalent unprovability-
preserving sound translations from IQC to IQC. The case (P2) can sim-
ilarly be taken care of. So it is left to the reader.

Summing up the above, we have the following theorems.

Theorem 3.1 Let X be IQC (IPC). A set {fda{ﬂ :p € FY" ) is that of mu-
tually non-C-equivalent autoembeddings of X.

Corollary 3.1 Let X be a consistent formal system. Let Y be IQC (IPC).
Suppose that we have an embedding 7 of X in Y. Then, for any p € F gl
Tu(p) is an embedding of X in Y.

Proof. Immediate from Theorem 3.1. [J
For brevity, we shall write () ) for ((+)°)ypy» where (-)° is Godel
translation from CQC (CPC) to IQB (IPC).

Theorem 3.2 Let X be CQC (CPC) and Y IQC (IPC). A set { (-):{p} =
F}'"} is that of mutually non-C-equivalent embeddings of X in Y.

4. Embedding of classical in intuitionistic logics, Part 11

In this section, we shall take care of (P2) by means of two alternative con-
structions. Also we shall generalize the results of the previous section,
extending the definition of T(p} to that of 7,g) with a more general
unprovable formula R instead of an atomic formula. As in the previous sec-
tion, we shall only consider the case of predicate logic.

Definition 4.1 Let Y be IQC (IPC). Let 7 be a given embedding of a con-
sistent formal system X in Y. Take r € Fy'™ and fix it. Forany p € F}', we
define 7, as follows: for any A € Fy,

p ifA=p+# L,
T(A) = r iffyA=Llandp # L,
T(A) otherwise.

Ui [3] for example, some elementary properties of this construction idm,, are given in
the setting of type theory.
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It is obvious that for any such a p, 7, is an embedding of X in Y. Let (-)° be
Godel’s negative translation from CQC (CPC) to Y. We write (), for
(()°)p- Then, a set {(-); : p € F;'7} with cardinality N gives an affirma-
tive answer to (P2). Forany p # g € F} (), and (-), are non-C-equiva-
lent, since p = — —p is not a theorem of Y: i.e. in this case, p is a C-ditch-
er of them. For any p € F;'", (-)] and (), are non-C-equivalent, since
— —r /A v = ris not provable in Y i.e. in this case, r A —risa C-
ditcher of them.

Theorem 4.1 Let X be CQC (CPC) and YIQC (IPC). A set {()p i p E
Fy'} is that of mutually non-C-equivalent embeddings of X in Y.

Before we introduce the third construction, we shall review the disjunc-
tion property of IQC (IPC).

Theorem 4.2 ([10]) (The disjunction property) Let X be 1QC (IPC). For
any A, B € Fy, we have: Fx Ay B = (Fx A orkx B).

The third construction is the following.

Definition 4.2 Let Y be 1QC (IPC). Let 7 be an embedding of a consistent
formal system X in Y. For any R € Fy with 1y R, we define 75(g) as
follows: forany A € FY,

T8{R}(A) = T(A) v R.

Let X be a consistent formula system. Let Y be IQC (IPC). For any un-
provable formula R of Y, 75g) is an embedding of CQC (CPC) in X.
Indeed, 75(g) is sound, since 7A) D 75{R)(A) is a theorem of Y. It is
faithful, too. Suppose that Fy 7(A) \/ R holds. Then, by the disjuction prop-
erty, we have Fy 7(A) or Fy R. Then, we obtain Fy (A), since R is not
provable in Y. So we have Fy A, since 7 is faithful.

Let R, QO € Fy with 4y R, 1y Q and 1y R = Q, arbitrarily. Suppose that
for a given 7, there is a formula A € Fy such that 4y A, 4y — —7(A) and
<AL N <R = 0> = & We may assume without loss of generality
that 1y R D Q holds. By Lemma 2.2 and the above assumptions, we get

Ay 7 7A) D .RD Q. (%)
We know

Fy ((A) v R) D (H(A) v Q). D .~ 1(A) D(R D Q). (**)
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So we obtain, from the above (*) and (**),
1y MA) v R. D .1A) v Q.

This means that A is a C-ditcher of 75(g} and 75(0). So, summing up the
above, we have:

Theorem 4.3 Let Y be 1QC (IPC). Let 7 be an embedding of a consistent
formal system X in Y. For any R € Fy with 1y R, a translation T5(R} is an
embedding of X in Y. For any R, Q € Fy withHy Rand 1y Q, ifiyR = Q
holds, and if there is a formula A € Fy such that 4y A, 1y = —1(A) and
<AL N <R = 0>4L =, then Ts(R} and T5(0) are non-C-equivalent.

Corollary 4.1 Let X be 1QC (IPC). A set {tdsipy:p € Fy'} is that of mu-
tually non-C-equivalent autoembeddings of X.

Let 7be an embedding of a formal system X in IQC (IPC). If 7 preserves
provability relation F (that is, forall A, B € Fy, A+ B = A) + 7(B)), then
for any unprovable formula R of IQC (IPC), 75(g) preserves I, too.

For brevity, we shall write (-);{R} for (()°)s(r}-

Let X = IQC (IPC). A set {("); b PE F{'} with cardinality Ng then
gives an affirmative answer to (P1) and (P2). Forany p # ¢ € ) e (-):).{p}
and (-);,, are non-C-equivalent. Indeed, r € Fy'" - {p, g} is a C-ditcher
of them with r # p and r # g. Forany p € Fy", (-)§ »y and (-)° are non-
C-equivalent since for any p # g € Fy, g is a C-ditcher of them. So, we
have:

Theorem 4.4 Let X be CQC (CPC) and Y IQC (IPC). A set {('):5‘{p} pE
F}'} is that of mutually non-C-equivalent embeddings of X in Y.

We shall also see the following easily.

Theorem 4.5 For any p, q € F;'(’)C“,,C,, unless p = q = L, then (-)i{P} and
(');{q} are non-C-equivalent.

We shall extend the definition of T(p) as follows.

Definition 4.3 Let Y be IQC (IPC). Let 7 be an embedding of a consistent
formal system X in Y. For any R € Fy with 4y R, we define a translation
7.{R) from X to Y as follows: for any A € Fy,
7A) D R. DR if Cond(t, A, R) holds,
TR)(A) = =1 —17(A) iftyR= 1,
mA) otherwise.
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where
Cond(7,A, R) & (<AL N <R>4L = A4y —R).

We can extend Theorem 3.1 for the new 7,(g). Before we carry it out, we
need some definitions.

Definition 4.4 Let X be 1QC (IPC). Let A be a formula of X. Suppose that
A contains at least one L. A falsum L contained in A is said to be a nega-
tion-component of A if B D 1 is a subformula of A for the falsum L and
some formula B of X, otherwise we call it a non-negation-component of A.

Definition 4.5 Let X be IQC (IPC). Suppose that A has n falsums as the
non-negation-components of it. Take an ordered sequence py, p2, ..., p, (n
= 1) of mutually distinct proposition letters of X such that p; € <A> holds
for any 1 = i = n. Then we define a formula AL [py, py, ..., py] of X as a
result obtained by the following procedures (1) and (2): (1) in A, replace all
non-negation-components of A by py A —py, p2 A Tpa, oy py A Ty, in
such an order as from the leftmost occurrence of the L’s to the rightmost;
(2) in the result obtained by applying (1) to A, replace all subformulas of
the form B O L for some formula B by = B. We call A9L[p,, p1, ..., p,] the
non- L-formula of A with respect to py, pa, ..., p, and we shall write A4L for
AdL(py, p, ..., pn), if no ambiguity arises.

Example: Let py, p2, p3, g, r, h, g be mutually distinct proposition letters
of IPC.Let Abe [LD{(((p1 D L.v )DL .Ap) D.mpy A L)D. L
D 1)1 D —p3. Then, as AdL[q, r, h, g], we have [¢ A —g. D ((—(—p; v
(rA =) Ap2. 2. pi AhA D) D .—(g A —1g)}] D —ps.

Proposition 4.1 With the same notations and assumptions of Definition 4.5,
we have by A= AdL[py, pa, ..., pul.

Remark: Given a formula A, the formula A9 is not uniquely determined.
It depends on the chosen proposition letters for the operation, of course.
Below we shall often check whether <A91> N <B4 1> = (ZJ holds or not for
given A and B. If we do not specially mention, we shall understand that the
operation (-)4+ used in the expression <A91> N <B4L> is applied to A D
B.

Let us see some examples for the just above remark. Let py, pa, p3, ¢, h, g
be mutually distinct proposition letters of IPC. LetA be pj D — (L D p3)
and B=(p3 D L)\ — L. Then, we see
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<Adl>n <Bdis
=<p; D (@M g. Dp)>nN<(py DhA —h) v (g —g)>

We shall see another example. Let Abe 1L D .— 1 and B= — L. Then, we
see i

<Adlsn <pdls
=<gN\1g. D (hAh>n<m(gh mg>=C.

In both cases, we note <A91> N <BdL> = (. In general, we easily see the
following proposition.

Proposition 4.2 Let X be IQC (IPC). (1) For any A, B € FYy, if there is

some (-)L such that <A4L> 0 <B4L> = &, then for any (-)4L, we have

<A4l>n <Bdl> = (2) Forany A, B € Fy, for any (-)4L, we have
<Adl>N<Bdl> =« <A>dl 0 <B>dl =,

We need some lemmas for our further arguments below.

Lemma 4.1 Let X be 1QC (IPC). For any A € Fy, if -y —A, then for any
B, C €EFy, wehavetx AD Band tx AN C. D B.12

Proof. Immediate fromty "AD . ADBandty " AD(AANC.DB).[J

Lemma 4.2 Let X be 1QC (IPC). For any A, B € Fy, iftx A D B holds
with <A4L> N <B4L> = & for some operation (1YL, then by —A or Fy B.

Proof. This is the same lemma as Lemma 2.2 in the present setting with
Proposition 4.2. []

Lemma 4.3 Let X be 1QC (IPC). For any A, B € Fy, if 4x — B holds, then
dx = (A D B) holds.
Proof. It follows frombFx (A D B) D —=B.0

Definition 4.6 Let X be a formal system. Then we define F" as a subset of
Fy such that no formula of it contains \/. Also we define F}’Vﬂ as a subset
of Fy such that no formula of it contains \/ or 3.

leoranyA € Fy,wenote: by DA & FyA= 1.
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We shall show the following extensions of Theorems 3.1 and 3.2, and
Corollary 3.1, respectively, for our new 7,(g;.

Theorem 4.6 Let X be 1QC (IPC). For any R € Fy, édLaRl is a sound
translation from X to X. For any R € Fy with4x R\y =" R13ifR€ Fy~
holds, then id gy is an unprovability-preserving autotranslation of X,
otherwise idaiR ] is an unprovability-preserving translation from X to X with
respect to F” (F;v). For any R, Q € Fx withdx R\y “Rand 4x Q v/
—Q, if there is a proposition letter p & <R>U <Q> such that either 4x R /\
p. 2 Q ordx QA —p. D R holds, then id () and id( ) are non-C-
equivalent autotranslations of X (in addition, the p is a C-ditcher of them).
As a special case, for any R € Fxy with4xy R\y —R, id gy and id are non-
C-equivalent autotransiations of X, and so are idyRry and id,( |y (in this
case, every proposition letter p & <R> is a C-ditcher of them).

Proof. For any R € Fy, the soundness of idy(gy is obvious. Take an
arbitrary R € Fy with 4y R and 4y — R. We shall show the faithfulness of
id,(R)- Suppose that R € Fy'" holds. This case has already been in essence
proved in Theorem 3.1. So we shall not repeat it. Then we shall assume R
¢ FJ‘;’". We shall thus show the faithfulness of id, g} with respect to F§"’
(F;" ).LetA € F;VH (F;V) arbitrarily. Suppose Fy idyr)(A). We know Hy
R = 1 because of 4y —R. Unless Cond(t, A, R) holds, then idyRy is A
itself. So we have Fy A. Suppose that Cond(r, A, R) holds. Then id,(Ry is of
the form A O R. O R. With some suitable proposition letters, the sequent

- AdL D Rdl S pdl
is provable in G3 and so is
AdL D RAL 5 RdL (4)
Let @ be a proof of (+) in G3 and fix it.
Because of 4y A, in every possible proof of (+), say P, the succedent
of (+) has to ask the antecedent of it some help for its provability. By

Lemma 4.3 and 4y —R9L, the antecedent of (+) also needs some help from
the succedent of it. Thus, we must find such a sequent

13We note that xR DR & (Hx R and Hy —R). (The disjunction property!)
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AdL D RIL Cy, ... C, - AL (+4)

for the introduction of implication for A4l O RAL in the antecedent of
some sequent in the proof P, where Cy, ..., C, (n = 0) are subformulas of
R4L such that below the sequent (+4), there are no applications of D - to
AdL o pdL

Since 4y R4+ holds, 4G3 C|. ..., C,, = holds, considering also that there
are no applications of D = to AL D R4L In G3, all sequents to be
applied by a rule of introducing a logical symbol in the antecedent of a se-
quent!4 should already have the same principal formula to be introduced by
the rule in the antecedent of it. Hence, for the provability of A4+ D RdL D
R4L the formulas Cy, ..., C,, should have all information for the inferences
for subformulas of R4+ in P (Fact 1).

Further, since A9 contains neither disjunctions nor existential quanti-
fiers, A9+ in the succedent of (++) need to ask no more extra new informa-
tion (for the provability of A9L D R4L. D R4L) from the formulas of the
forms Gy H or 3xG(x) in A9 L of A4+ D R4L in the antecedent of it by the
application of O — (Fact 2) (see the examples just below this proof).

In view of these facts and <C;> N <A91> = (V1 =i < n) and g3 C|.,
..., C,y =, the sequent

Cly .., Cy » AdL

is provable in G3. Thus, from it, we obtain Fy C| /A ... A C,. D A4l By
Lemma 4.2 and 43 Cy, ..., C,; = (i.e. 4y = (Cy A ... A Cp)), we then have
Fy A9 L, thus I-axA holds. So we have proved the faithfulness of id (g} with
respect to F&"" (Fi").

Let R, Q € Fyx with 4y R \v =R and 4x Q v — Q arbitrarily. Suppose
that there is a proposition letter p & <R> U <> such that either 4y R A
—p. D Qor Ay QA —p. D R holds. Then, the p is a C-ditcher of id, g,
and id,( ). since we know

Fx(@DR DR D(PDQ.20).D(RA —p. D),
Fx(PDQ.DQ)D(pDR.DR.D(QA —p.DR),

that is,

AXRA 7 p. D0 =24 (PDOR DR D(PD0.DQ0),
AXxONp. DR=24(PpD0.D0) D(pDR. DR).

4T hat is. the rule is one of /\ -, Vo2, D=, =, ¥Voand 3 .
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For the rest of the proof, by a standard model-theoretic technique, we
immediately see the unprovability of the universal closure of following for-
mulas

(PDR.DOR)Dp,
(P DR.DR)D ——p,

for every proposition letter p & <R>. []

The restriction with “with respect to Fi*” (F2")" in Theorem 4.6 may
be eventually weaker. That is, instead of "> (F1"), we may take a larger
set E C Fy such that E # F;{!VH (F;'V), E # Fy and F;VH (F;'V) C E. But
we shall not here carry it out.

Theorem 4.6 is a generalization of Theorem 3.1.

We shall note that with the notation of Theorem 4.6, id gy is not always
an unprovability-preserving translation from X to X, if R € F'~ holds. The
restriction with “with respect to F;VB (F;'V)” is essential in this case. We
shall just below give counterexamples of the faithfulness of idy gy (with
respect to Fy).

Let p, g, r be mutually distinct proposition letters in IPC. Let Y be IPC.
Then, we immediately see: by (p D g.vp) D " —r. D m =, dyp Dg. v
p,dy 7" —rand 4y 7" Notethat by (p D gy p) D = D =i by (p
2q.vp)D L.D Land dy(p Dg.vv p) D r. D r! This is a difference
between Theorem 3.1 and Theorem 4.6 with R & Fj .

Here are other examples. Let Y be IQC. Let p be a proposition letter in Y.
Let G(x) be a monadic predicate in Y. Let a and b be individual variables of
Y. Then, we see: by (mG(a) D —G(b). D Ix—G(x)) D — —p. D — —p,
1y = Gla@) D 2 G(b). D Fx—G(x), 1y = —p and Hy - — —p. We also
note that by (—G(a) D = G(b). D Ax = G(x)) D —p. D —p, by (—G(a)
D Gh). D23x 7 Gx) D L.D L and 4y (—mGa) D = G(b). D Ax
—G(x) Dp. Dp.

We shall also give counterexamples of the following meta-implications:

Fipc 7 A = FpcA, (1)
Figc ™ ™A = FQcA. (1)

For A of (), we have (p D 1) D p. D p, where p is a proposition letter of
IPC. This is again an application of Mints’s formula in Introduction. For a
more well-known counterexample of (1) is p \y —p as the A, where p is
again a proposition letter of IPC. For A of (1), we have Vx (A v/ B(x)) D
A\ VxB(x) (see [17, Theorem 58, p. 487]), where A and B are predicate
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letters of IQC. However, for any negative formula!> A, we have Fpqc A
= — A, where MQC is the minimal predicate logic, and in MQC, 1 is
treated as an arbitrary proposition letter (see [42, p. 57]).

Corollary 4.2 Let X be IQC (IPC). For any R € Fx with 4x R\y — R, if R
€ Fy holds, then idy(Ry is an autoembedding of X, otherwise, id,(gy is an
autoembedding of X with respect to Fiy'? (Fi").16

Corollary 4.3 Let X be a consistent formal system. Let Y be IQC (IPC).
Suppose that we have an embedding 7 of X in Y. Then, for any R € F',
T((R) is an embedding of X in Y. For any R € Fywithdy R and 1y —R, if
T(Fyx) C F,‘,fva (F) holds, then T,(R) is an embedding of X in Y.

Corollary 4.3 is a generalization of Corollary 3.1.

Let X be a formal system and Y IQC (IPC). Let 7 be an embedding of X
in Y. If 7 preserves provability relation F, then we cannot say in general that
forany R € Fy with 4y R, 7,(g) preserves +. However, for any A, B € Fyif
we have A) F 7(B) and if 7{R)(A) and 7,(g)(A) are either of the formA D
R. D Rand B D R. D R for some R € Fy, respectively, or of the forms 7A)
and 1(B), respectively, then of course T,(R}(A) b T,4R)(A) holds with the R.
So it depends on given formulas A and B of X and a given R of V.

For brevity, we shall, as in the previous section, write (Y, fOL
(C*)°)e{Rr)» where (+)° is Godel translation from CQC (CPC) to IQC {Ii’C).

Theorem 4.7 Let X be CQC (CPC) and Y 1QC (IPC). For any R € Fy with
Ay R, () g} IS an embedding of X in Y. For any R, Q € Fy withx R v/
—Rand+x Qv —Q, if there is a proposition letter p & <R> U <Q> such
that either 4y RN\ —p. D Q or 1y Q A —p. D R holds, then (-):{R} and
) o} are non-C-equivalent embeddings of X in Y (in addition, the p is a
C-d{ztcher of them). As a special case, for any R € Fx with 4y R \y —R,
(')j{n} and (-)° are non-C-equivalent embeddings of X in Y (in this case,
every proposition letter p & <R> is a C-ditcher of them).

Proof. Observe (Fx)° C Fi*° (F;fv). By Theorem 4.6, we can prove
this, considering Lemma 2.1. The non-C-equivalence of ('), and (-)° fol-
lows from the unprovability of the universal closure of (——=p D R. D R)
D — —p for every proposition letter p & <R>. [

154 negative formula A is a formula of IQC which does not contain \/ or 3 with every
atomic p of A being negated (that is, of the form —p in A).

I6The restriction with “with respect to F¢3 ( F2<)" in Corollary 4.2 may be eventually
weaker.
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Theorem 4.7 is a generalization of Theorem 3.2.
For some suitable R and @, we have already seen a criterion for the non-
C-equivalence of id,(g) and id,(p) in Theorem 4.6. Here is a similar

criterion for the non-C-equivalence of ids(g) and id,{ ) for some suitable R
and Q.

Theorem 4.8 Let X be 1QC (IPC). For any R, Q € Fx with-dx R and 4x Q
\/ T Q, if there is a proposition letter p & <R> U <Q> such that either x R
N =p. D QorAx QN —p. D R holds, then ids(gy and id [y are non-C-
equivalent autotranslations of X (in addition, the p is a C-ditcher of them).
In particular, for any R, Q € Fy with4x R and4x Q\/ —Q, if there is a
proposition letter p & <R> U <Q> such that 4y Q N\ —p. D R holds, then
ids(ry and id gy are non-C-equivalent autotranslations of X (in addition,
the p is a C-ditcher of them). As a special case, for any R € Fx withy R,
ids(gy and id,(gy are non-C-equivalent autotranslations of X (in this case,
every proposition letter p & <R> is a C-ditcher of them, for example).

Proof. Let R, Q € Fxwith+4x R\y =R and 4y Qv — Q arbitrarily. Sup-
pose that there is a proposition letter p & <R> U <@> such that either 4y Q
A p. D RorHx RA —p. D @ holds. Then, the p is a C-ditcher of ids(g)
and id ), observing

Fx(p2Q.20)D(pv R.O(QA —p.DR),
Fx(pvR)D(p20.20).D(RAp.D0Q),

from which we see

AxONA " p.DR=24x(PD0.DOQ0) D.pvR
AXRA —p. D0 =-H4xpvR.D(p2DQ. DO

If we do not know if 4y —R holds, take the first meta-implication for the
second statement. For the last statement, we can easily prove, by a standard
argument with Kripke models, the unprovability of the universal closure of

(p D R.DOR) D .pv R for any proposition letter p & <R>. This completes
the proof. (J

Since we also observe

Fx(m=p20.20) D (2 pyvR).D(QA —p. DR),
Fx(m—pyvR)D(m=pDQ.DQ).D(RA—p.DQ),
ix (7= p D R.DR) D(——py R)(with4x —R),

we have the following theorem for Gédel translation.
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Theorem 4.9 Let X be CQC (CPC) and Y 1QC (IPC). Forany R, Q € Fy
with 4y R and 4y Q \y —Q, if there is a proposition letter p & <R> U <Q>
such that either 4y R N\ —p. D Qordy Q A —p. D R holds, then ('):5{.9}
and (-)j{ y are non-C-equivalent embeddings of X in Y (in addition, the p is
a C-ditc/?er of them). In particular, for any R, Q € Fy with 4y R and 4y Q
Vv T Q, if there is a proposition letter p & <R> U <Q> such that 1y R N
—p. D @ holds, then (-)}{R} and (-)?{Q are non-C-equivalent embeddings
of X in Y (in addition, the p is a C-ditc%er of them). As a special case, for
any R € Fy withdy R\ 0R, (-);{R} and (-)z{R} are non-C-equivalent em-
beddings of X in Y (in this case, every proposition letter p & <R> is a C-
ditcher of them, for example).

Theorem 4.9 is a genearalization of Theorem 4.5.
The following lemma, which is a special case of Lemma 2.2, will be in
particular useful in the next section.

Lemma 4.4 Let X be 1QC (IPC). For any A, BE Fy and any p € Fy~
with p & <A> U <B>, if 4x A D B holds, then {x A\ —p. D B holds.

Proof. LetA,B € Fxyandp € Fy arbitrarily. Suppose p & <A> U <B>.
It is sufficient to show that

FxAN —p. DB =+yADB.

Suppose Fx A /A —p. D B. Since (A A —p. D B) D (mpDADBIsa
theorem of X, we get by —p D .A D B. From it, by Lemma 2.2, we obtain
FxA D B, since <—1p>9L N <A D B>41 = P holds. [

In addition, by Lemma 4.4, we can simplify the description of Theorems
4.6,4.7,4.8 and 4.9.

5. The Nishimura-Rieger lattice and embedding of classical in intuitionis-
tic logics

In this section, we shall show that a certain set obtained by the introduced

construction forms a lattice isomorphic to a sublattice of the Nishimura-

Rieger lattice of formulas of one propositional variable p of IPC for any p.

First we shall recall the Nishimura-Rieger lattice of formulas of one vari-

able of IPC,

Definition 5.1 ([30]) For any p € F, l"lﬁe basic formulas (with respect to p)
Noo(p), Ni(p) (i = 0) are recursively defined as follows: No.(p) = p2p,

Nolp) =p A —p, Ni(p) = p, Na(p) = —1p, N2paa(p) = Naps1(p) v Napsa(p),
Non+4(P) = N2ns2(p) D Nopy1(p), forn = 0.
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Theorem 5.1 ([30)) Let X be IPC. For any p € Fy~, any formula A with
<A> C {p, L}, if 1x A, then we havetx A = N(p) for some i = 0, other-
wise Fx A = N..(p) holds.

Theorem 5.2 ([30]) Let X be IPC. Forany p € Fy , any i # j = 0, we
have: 4x Ni{(p) and 4x Ni(p) = Nj(p).

Corollary 5.1 Let X be IPC. Foranyp € Fy", any i # j = 0, we have: (1)
Ifi #0, then Ax = Ni(p); (2) 4x 7 Ni(p) = = Ni(p).

Proof. This follows from Theorems 5.1 and 5.2. [J

Corollary 5.2 Foranyp # g € Fipe, any i, j =0, unless i = j = 0, we have:
11pc Ni(p) = Nj(q).

Proof. Immediate from Theorems 5.1 and 5.2, and Lemma 2.2. [

Definition 5.2 Let X be IPC. We define an order relation = on every subset
F of the equivalence class Fx/= with = as an equivalence relation as fol-
lows: for any [A] and [B] € F, [A] = [B] & tx B D A (By [a], we denote
an element of an equivalence class with a representative a.)

Theorem 5.3 ([30]) For any p € Fypc, a set {[Ni(p)] i = 0} U {[Noo(p)]}
forms a lattice with respect to =. The lattice is called the Nishimura-Rieger
lattice with respect to p.

Theorem 5.4 ([30]) For any p € Fye, a set {[Ni(p)] : i = 0} is a sublattice
of the Nishimura-Rieger lattice with respect to p. We call the sublattice the
pure Nishimura-Rieger lattice with respect to p.

We need some definitions for further arguments below.

Definition 5.3 Let X and Y be formal systems. Then, we define Hom,,,(X,
Y) as a class of all embeddings of X in Y. Also, for any subset of D of Fy,
we define Hom,,,(XID, Y) as a class of all embeddings of X in Y with
respect to D.

Definition 5.4 Let X be CPC and Y IPC. Then, we define an order relation
=c on every subset H of the equivalence class Hom,,,(X, Y)/=¢ with C-
equivalence =¢ as an equivalence relation as follows: for any [7] and [¢] €
H,[7] =c[o] & (forany A € Fy, Fx o(A) D 7(A)).
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From the above theorems in this section, the following theorems hold.

Lemma 5.1 Let X be CPC and YIPC. Foranyp € F; ,anyi #j =0, we
have: (l)d[Id&{N( )}] € Hom,(Y, YV=¢; (2) [erl th)}] e
Homen(M Fy", YV=c; (3) [y, ] € Homen(X, V)= (4) 05 o)
€ Hom,,,(X, Y)/= =c, C(5) If by Ni(p) D N; (p) holds, then we have (i)
[(');{N‘(p)} =c[( )!{N(P)}] (i1) '() s{n, (p)} [()5 N“,)}]

Proof. The statements (1), (2), (3) and (4) immediately follow from The-
orems 4.3, 4.6, 4.7 and 5.2. To prove (5) is easy. [J

Theorem 5.5 Let X be IPC. Foranyp # g€ Fy ,anyi,j=0,anyx, y €
{8, 1}, we have:

@))] () (M) and () - are non-C-equivalent, if neither i = j =0
nor (l =j# Oandx V) holds.

(2) ()X{N - and (-); iN{ oy are non-C-equivalent, unless i = 0 holds.
(3) ()X{N(p)} and [N, @T€ non- C-equivalent, unless i=j=0
holds. J

Proof of (1). We have the following four cases to prove.

(Case 1): The case of i =j = 0. Easy with Lemma 2.1.

(Case 2): The case of i = j # 0. Suppose x # y. Then apply Theorem 4.9.

(Case 3): The case of (i >j =0 orj > i=0). Use Theorems 4.3 and 4.7,
and Lemma 2.1.

(Case 4): The case of (i # j and min{i,j} > 0). In view of Theorem 5.2
and Lemma 4.4, we can make use of Theorems 4.3 and 4.7 for the proof.

Proof of (2). By Corollary 5.2, we know 4x N;(p) = Ni(q). Making use of
it, we can similarly prove it as the proof of (1).

Proof of (3). Similar to the proof of (2). (]

Note that Theorem 5.5 is a generalization of Theorems 3.2 and 4.5 for the
propositional case.
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Definition 5.5 Let X be a consistent formal system. For any embeddings 7
and o of X in IPC, we define embeddings 7 A o and 7/ o of X in IPC as
follows: for any formula A € Fy, (t A o)(A) = 7A) N o(A), (1 a)A) =
m(A) v o(A).

Theorem 5.6 For any p € Fpe, a set
(IO, ipy] £ = 0} C Home,,(CPC, IPC)/=¢

forms a lattice with respect to =¢, which is isomorphic to the pure Nishi-
mura-Rieger lattice with respect to p.

Proof. Take p € Fp. arbitrarily. Let
E = {[(Vygy, ) 12 0).

We shall show that E is a lattice with respect to =¢. In view of Theorem
5.4, this immediately follows from the following: for any A € Fypc,

Fipc (A° v/ Ni(p). /N A® v/ Ni(p)) = (A° v .Ni(p) "\ Ni(p)),
Fipc (A% v Ni(p). v .A® v Nj(p)) = (A® v .Ni(p) v Nj(p)),

Let Np, be the pure Nishimura-Rieger lattice with respect to p. Define a
mapping f: N, — E as follows: for any [N,(p)] E E,

SN =[O, -
Then, fis surjective. By Lemma 5.1.(5), fis order preserving, that is,
[Nip)] = [Ni(p)] = RIN«P)D) =¢ AINLP)D.
Further, we see
QPN ZCI(‘);{N ( )}] = [Ni(p)] = [Nj(p)]
Indeed, [()gqn, )] Z€ L0y ()] implies
Fipc (L)° v Nj(p). D (L)% v Ni(p),

that is, Fipc Nj(p) D Ni(p), which is nothing but [N;(p)] = [Ni(p)]. Thus fis
an order-isomorphism. Hence, fis a lattice-isomorphism (cf. [2 p. 114]). O
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6. Some remarks on non-C-equivalence

First we shall introduce the notion of U-equivalence, which will be below
understood as an equivalent one of C-equivalence under a certain weak
condition, so it holds in many logics!7 which include all logics dealt with in
this paper.

Definition 6.1 Let X and Y be consistent formal systems. Suppose that truth-
functional equivalence = is one of the logical symbols of Y, or it is
definable in Y. For any translations 7| and 75 from X to Y, they are said to
be non-U-equivalent if there is a formula A of X (called a U-ditcher of 7|
and 77) such that 7;(A) = 73(A) is not a theorem of Y. Otherwise we say
that they are U-equivalent.

The following proposition says that under a very weak condition, those
notions are equivalent. So usually, they are the same.

Proposition 6.1 Let X and Y be consistent formal systems. Suppose that Y
satisfies the following conditions (1)—(iv): (i) truth-functional equivalence
= and implication D are logical symbols of Y, or they are definable in Y:
(i) Y is closed under modus ponens; (iii) for anv A, B € Fy, by A = B is
equivalent to (Fy A O B and Fy B D A); (iv) Y satisfies one of the following
conditions (a) and (b): (a) the deduction theorem'8 holds in Y: by Fy A D
(B D A) holds for any A, B € Fy. Let 7| and 15 be embeddings of X in Y.
Then, we have:

T lgnd 7y are non-C-equivalent if and only if they are non-U-equiva-
lent.

Proof. Straightforward from Definitions 2.5 and 6.1. [J

7For instance. the cardinality of a set of such Jogics as intermediate (or superintui-
tionistic) propositional (predicate) logics is at least 27 (see e.g. [44], [45] and [46]).

181t is well-known that intuitionistic implication is the weakest possible one fulfilling the
deduction theorem {see [5]).

191n this case. if we have a C-ditcher of 7 and 75, then it is a U-ditcher of them, and vice
versa.
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7. Embedding for classical and intuitionistic logics and modal logics S4
and S5

First we shall recall an elementary fact: for any formulas A and C of CPC
(CQO),

Fepcicoo) (A D C.DC)=.Ay C20

A simple semantic consideration and the above equivalence suggest a pos-
sibility to have embeddings for CPC.

Definition 7.1 Let Y be CPC. Let 7be an embedding of a consistent formal
system X in Y. Then, for any R € Fy with 4y R, we define a translation
75C(R} from X to Y as follows: for any A € Fy,

T(A)V R if <1(A)>N<R>=,

TsCR)(A) = {t(A) otherwise.

Theorem 7.1 Let Y be CPC. Let T he an embedding of a consistent formal
system X in Y. Then, for any R € Fy with 4y R, T5¢(g) is an embedding X in
Y.

Proof. The soundness of it is obvious. We shall semantically prove its
faithfulness. Suppose 4x A. Since 7 is an embedding of X in Y, there is a
valuation v such that v(7(A)) = f (false). Since <m(A)> N <R> = J holds, we
can easily construct a valuation v from v such that v(R) =fand v (m{A)) =
v(7(A)) hold. This proves the faithfulness. (]

Definition 7.2 Let Y be S4. Let 7 be an embedding of a consistent formal
system X in Y. Then, for any R € Fy with 4y R, we define a translation
7s0(Rr) from X to Y as follows: for any A € Fy,

Ts0(r)(A) = O(A) v OR.

We shall recall the following theorem.

20This formula is not intuitionistically valid! We can only say Fipcaoey AV C. 3 (A D
C. D (). It is well-known that none of the logical symbols for IPC can be expressed in
terms of the remaining ones (see e.g. [24]).
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Theorem 7.2 ([9] and [26]) (The modal disjunction property for S4) Let X
be 84. For any A, B € Fy, we have: +x[JA \v (OB = (Fx[JA or Fx[OB).

Theorem 7.3 Let Y be S4. Let T be an embedding of a consistent formal sys-
tem X in Y. Then, for any R € Fy with 1y R, Ts0y(r) is an embedding X in Y.

Proof. Obvious from Theorem 7.2 and a fact that for any A € Fy, Fy A
= FyA.O

Before we give an affirmative answer to Question 2 for (P3)—(P6), we
shall recall some well-known theorems below. Let (-)2 be the Godel
translation from IPC to 84 (see [9] and [26]) (cf. [4] and [37])).

Theorem 7.4 ([9] and [26]) For any A € Fipc, we have: Fipc A = Fg4 AC.
Theorem 7.5 ([23]) For any A € Fgs, we have: g5 A = Fgq OJA.
Here is an affirmative answer for (P3)—~(P6). (The proof of it is easy.2!)

Theorem 7.6 (1) A set {idsc(p) : p € Fg’l,c} is that of mutually non-C-
equivalent autoembeddings of CPC; (2) A set {idsyp) : p € Fgy} is that of
mutually non-C-equivalent autoembeddings of S4; (3) A set {(CPsapy i p
€ Fg,) is that of mutually non-C-equivalent embeddings of IPC in S4; (4)
A set ((OL(Nsa(p) : p € Fgy) is that of mutually non-C-equivalent
embeddings of S5 in 84.22

8. An affirmative answer to Question 1 for all the cases treated in this
paper

Some of the constructions introduced above, that is, T8(R)» T6C(R) and
T5o(R) eventually give an affirmative answer to Question 1 for classical and
intuitionistic logics, and modal logics S4 and S5. Because the strategy to
prove is common, as its representative, we shall only show the case of (P2)
for an arbitrary embedding. For an affirmative answer to Question 1, we
can similarly treat the cases of (P1) and (P3)-(P6) for an arbitrary
embedding.

21T make sure, the equivalence used for non-C-equivalence in S4 is material equiva-
lence.

22For another approach to the affirmative answer, we may take the strategy of the first
construction of the fourth section.
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The following theorem23 gives an affirmative answer to Question 1 for
(P2) for an arbitrary embedding.

Theorem 8.1 Let X be CQC (CPC) and Y I1QC (IPC). Let T be an embed-
ding of X in Y. Then, for any A € Fx with 4x A, a set {15(p) : p € Fy -
<7(Ay>4L )} with cardinality Ny is that of mutually non-C-equivalent
embeddings of X in Y.

Proof. X and Y are consistent. Thus there is at least one A such that 4y A
and 1y 7(A) hold with 7(A) € Fy. Let A be such a formula of X. Let

E={r5(p):PE F;" -<r(A)>dLly,

It is obvious that every element of E is an embedding of X in Y. Take 75 )
# T§(q} € E arbitrarily. Without loss of generality, we may assume p # L.
We wish to prove that 75(,) and 75(4) are non-C-equivalent. For that, it is
sufficient to find a formula B € F such thatdy p D (B} holds.

For the desired B, we can take the A. Since p & <m(A)> and 4y 7(A) hold,
we immediately obtain 4y p O 7(A) by Lemma 2.2. For the propositional
case, |El is N, since <7(A)>?L is finite. For the predicate-case, although
l<m(A)>4L] may be Ny, it is easy to see that | F}y' - <(A)>d L1 is Ng. (]

9. A necessary and sufficient condition for an affirmative answer to Ques-
tion 1

In this section, we shall give a necessary and sufficient condition for an
affirmative answer to Question 1.

Let X and Y be consistent formal systems. For the notational convenience
for the proof below, let us first exactly formulate the positive statement
(Q1) for Question I as follows:

(Q1) For any embedding 7 of X in Y, there is a construction ¢ and an
index set / such that?* (Q1.1) €(7) = { 74 ) agy and Il = Ny; (Q1.2) For any
@ € I, 74 1s an embedding of X in Y; (Q1.3) For any a € I, 7, is defined by
using at least one value 7{A) for some A € Fy; (Ql.4) Forany a # 8 € I,
7o and 7g are non-C-equivalent.

23The reader will enjoy this strong result with a simple proof of it

24we also say that a pair (C, [) is a construction,
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Here is the necessary and sufficient condition (GC) for (Q1).

(GC) There is a nonempty set B C %(Fy) and an index set J such that
(GC1) B = {By)aes and I = Ng; (GC2) For any A € B, 1y A holds;
(GC3) For any a € [, there is a surjective mapping ¢, from Ff\, to B,
where Fj( stands for {A € Fy : 1xA}; (GC4) For any a # 3 € J, there are
Ca € By and Cg € Bg such that 4y C, = Cg holds with @,'(C4) N
0,'(Cp) # D.

Theorem 9.1 Let X and Y be consistent formal systems. Then we have: (Q1)

Proof. (=): LetJ = I. For any @ € J, we take B, = {1,(A) : A € F}}.
Since 7, is an embedding of X in Y, B, satisfies (GC2). For (GC3), define
Qo AS Tyl F}for anya € J. Let @ # B € J. Because of (Q1.4), there is a C-
ditcher, say D € F, of 7, and 7. Thus, 4y Co = Cgand D € ¢,'(Co) N
@, (Cp), where Co = 74(D) € B, and Cg = 75(D) € Bp,

(e=): Let] =J. For any a € I, define 7, as follows: for any A € Fy,

s (JDC((A) if %X A
Tald) = { 7A) otherwise.

A set {Tq}aes is a desired one of mutually non-C-equivalent embeddings
of X in Y. We easily see that for any a € I, 7, is an embedding of X in Y
and 7, satisfies (Q1.3). Take @ # B € [ arbitrarily. By (GC4), there are C,,
€ Bq and Cg € Bg such that 4y Co, = Cg holds with @'(Cy) N @5 (Cp)
# (J. Any element of (p‘;'(Ca) al (p’;'(CB) is a C-ditcher of 7, and 7. [J

10. Constructions and lattices

In this section, we shall show that a certain set of constructions forms a lat-
tice for certain formal systems. Let us begin with some definition.

Definition 10.1 Let X be a consistent formal system. Let 7be an embedding
of X in IPC. For any constructions (6, J,) and (€ . Jg) with respect to 7
both of which satisfy the conditions (Q1.1)-(Q1.4) in §9, we define con-
structions (€4, /o) N (€, Jp) and (€4, Jo) v/ (€, Jp) (we write €, A Cg
and 64 \/ Cg for them, respectively, if no ambiguity arises) as follows:

(6o Ja)/\(cgﬁ’ J,B) =(<ga/\cﬁ: Ja X J,B)-
(6a -Ia)\/(ce’B’ Jﬁ) = (€q Vv CB; Ja X J,B);
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with
(CaNCp)n={Tar N TB“}(l‘u)eJijB/EC ’
(€n v CB)“’) ={Tar V TBp.} (hed, xJyl=,

]

where € (1) = {TM}AEJR and “€g(7) = {18} ueds

As understood from the above definition, in this section, we shall think of
embeddings as elements of an equivalence class Hom,, (X, IPC)/ =, for
any X. Now we shall show our theorem as follows.

Theorem 10.1 Let X be IPC. Let (+)° be Gédel translation from CPC to X.
Define J,, = w - {0} for any p € FY™. Let €,((-)°) = l(');-{Nr(m}}fer for
any p € Fy~. Then, a set {€p((*)°)) : p € Fy'"} is a lattice with respect to
A and \.

Proof. By Theorem 5.6, we know that for any p € F\/'", (€,(()°), Jp)
satisfies the conditions (Q1.1)-(Q1.4) in §9. Forany p # g € Fy,

(€p(()°),
()

) /\ (C@q((')o)’ Jq'),
(€ P ded

3yl

), Ip) v (6g((+)°), Jy),
are again constructions satisfying (Q1.1)—(Q1.4). It is easy to see that A and
v satisfy the required properties to make the set a lattice. [J

11. Some general comments

The reader would have already noticed that the class of all the consistent
formal systems (as objects) with the class of all the embeddings between
systems (as arrows) is a category (see [27]). That is, we can take the usual
composition of mappings as composite ° of arrows for the category. For the
composite, it is easy to see that the associative law holds. For any
consistent formal system X, there always is identity idy € Hom,, (X, X)
([12, Theorem 1.1, p. 244]). Forany 7: X = Y, 7eidy=71and idy°e7=7
hold obviously. We shall call this category the category of embeddings,
denoted by Emb. So we can expect to have many algebraic results related
to Emb.

I believe that finding embeddings between formal system has been so far
motivated (A): by interpreting one system by another (e.g. see [39] for
avoiding a myth created by the problem of incommensurability of theories)
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or more specifically (B): by translating (or reductioning) metamathematical
properties (e.g. consistency) of one system to those of another in order to
obtain metamathematical results. In relation to (A), interpretations between
theories, which are not always proof-theoretic embeddings, has been of in-
terest among logicians as means of classifying theories and of understand-
ing the algebraic structures (in particular, lattices) of theories, since such
interpretations induce partial orders and equivalence relations which will be
used for the purposes (see e.g. [28] and [29, pp. 1-10]). A number of papers
have been written in this direction and there are still many open problems
concerning interpretability.

On the contrary to the better situation for interpretability, I observe that
there has been so far no general theory concerning proof-theoretic embed-
dings and it seems to me that logicians are satisfied with even one embed-
ding between systems! I cannot accept such a situation on embeddings.
That is the reason why I set forth in the embedding-construction problem
treated in this paper and [12] and in the investigation over the relationship
among embeddings obtained by constructions. What I intend in this paper
and [12] is to begin studying embeddings for their own sake (as mathemati-
cal objects).

In [12], I emphasized unprovability and its syntax. But in this paper, my
attitude toward the study is not so coherent to the original point of view and
its methodology. However, in this paper we have been always concerned
with unprovable formulas, more generally saying, unprovability, which is
the consistent theme of both of the papers.

Needless to say, we need both the abstract and the concrete for further
investigation. But for the concrete in particular, I wish to propose the fol-
lowing slogan: To have a good knowledge about embeddings of X in Y is to
know much about unprovability in ¥, more explicitely saying, many con-
crete examples of unprovable formulas of Y.

In this paper, we have not yet dealt with the iteration of the introduced
constructions. However, the iteration of constructions creates real interest-
ing problems, since they do not always give embeddings and we do not
know whether given embeddings obtained by them are non-C-equivalent.
In my forthcoming paper [14], we shall deal with the simplest case of the
iteration, that is, that of elements of

{idsipy:p € FY}U {idypy:pE Fy'),

where X =1QC (IPC), as a generalization of Godel’s theorem on embed-
ding of classical in intuitionistic systems. The reader will see there that
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even the simplest case is not simple. So this paper is the overture to [14]
and our further work on the theme of this paper. The curtain has already

risen.
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