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A GAME-THEORETIC LOGIC OF NORMS AND ACTIONS

Martin VAN HEES*

Abstract

Both rational choice theorists and logicians have made important con-
tributions to the formal analysis of (legal) norms. However, the results
from the logic of norms —deontic logic— did not have much impact
on the rational choice approach to the analysis of individual rights nor
did the work of rational choice theorists have much influence on the
development of deontic logic. This paper presents the basic outlines of
the models presented in (Van Hees 1995) in which it is shown that a
fruitful synthesis of the two lines of research is possible. The semantics
of deontic logic and action logic is usually given in terms of a Kripke
model of possible worlds with a primitive binary relation R between
the worlds. We show how such a relation R can be defined game-theo-
retically, hence achieving a synthesis between logic and game theory.

1. Introduction

In the more than twenty-five years since Amartya Sen first introduced the
concept of individual rights into the theory of rational choice, there has
been much discussion among rational choice theorists about the proper way
of modelling such rights. Two approaches can be distinguished: one in
which rights are defined in terms of individual preferences, and one in
which they are defined by the strategies of individuals. The first approach
originates in Sen’s seminal work (Sen 1970), whereas the second approach
constitutes the game-theoretic analysis of rights (Girdenfors 1981; Deb
1990; Gaertner er al. 1992; Fleurbaey and Gaertner 1996). In this paper we
adopt a game-theoretic framework. In the game-theoretic approach, game
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forms are used to model the rights of individuals. A game form is a specifi-
cation of a set of outcomes, a set of admissible strategies for each individ-
ual and an outcome mapping from the set of all possible strategy combina-
tions to the set of outcomes. The idea is that an individual’s rights are
determined by the freedom to choose any of his or her admissible strategies
and/or by a concomitant obligation of others not to interfere (Gaertner et al.
1992, p. 173; Suzumura 1991, p. 229).

The development of the rational choice analysis of rights has taken place
virtually without any reference to the study of deontic logic or to the logic
. of action, nor has there been a systematic application of game theory to
problems of deontic logic.! The model presented here was developed in
(Van Hees 1995) and integrates the two approaches. We show that the
game-theoretic analysis can be used to give a better understanding of the
Kripkean models used in deontic logic. In our approach the relation be-
tween the various ‘possible worlds’ of a Kripkean model is not a primitive
but is defined game-theoretically. Conversely, we argue that the concepts
and tools derived from deontic logic and from the logic of action can be
used to provide a systematic foundation for the game-theoretic analysis of
rights. For instance, our model clearly distinguishes between admissible
and feasible strategies and thus permits a distinction between the things an
individual ‘may’ or ‘shall’ do on the one hand, and the things an individual
‘can’ do or ‘cannot avoid’ doing on the other. Except for the important
recent work of Fleurbaey and Gaertner (1996), this distinction has played
virtually no role in the game-theoretic models of rights.

The structure of our presentation is as follows. In Section 2 we present
the syntax of the language of our Deontic Logic of Action (DLA). The lan-
guage contains expressions about the permissions and obligations of indi-
viduals. Sections 3 and 4 describe the semantic machinery which is defined
game-theoretically. Section 5 contains some concluding remarks.

2. Deontic Logic of Action: Syntax

The language of DLA contains the following signs:

Basic propositions: Xys Xoy o

Temporal symbols: tis &, ... (countably many)
Temporal predicate: <

Individual symbols: i, J, ... (countably many)

IFor some important exceptions, see (Apostel 1960; Aqvist 1974; Pérn 1977; Belnap and
Perloff 1989; Aqvist and Mullock 1989).
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Action operators: Do, D6

Alethic operators: . Can, Unav
Deontic operators: May, Shall
Identity sign and non-identity sign: =, #

Sentential connectives: &\, ~, 2, &

The construction of the language of DLA is given by the following two
definitions.

2.1 Definition

(1) For all temporal symbols ¢;, 1, (; < 1;) and (1, = ;) are atomic formulas
of DLA,

(2) For all individual symbols £, j, (i =) is an atomic formula of DLA;

(3) DLA contains no atomic formulas other than those defined by (1) and

).

Definition 2.1 defines the atomic formulas of DLA. Next we define the
well-formed formulas (wffs) of DLA.

2.2 Definition
(1) For all basic propositions x and all temporal symbols ¢, (¢, x) is a wff of
DLA,
(2) Each atomic formula of DLA is a wff of DLA;
(3) For all wffs ¢ of DLA, ~¢ is a wff of DLA;
(4) For all wffs ¢ and s of DLA, (¢ & ) is a wff of DLA;
(5) For all individual symbols i and all temporal symbols 12
(a) if ¢ is a non-atomic wff of DLA, the expression Do,( @) is called
a weak action statemenr of type ilt; and D6{(t;, @) a strong action
statement of type ilt;,
(b) if @ is a weak (strong) action statement of type i/t, then ~¢ is a
weak (strong) action statement of type i/t;;
(c) if ¢ and s are weak (strong) action statements of type i/t;then (¢ &
) is also a weak (strong) action statement of type ilt;,
(d) there are no other action statements of type ilt; than those defined
by (a)-(c);

2We call the formulas D6,(t, ¢) and Doz, ¢} a strong action statement and a weak action
statement, respectively, because the first statement is logically stronger; as we shall below,
the truth of the strong action statement logically entails the truth of the weak action state-
ment. In ordinary English, however, we sometimes speak about an action that is unavoidable
—and which can thus only be described by a weak action statement— as being * stronger’
than an action that could have been omitted (say the compulsive drug addict’s action of
taking drugs versus his action of eating candy).
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(e) any action statement of type i/t; is a wff of DLA;
(6) For all individual symbols i and all temporal symbols #;: if ¢ is an ac-
tion statement of type i/t;, then
(a) Caneg is a wif of DLA,;
(b) Maye is a wff of DLA;
(7) the clauses (1)-(6) define all wffs of DLA.

The usual conventions are adopted with respect to the sentential connec-
tives. Moreover, for all action statements ¢ we use Unave for ~Can~¢ and

Shallgp for ~May~¢.3

The formulas are read as follows:

L<y t; is an earlier point in time than #;
L=t t; is the same point in time as ¢;
(2,x) x is the case at time ¢

Doy, @) Attime ¢, i sees to it that ¢

D6(t;, @) Attime t;, i sees to it that ¢ but he could have performed an ac-
tion by which he does not see to ¢

Cang It is possible that ¢ (‘... can see to ...")

Unave It is necessary that ¢ (‘... cannot avoid seeing to ...")

Maye It is permissible that ¢ (*... may see to ...")

Shalle  Itis obligated that ¢ (‘.. shall see to ...")

3. Model structures

The notion of a model structure plays a crucial role in the semantics of
DLA. A model structure M of DLA consists of three components: a com-
plex game tree I, a play structure p and an interpretation 3.

Let N = {1, ..., n} be a finite set of individuals and X with elements q,71, 8
... a non-empty, denumerable set the elements of which are called points.

Definition 3.1 A Game Form G is a structure < A, o, 7 > such that

(1) A is a non-empty and finite subset of X. The elements of A are called
the outcomes of the game form;

(2) o is a mapping assigning toeachi € N a non-empty set a(i) of which
the elements are called strategies;,

3The operator expressing alethic necessity is called *Must’ in (Van Hees 1995). However,
since in common English ‘must’ is often used in a normative sense (‘you must not lie’), we
here use ‘Unav’.
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(3) is amapping frora o(1) X ... X o(n) onto A; 7 is called the outcome
mapping of G.

An action of agent i consists in making a choice from o (i). Every combina-
tion of actions (s, ..., 5,) in o (1) X ... X a(n), i.e. every play p of G, leads
to an outcome m(p) of G. A play p'of G is called an N-i-variant of a play p
of G if i adopts the same strategy in p'as in p.

Next we define a Complex Game Tree.

Definition 3.2 A Complex Game Tree (CGT) I is a quadruple <X, X, =, >

such that

(1) X is a mapping which assigns to each element of X a game form;

(2) E is a mapping which assigns to each element of X a game form ailo-
cation, that is, an n-tuple of game forms;

(3) If R is the binary relation over X defined as: gRs if and only if there is
(a) a play of at least one game form in Z(g) that has r as its outcome,
or (b) a play of 2(g) which has r as its outcome, then (X,R) is a rooted
tree of infinite length;

(4) 7 is the mapping from X 1o the set of positive integers defined as:

(a) 1(g*) =1 where g* designates the root of the tree (X,R);
(b) forall g, r € X, if gRr then 7(r) = 1(q) + 1.

A Complex Game Tree is a tree structure in which n + | game forms are
assignied 1o each point, and in which the branches of the tree represent the
various plays cf those game forms. There is one game form, the so-called
feasible game form, that is used to ascertain the things an individual can
and cannot do. It is assigned by . The remaining n game forms, one for
each individual, are the admissible game forms and are assigned by Z. An
individuai’s admissible game form is used to establish what that individual
may and may not do at that point in the rree.

Individual strategies (admissible or feasible) describe only part of the
world. We also need to describe the other characteristics of a possible
world. The second component of a model structure, the interpretation, pro-
vides such a description. It not only assigns to each individua! symbol an
element of N and to each temporal symbol a positive integer, but it also
assigns a set of points to each basic proposition. We say that the proposi-
tion is frue in each of (hose points.

Definition 3.3 An interpretation is a mapping J assigning
(a) to each individual symbol an element of N;

(b) to each temporal symbol a positive integer;
(c) to each basic proposition a subset of X.
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The third component of a model structure is a play structure. It represents a
path in the tree, that is, an uninterrupted sequence of lines starting at the
initial point. The path can be seen as a history of the world. It describes
how the world changes from each point in time to the next. Formally, it is
defined as a sequence of pairs (‘rounds’), each consisting of a point and a
play of a game form.

Definition 3.4 A play structure of T is a sequence g = [(g,, p\), (g2, P2)s .- ]

where ¢, = g*, and forallt = 1:

(1) p,is a play of the feasible game form 2(q,) or a play of one of the ad-
missible game forms in S(g,);

(2) g, is the outcome of the play p..

A point g, is called the g,-point or simply the t-point of g. We shall refer to
a play p, as the #-play of p. A play structure which consists of plays of fea-
sible game forms only is called a feasible play structure.

4. Truth in a model structure

In this section we describe how the notion of a model structure is used to
determine which formulas of DLA are true and which are not. In order to
present the truth conditions we first have to introduce two more definitions.
First, we generalize the notion of an N-i-variant of a play of a game form
(see Definition 3.1) to that of a play structure of a complex game tree.

Definition 4.1 Let p = [(q,, p1), (42, P2), ... ] be a play structure of a CGT T,
i an element of N, and k a positive integer. An [N-i, k]-variant of g is any
play structure g’ =[(g", p'1), (g%, p"2). ... ] of I" with the following charac-
teristics:

(1) forallt<k:(q', p') = (g, p);

(2) p'yis an N-i-variant of p;;

(3) forallt> k: p';is a play of the feasible game form 2(g",).

In other words, an [N-i, k]-variant p' of g is a play structure which is
exactly the same as g up until the k-round. In the k-round the same game
form is played as in g and i also adopts the same strategy; the others have
adopted a different strategy. At all later points the feasible game form is
played.

Next we introduce the notion of (feasible and admissible) k-splits. A fea-
sible (i-admissible) k-split of a play structure @ is a play structure that is
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identical to & up until the k-point. At the k-point a play of the feasible (i-
admissible) game form belonging to that point is played.

Definition 4.2 Let p be a play structure of I', i € N and & a positive integer.
Let p, denote the k-play of g. A play structure p' = [(g}, ') (@2, P2), ... ]
of I' is called

(1) afeasible k-split of p if
(a) forallz<k: (g, p') =(q. p);
(b) p'is a play of the feasible game form Z(g',);
(2) an i-admissible k-split of g if
(a) forall1<k: (¢’ p") =(q» P
(b) p'i is a play of the admissible game form that forms the i-compo-
nent of Z(g").4

We are now ready to define the notion of truth within a model structure.

Definition 4.3 Let M = < T, p, I > be a model structure of DLA. For any
wif ¢ of DLA, any temporal symbols ¢, 1, any individual symbols i, j, and
all action statements p. of type ift;, we say that ¢ is true in (holds in) M if in
case

(1) e=(x): the 3(z;)-point of g is an element of J(x);

(2) ¢ =Doft, ¥): Wistrue in < T, p', T > for every [N-J(i),3(1)]-
variant g’ of p;

(3) ¢ =Dé(t;, P): (a) Doy, ¢) is true in M, and (b) there is at least
one feasible J(z)-split ¢’ of g such that Doz, ) is
nottrue in< I, p', J >;

(4) ¢ =Canp: pistruein< T, o', I > for some feasible J(¢)-split
9" of p;

(5) ¢ =Mayp: pis true in < I, p', I > for some J(i)-admissible
) 3(1)-split p' of p;

6) ¢=~t ¥ is not true in M;

(7) ¢=W&w):  both ¢ and w are true in M,

() e=@=n: () = 3(1);

9 e=@<): 3(1;) < (1),

(10) ¢=(=)): 3 = 3().

Finally, we define the notions of satisfiability and validity.

4Note that a play structure @ can be a feasible k-split or i-admissible k-split of itself.
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Definition 4.4 Let ¢ be a wff of DLA and M =< T, p, I > a model struc-
ture of DLA. We say that ¢ is satisfied by M if (1) p is a feasible play
structure of I of DLA, and (2) ¢ is true in M. A formula is satisfiable when
there is at least one model structure by which it is satisfied. It is valid if its
negation is not satisfiable.

The basic idea of the semantics can be explained as follows. First of all,
given the interpretation 3, each point of the tree (each element of X) repre-
sents a possible world. The world is described by the basic propositions
which have been assigned to it by the interpretation. A play structure,
which describes a path in the tree, is a possible history of the world. It de-
scribes which possible worlds are realized at which points in time and
hence which basic propositions are true at the various points in time. To
find out what an individual is able to do in a certain world we look at the
feasible game form. It describes the feasible actions of the individuals and
is assumed to be identical for all. A person can see to a certain state of af-
fairs at a certain point in time if he or she has, in the feasible game form
assigned to the world through which the play structure passes as that time, a
strategy which always leads to an outcome in which that state of affairs is
realized. The person cannot avoid seeing to it if he or she has only such
strategies in the feasible game form. Because the feasible game form
belonging to a certain point is identical for all individuals, the actions of
one individual have consequences for the set of feasible actions of other
individuals. For instance, if I can make absolutely sure that a state of affairs
x arises, then it is impossible that you can see to it that x will not arise:
hence the formula ‘(i # j) & CanDo(t;, ¢) — ~CanDo(#, ~¢)’ is valid.
The admissible game form assigned to the individual describes his
admissible actions, i.e. the things an individual may or shall do. An indi-
vidual may do something at a certain point of time if he or she has, in the
admissible game form assigned to her in the world through which the play
structure passes at that time, a strategy which always leads to an outcome in
which that state of affairs is realized. Since each individual has been
assigned his or her own admissible game form, which may be different
from the feasible game form, we do not preclude the possibility that an
individual has —in his or her own admissible game form— a strategy lead-
ing to a particular state of affairs, which the individual does not have in the
teasible game form. The reason is obvious: in real life one often has the
permission to realize a state of affairs even though one cannot actually
bring it about (‘I may see to it that this candidate wins the next elections’).
Similarly, since the admissible game forms of individuals need not be the
same, we cannot make inferences about what a person is allowed to do
from a description of the permissions of the other individuals. To find out
whether I may see to it that x is the case, I look at a decision situation —the
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admissible actions described by my admissible game form— which need
not be identical to the decision situation that describes the actions you are
allowed to take. Accordingly, the fact that I may see to it that, for instance,
x arises does not entail anything about the things other human beings are
allowed to do. Hence they may well have the permission to see to it that x
will not arise, i.e. the formula ‘(i # j) & MayDo(t,, ¢) — ~MayD0 (e
~¢)’ is not valid. This makes perfect sense: not every permission is accom-
panied by an obligation on the others not to interfere. One might, however,
want to study model structures in which permissions always do entail an
obligation on the others not to interfere. Such a principle holds, for in-
stance, in all model structures in which the admissible game forms assigned
to the individuals are identical at each point.

It is not very difficult to use the game-theoretic logic to derive statements
that are always true. A list of such valid formulas of DLA is presented in
the appendix.

5. Concluding remarks

As stated in the introduction, our aim was to describe a model that inte-
grates Kripkean semantics with the game-theoretic analysis of rights.
Essentially, our model structure can be seen as a structure of possible
worlds. Each point represents a possible world situated at a point in time.
Kripkean models of possible worlds are well known in deontic logic. In
such models a binary relation representing the notion of deontic perfectness
is defined over a set of possible worlds. A formula of the form Maye is
said to be true in a particular world if there is another world that is deonti-
cally perfect and in which ¢ is true. Similarly, in Kripkean models of action
logic a relation of accessibility is defined over a set of possible worlds. A
formula of the form Cang is then said to be true if there is another world
that is accessible and in which ¢ is true. In our model the relations of deon-
tic perfectness and accessibility are represented by the plays of the admissi-
ble game forms and the feasible game forms respectively. A point (or pos-
sible world) r forms a deontic perfect alternative to another point q if it is
the outcome of one of the admissible game forms belonging to q. It is
accessible from q if it can be reached by a play of the feasible game form
belonging to q.

The use of two types of game forms is based on the importance of distin-
guishing feasible from admissible human actions. Although we have defin-
ed the types of game forms independently of each other, it is perfectly pos-
sible to study model structures in which logical connections are defined be-
tween the various game forms (see Van Hees 1995). For instance, as was
noted in the previous section, one might want to study model structures in
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which the various admissible game forms belonging to a point are always
identical. Another possibility is the study of model structures in which the
admissible game forms are related to the feasible game forms in such a way
that a principle like ‘shall implies can’ always applies.

Furthermore, we remark that the model permits the definition of different
types of right in a game-theoretic context. Several logicians have defined
classifications of individual rights in terms of the permissions and obliga-
tions of individuals (Kanger and Kanger 1966; Lindahl 1977). Translating
these definitions in terms of a model structure then yields a game-theoretic
‘categorization’ of rights (Gérdenfors 1981; Van Hees 1995).

University of Twente, Department of Public Administration
P.O. Box 217, 7500 AE Enschede, The Netherlands
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Appendix
Each of the following formulas is valid:

(1)  Doft, @) = ¢

(2) Dol(tj? ‘P) —2 NDOk(t'! N‘P)

(3) Dot ¢) & Dof;, ) <> Do, ¢ & )

(4) DO,’(I}, ‘P) - Dor'(l:f! PV LIJ)

(5)  Doft, ¢) = Dot & — ¢)

(6) Doa(tﬁ ‘P) - DO,{t', ~¢ — LIJ)

(7) Doft, ¢ = ¥) = (Dot ¢) — Doyt 1)
(8)  Dog#;, Doi(t;, ¢)) = Dogr;, ¢)

(9)  ~Dofti, ) = ~Do, )

(10)  Dof#, ~¢) = ~Doy(t, ¢)

(11) Dof#, ¢) — CanDoyt,, ¢)

(12) Déi{tk’ (P) A Doi(tks ‘P) & canﬁ'DOE(tb ‘P)
(13) Doft, o) = ¢

(14)  D6(1;, ¢) = ~D6i(t;, ~¢)

(15) D6(s;, ¢) & D1, ) = D61, @ & )
(16) D&(5, © = 1) = (DSt ©) = (D&t b))
(17)  Dé{t, Dot;, @)) = D61y, ¢)

(18) ~D6(t, ¢) — ~D6,(1y, ¢)

(19) D6{#. ¢) — CanD6(1, ©)

(20) (i # j) & CanDo(t, ¢) — ~CanDo/(#,, ~¢)
(21) CanDoy#, ¢ & ) — CanDo(#, ¢) & CanDoyt, 1)
(22) CanDog1, ¢) — CanDo(t;, ¢ \/ )

(23) CanDoyt, ¢) = CanDo(t,  — ¢)

(24) CanDo(t, ¢) — CanDo,(t;, ~¢ — )

(25) CanDot, Doy(t;, ¢)) — CanDoy(z, @)

(26) Can~DoJt,, ¢) — Can~Do(t, ¢)

(27) CanDo,-(Ik, ’“’(P) — Can"“DO,'(tk, CP)

(28) UnavDogx, ¢) > UnavDo(1;, ¢)

(29) UnavDo(#, ¢) — CanDo(t,, ¢)

(30) UnavDo1, ¢) = Doft, ¢)

(31) UnavDogt, ¢) — UnavDoJt, ¢ \/ {)
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(32) UnavDoy(t;, ¢ & {) > UnavDoy(t,, ¢) & UnavDo(z;, )
(33) UnavDof#, ¢ = ) — (UnavDo(t,, ¢) — UnavDo(t, |r))
(34) UnavDo(z, ¢) — UnavDoft, U — o)

(35) UnavDoyt, ¢) — UnavDo,(t, ~¢ — )

(36) UnavDo(#, ¢ — ) & CanDo(t,, ¢) — CanDoj(#,, )
(37) ~UnavDé{1,, ©)

(38) CanDo6(1;, ¢) <> CanDoyr,, ¢) & Can~Doy(t,, ¢)

(39) Can~Do,(t;, @)

(40) CanD6{t,, ¢ & i) — CanDaoy(ty, ¢) \v CanD4d(t,, 1)
(41) (i # j) & CanD6(t,, @) — ~CanD6 (4, ~¢)

(42) CanD6(1, Dof(t;, ¢)) — CanD6,(t;, @)

(43) MayDoi(tla N(P) - MayNDor(tk! "P)

(44) MayDo(#, ¢ & ) — MayDo(#, ¢) & MayDo(#, 1)
(45) MayDo(t, ¢) = MayDogt, ¢\ )

(46) MayDo(1, ¢) = MayDo(z, ¢ — ©)

(47) MayDoy(1, ¢) = MayDoyt, ~¢ — )

(48) MayDo(t;, Doy(t;, ¢)) = MayDot, ¢)

(49) MayD6(1;, ¢) <> MayDo(t;, ¢©) & Can~Doy(t,, ¢)

(50) MayD6,(#;, @ & ) — MayDo(, ¢) v MayDé(r,, U)
(51) MayD6 (5, Doi(t), ¢)) = MayD6(1, ¢)

(52) ShallDog1;, ¢) — MayDo{#, ¢)

(53) ShallDoft, ¢) — ShallDo,(z;, @ \/ )

(54) ShallDo(t;, ¢ & ) <> ShallDo(#, ¢) & ShallDofx, )
(55) ShallDo(#, ¢ = ) — (ShallDo1;, ©) — ShallDo(t,, )
(56) ShallDO,-(tk, ﬂp) — ShallDOl‘(tk, l.].‘ S (P)

(57) ShallDo/(t,, ¢) — ShallDoy(#, ~¢ — )

(58) ShallDofz, ¢ — ) & MayDo(#, ¢) — MayDo(#, )
(59) ShallDé(t;, ¢) ¢> ShallDo(#, ¢) & Can~Doft, ¢)
(60) ShallD6#;, ¢ & Py — ShallD6,(#;, @)\ ShallD6,(t;, 1)
(61) ShallDé(#, Dof(t;, ¢)) — ShallD6(1,, ¢)

It is not difficult to show the validity of each of these formulas. We prove
(27) and (56) to indicate the nature of the proofs.

(27) Assume that CanDog(#;, ~¢) is true in a model structure M = <T, p,
J >. We have to show that Can~Dog1,, ¢) is also true in M. The truth of
CanDo(1;, ~¢) and clauses (2), (4) and (6) of definition 4.3 imply that ¢ is
not true in < I', p', J > for every [N-3(i),3(#,)]-variant p' of at least one
feasible J(#;)-split of . This implies that ¢ is not true in < T, p', I > for at
least one [N-3(i),3(t,)]-variant g’ of at least one feasible J(t,)-split of p.
Hence, Can~Do(t,, ¢) is true in M. [ |
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(56) 1If ShallDoy, ¢) is true in an arbitrary M = < T, p, I >, then o is
true in < T, p', 3 > for every [N-3J(i),3(z,)]-variant ¢’ of at least one J(i)-
admissible J(1,)-split of . But then it is also the case that ( = ¢) is true
in<T, p', 3 > for every [N-J(i),J(r;)]-variant ' of at least one J(i)-
admissible J(z,)-split of g. Hence, ShallDoft,, s = @) is true. L



