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STRICT FINITISM AS A VIABLE ALTERNATIVE IN THE
FOUNDATIONS OF MATHEMATICS*

Jean Paul Van BENDEGEM
1. Introduction

Whether or not one believes that Godel's theorems shattered Hilbert's
dream of proving mathematics absolutely consistent, the term
“finitism” in his philosophy applies to the metalevel only. Many
philosophers - see Ernst Welti [1987] for an overview - have been in-
trigued by the possibility to extend Hilbert's finitism to the object level.
It seemed and it still seems a neat way to escape Gdodel altogether.
Although Godel himself had something quite different in mind when he
wrote about “an extension of finitary mathematics that has not yet
been used”, the strict finitist point of view too can be seen as an exten-
sion of finitary mathematics.

Perhaps one will remark that to consider strict finitism as an exten-
sion is stretching the meaning of extension a bit, if not a bit too much.
For it is a very well-known remark in the literature of philosophy of
mathematics that strict finitism is most suitably characterized by the
label “strict”. The resulting mathematics is so poor and weak, that
terms such as trivial, uninteresting and the like come to mind. It is
therefore both a philosophically and mathematically interesting question
to ask whether this is necessarily so. The main thesis of this paper is

* This paper is essentially an improved version of a paper that was presented at and
published after the First International Symposium on Gédel's Theorems in Paris under a
slightly different title: “On an extension of finitary mathematics which has most
certainly not yet been used” (see my [1993a]). The meaning of this title is explained in
the paper. More or less the same material has been presented at a lecture at the
Technical University of Athens, Greece on the invitation of Aristides Baltas. My thanks
to the audience there, Kostas Gavroglu in particular, for comments and criticisms. The
same material but in a very early stage of its development, has been presented at the
Ecole Normale Supérieure of Paris in the Séminaire de Philosophie et Mathématiques
organised by Maurice Loi. My thanks to Maurice Loi and to Yehuda Rav for the
invitation. Thanks also to Graham Priest for providing me with the material 1 needed at
precisely the right time and the opportunity to discuss the material at several places in
Australia. Finally, thanks to the “Leuven”-group on philosophy of mathematics, Leon
Horsten in particular. A “popular” version of this material was published in my [1992]
and a discussion of the relevance of this approach to Hilbert's program is to be found in
my [1993b]. Applications to physics have been treated in my [1993c] and [1994].
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that the answer is (most emphatically) no. Actually, a stronger claim
will be made. It is possible to formulate a strict finitist version of a
classical infinite mathematical theory, such that the former is a proper
extension of the latter (without meaning stretching).

Probably one is tempted to think that this is an impossibility. It would
be, if the additional claim were that strict finitist mathematics must
have the same logical basis as classical mathematics. Here, paracon-
sistency enters into the discussion. Separating the notion of triviality
from the notion of consistency, classical logic can be replaced by a more
generous logic that provides the additional power to turn strict finitism
into an extension of classical mathematics. Anyone familiar with
Godel's (neo-)Platonist philosophical ideas will realize that such an ap-
proach was quite simply impossible for him, nothing less than a philo-
sophical heresy. Hence I might as well talk about “an extension of
finitary mathematics that Godel would most definitely not have used”.

Instead of presenting the general theory right from the start, I will go
through a detailed discussion of elementary number theory on the se-
mantical level. In paragraph 2 the standard classical model is pre-
sented. In paragraph 3 the paraconsistent view is introduced and in 4
the rich finitist model is formulated with the following properties:

(1) If F=cl A then = A If A is a valid statement in classical elementary
number theory, then A is valid in rich finitist elementary number theory.
As said before, the claim is indeed that rich finitist number theory is an
extension of classical number theory.

(ii) There exists at least one non-empty subset Fin of the set of all for-
mulas F of the language of elementary number theory, such that for A in
Fin:

FlAiff = .A.
Furthermore this subset is easy to characterize.

In a single statement this means that this part of classical mathematics
can be rewritten in a strict finitist fashion without the classical mathe -
matician's (quite understandable) worry that all kinds of nice results
will disappear in the transition. What the platonist does during the day,
the finitist can rewrite in the evening. In paragraph 5, I present the
general method due to Graham Priest (although designed for different
purposes). Finally, in 6 a philosophical discussion concludes the paper.
It might help the reader to better understand the approach outlined
here, if some history is told. In previous work, I tried to formulate a type
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of “strict” finitism! incompatible with classical mathematics. Classical
theorems turned out false (“There is no largest prime number”), finitist
theorems were classically speaking false (“There is number equal to
its successor”). Not altogether satisfied with this result, I tried
(though not very successfully) to find stronger models. Familiar with
the work on relevant and paraconsistent logic, I did not realize the con-
nection there could be between these logics and strict finitism. Reading
the papers of Chris Mortensen, I noticed that paraconsistent and rele -
vant mathematical theories typically have finite models. It seemed
natural to turn the question around: is it possible to finitize theories by
going paraconsistent? Unfortunately, the models Mortensen presented
in his papers, were not what I needed as a strict finitist and it was not
clear to me at the time how to generate other models. Thanks to a re-
sult of Graham Priest (presented in paragraph 5), such a method is
available. It is actually extremely powerful. Thus, this paper can also be
seen as a continuation of the work of Mortensen and Priest, not from
the relevant-paraconsistent point of view but from the strict finitist per-
spective. As must be obvious, this does not imply that they share the
latter perspective.

2. The classical case

Let PA be the theory of (Peano) arithmetic. The language of PA con-
sists of the language of first-order predicate logic in its standard form
with predicates restricted to “=" (equality) and functions restricted to
“S” (successor), “+” (addition) and “.” (multiplication). “O” is the
only constant of the language.

A model M of PA is a triple M=(N, I, v,) where N is the
(standard) domain (of the natural numbers)2, /is an interpretation
function and v, is a valuation function based on /, satisfying the follow-
ing conditions:

(I1) I(0) =0 (where 0 is the number zero in the domain)

(12) I(Sx) = I(x) @ 1 (where @ means addition in the model)
(13) Ix+y)=1I(x) D I(y)

(14) I(x.y)=1(x) @I(y) (where ® means multiplication in the

1 See my [1987].

2 Non-standard models are not considered, although they do not complicate matters

in any serious way. The only reason for the restriction to standard models is for clarity's
sake.
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model)
(I5) I(=)={<n,n>ln € N}

(V1) v (x=y)=1iff <I(x), I(y)>e (=)
(or, equivalently, I(x)=I(y))

(V2) v,(~A)=1iffv,(A)=0

(V3) v,(AvB)=1iffv,(A)=1 or v,;(B)=1

(V4) v,(3xA(x))=1 iff there is an I' that differs from  at most in
the value of /(x) such thatv,.(A(x))=1.

A formula A is valid (¢l A) iff for all models M, v,(A)=1.

3. Going paraconsistent

In order to prepare the ground for the strict finitist case, one intermedi-
ate step is necessary. In the scheme of paragraph 2, v, is a function
from the formulas of PA to {0,1}. Suppose now that v, is a function
from the formulas of PA to the following set: {{0}, {0, 1}, {1}}3.
Suppose further that the conditions are replaced by:

(I1)-(I4) as before
(I5) I+(=)={<n,n>1n e N}
I-(=) =(NxN)\ I+(=)

Instead of talking of the extension of a predicate, we now talk of its
positive and its negative extension. Although not relevant at this stage,
it is a crucial step in the next paragraph.

(V1) lev,(x=y) iff <I(x) I(y)> el+(=)
Oev,(x=y) iff <I(x), I(y)> elI-(=)

(V2) lev,(~A) iff 0ev,(A)
Oev,(~A) iff 1ev,(A)

(V3) lev,(AvB) iff 1ev,(A)or1ev,(B)
Oev,(AvB) iff 0ev,(A) and Oev,(B)

3 This type of valuation function has been proposed by Priest in a number of papers
and in his [1987] book (see references there).
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(V4) 1ev,(IxA(x)) iff there is an I’ that differs from I at most in
the value of I(x) such that 1ev; (A(x)).
0 € v,(3xA(x)) iff for all " that differ from I at most in the
value of I(x), 0€v,. (A(x)).

A formula A is valid (Fpc A) iff 1ev,(A) for all models M.
It is not that hard to see that the following theorem must hold:
Theorem 1. Fpc B iff Fcl B.

Proof. It is sufficient to show that the truth value of a formula of the
form x = y can only be {0} or {1}. If so, it is obvious that (V2"), (V3')
and (V4') reduce immediately to (V2), (V3) and (V4). Suppose then that
v;(x =y) = {0, 1}. This is the case if <I(x), I(y)> € I+(=) and
<I(x),I(y)>€ I-(=), which is impossible. QED

Thus, although this formulation looks more complicated than the pre-
ceeding one, it is entirely equivalent to it. In the next step the value
{0,1} will show its importance.

4. Rich finitism

Starting with a classical model M = <N, I, v> as defined in 3, a new
model M* = <N* I* v* o> called the model derived from M, will be
constructed that has the following properties:

(i) N*is finite
(i1) if F=cl B then = .B.

M* is precisely the model that satisfies the first of the two require -
ments of a rich finitist model mentioned in the introduction of this paper.

N* is the following set: {[0], [1], [2], ..., [L, L@ 1, ...]}. Unless other-
wise indicated, L is considered to be a fixed number. The square
bracket notation is meant to clarify how the elements of N* are related
to N. The easiest way is to read [n] as an equivalence class under a
(non-stipulated) equivalence relation, or as a partition of N in a finite
set of parts.

The interpretation function /*, derived from /, is defined as follows:
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(1*)  1'(0)=[0]
(12%) I‘(Sx)—[l(Sx |

(I3%) x+y [[(x ]

(14%) x. -[.’(x)®l )]

(I5%) <I’(x), I'(y)>€ I" +(=) iff there isane=I(x)] and there
is me[l ],suchthat <n, m>el+(=)

a
<I*(x), I'(y)>el"~(=)iff there isa ne[l(x)] and there
is a me[l(y], such that <n, m> el-(=).

The valuation function v,. satisfies the following conditions:

(V1*)  levi(x=y)iff <I'(x), I'(y)>el*+(=)
Oev.(x=y)iff <I'(x), I'(y)>el*-(=)

(V2%)  lev(~A)iff Oevi(A)
Oevi(~A)iff v (A)

(V3*) lev.(AvB)ifflev,.(A)orlev;.(B)
Oev.(AvB)iff Oev,.(A)and 1 ev}.(B)

(V4*)  1ev.(3xA(x)) iff there is an I*' that differs from I* at most
in the value of /*(x) such that 1ev}.(A(x)).
0 ev;.(3xA(x)) iff for all I*' that differ from I* at most in
the value of 7*(x), 0ev,.(A(x)).

A formula A is r*-valid (=r* A) iff 1 ev,.(A) for all models M*.

Lemma. For any formula A, for any classical model M and its derived
model M*, we have:

(a) If Tev,(A) thenlev:(A),

(b) If 0ev,(A), then Oev.(A).

Proof (by induction on the length of the formulas):

(1) Baszs [note] first that if ¢+ is a term, then it is easy to show
I"(t)=1(z)

(a) Suppose now that A is x = y and that lev,(x=y). By (VI'),
lev,(x=y)iff <I(x), I(y)> el+(=). Thus, by (I5*), there
is a (vl(x) e[I(x)]anda m(= IE ;)e[l(y)], such that

y

<n,m> e[+(—) Hence, <I*(x), I'(y)> el*+(=) i.e. le
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v (x=y)
(b) proceeds along precisely the same lines.

(i1) Induction step: three cases have to be distinguished: negation, dis-
junction and the existential quantifier. The three proofs are identi-
cal, I therefore restrict myself to negation. Let A be of the form ~C,
then:

(a) lev,(~C) iff 0ev,(C)
then 0ev,.(C) by induction
iff 1ev.(~C),
hence if 1€v,(~C) then 1ev.(~C).
(b) proceeds along precisely the same lines. QED

The central theorem is, of course, the fact that:
Theorem 2. if =cl B then =* B.

Proof. Because of theorem 1, it is sufficient to show that if F=pc B then
Fr* B. Now, if Fpc B then for all v,, 1€v,(B) and, by the lemma, for all
derived models M*, for all v,., 1€v;.(B), hence =r* B. QED

As said in the introduction, there is a rather easy way to strengthen
theorem 2 to an equivalence. Let Fin be the subset of all formulas of the
language of PA such that:

A € Fin iff there is no term t occurring in A such that
I'(t)=[L L&, i

Theorem 3.1f B € Fin then I Biff =fB.

Proof. It is easy to see that for i, with the exception of [L, L], ...]

[i]=i. It then follows that /* reduces to I and hence v}. tov,. Thus, if
F* B then =l B. Together with theorem 2, this shows the equivalence.
QED

Remark 1. Fin is not necessarily the only set that satisfies the equiva-
lence. For it is very well possible that a statement A does turn out
uniquely true, even though there is a term f occurring in it, such that
I*(t)=[L, L1, ...]. Example: if S(XO stands for SS ... SO, with L oc-
currences of S, then the statement O < S(2)O (with the standard inter-
retation for <), is uniquely true. /*(0) = [0] = 0 and [*(S(1)0) =
L, L], ...]. Therefore, given the classical interpretation function /, no
matter what element k we pick from [L, L], ...], we will have that 0
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< k. Hence v}.(0< SW0)={1}.

Remark 2. It seems quite natural to ask the question whether the above
result extends to the notion of semantical consequence. In other words,
is it possible to extend theorem 2 to:

If A, A, ..., A, EclBthenA, A, ..., A E=r*B?
The answer is no, as the following simple counterexample shows:
SN0 = S0 = r*$(LO = S(LDQ,

In the classical model this holds, because both premise and conclusion
are false. Yet, in a finite model with domain N*={[0] [1] ..., [LO1]
[L L®1, ..]}, we have v.(S(MO=SE-D0)={0}, as I*(SWO)=
L L&y, ..] and I'(s-10)=[Lo1]=La1, but
v (&0 =5W0)= {0, 1}, as I*(SLV0)=I"(SWO)=[L, L®], ..].
If we take Le I*(S(“*10) both forn and m, then <n, m> = <L, L>
€1+(=), hence 1€v;.(S(+)0=S10). Butif we take Le I*(S(+)0)
for nand L®1e I*(S0) for m then <n, m> = <L, L®1> el—(=)
hence 0 € v}.(S(+D0 = S(10).

L

Note, however, that the following does hold:
= r* (SN0 = S0) 5 (SWO = S(E-D0)

where A D B stands for ~ A v B.. Furthermore, if all A, and B belong to
Fin, then the extension of theorem 3 holds:

If A, A, ..., A, Ecl BthenA, 4,, .., A =rB.

S. Beyond elementary number theory?

The natural question to ask is whether this method will work for other
mathematical theories? There are two answers to this question. The
first is quite simply to observe that it has been done. In fact, Mortensen
in his papers [1988] and [1990] has done precisely that. I repeat that in
this sense, from the technical point of view, not much new is offered in
this paper. Why then did I not simply state Mortensen's results? Be-
cause, and this is the second reply, I have followed a different route
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leading to the same results. As a matter of fact, what I have done in
this paper is to apply a method of Priest that is far more general. With
just one restriction, it is possible to finitize almost any theory.
Stepswise, without presenting all the details, it goes like this:

(i) Take any first-order theory T satisfying the only restriction that
the number of predicates of T is finite. Let M be a model of T,

(ii) Reformulate T in a paraconsistent fashion, extending the truth
values to {{0}, {0,1}, {1}} instead of {0,1}.

(iii) If the models of M are infinite, define an equivalence relation R
over the domain D of M, such that D/R is finite. Or, equiva-
lently, define a partition in a finite set of parts of the domain D
of M. Let the resulting model be M/R or M*.

(iv) The model M/R or M * is a finite paraconsistent model of the
given first-order theory T such that validity is extended. Thus
M/R is a strict and rich finitist extension of M.

The most important thing to note is that any equivalence relation or
partition will do. This leaves room for an almost unlimited number of
possibilities. Indeed, Mortensen instead of using N*, preferred to work
with N/mod n. However, for the strict finitist, the non-trivial problem
that remains, is to find an R such that the resulting model deserves to
be called a “natural” model. That a model is “natural” is indicated,
e.g., by the existence of theorems such as theorem 3. More generally,
borrowing some terminology of the structuralist school in philosophy of
science, if there is a set of intended applications of a mathematical the-
ory, say in physics, then both the original infinite theory and its rich
finitist extension should agree on this set. In more mundane language
and for the case of PA, this means that if we count with small, accessi-
ble (not in the set-theoretic sense of the term, of course) or feasible
numbers, then both theories should agree. If, e.g. the truth-value of 1 =
8 were {0,1}, then I would not consider this a “natural” model. As
shown in this paper, for PA such models exist.

The extension to the integers is a rather dull exercise. Apart from ex-
isting proposals, it is obvious that the most “natural” partition of Z, is:
Z* = {[..., «(L+1), -L], ..., [-2], [-1], [0], 1], [2], ..., [L, LD, ...]}.
However, entering the domain of the rationals, things become different.
One possible finite partition of Q that leads to a “natural” model is this
(here the square brackets refer to open or closed intervals):

@ QO =[x|xeQ&x2L] @, =[x| xeQ&x<-L]
®)  Q,={[p/q]| p/q€Q&-L<p, q<L&q#0},
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Q,-nd={]x, y | X, yeQ&(x,yEQa. 0rx=—L0ry:L)

© &~(I)(x<z<ykze Qd)}.

A simple example may illustrate this rather complicated description.
Take L = 3. Then Q is split up in:

(a) all fractions larger than or equal to 3 (Q3) and all fractions
smaller than or equal to -3 (Q.,),

(b) the set of determined fractions:
0,={-2 -1 -1/2, 0, 1/2, 1, 2},

(c) all in-between intervals, i.e. Q,,= {]-3,-2[, 1-2,-1[,] -1,-1/2[,
1-172,0[, 10,172[, 11/2,1[, 11,2[, 12,3[}.

There are two senses in which this partition can be considered natural.
First, note that, if all terms are interpreted in Q,, we do have that
vi.((3y)(xy=1))={1}. For, it I*(x)=[p/q]eQ, thenI'(y)= [q/p],
but that is an element of @, as well, thus the term (p/q).(g/p) is
uniquely determined, namely 1. Thus if, say, L > 10, then (1/7).7 = 1
holds in the strict finitist theory. Note that this approach avoids all
mention of rounding-off criteria, approximate results, and the like. The
second sense is related to N and Z.If A and B are two partitions then B
is an extension of A (A ext B) iff for every element a € A, there is an
element &b € B such that a c b. Clearly, we have N* ext Z*. Somewhat
less clearly (but immediately clear from the example): Z* ext O
However, it is certainly (and unfortunately) not the case that this Q* is
the only partition that satisfies Z* ext Q*. Additional criteria are re-
quired. A good reason to reject a partition proposal is if it turns out that
too many statements are true-false. Thus, what might appear to be the
most “natural” partition of Q, namely

Q' ={[x. y[ |x=k.8&y=(k+1).6&-L<k<L-1}u
{l-e, = L8[} U{[L.8, +oo[}, where & is a number close to 0,

actually is not. Using this model, for every x, v,.(x.x1=1)={0, 1}.
Likewise for every choice of x, v}.(x +O=x)={0, 1} including the inte-
ger values of x. In Z* (and in N*) these statements were exclusively
true. Hence, the first model presented is a better candidate than the
second one.

Although the full details will be presented in papers to follow, includ-
ing strict and rich finitist geometry - see my [1987a] for an intuitive ap-
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proach - let me just mention that introducing (some) irrationals is quite
easily achieved.

Suppose one would like to have /2. Replace the interval |x, y[ € Q,,
that has /2 as a member by ]x, \[i[ and ]\/ﬂ[ and add [V2] as a
member to Q,. It is easy to show that v} ((Hx)(x = x/i)) ={1}. To cap-
ture in a strict finitist theory the notion of an irrational is not excluded,
strange though it may appear at first sight (from the finitist view point,
that is). The next step is the development of analysis. Mortensen in his
[1990] has already developed a paraconsistent differential calculus thus
showing, once again, that for the strict finitist, the problem reduces to
find “natural” models.

6. At what price rich finitism?

6.1. From the classical point of view, the most obvious and “heaviest”
price to pay is to give up consistency. Perhaps one is impressed by the
idea that non-trivial strict finitist mathematics exists, but one is not
willing to give up consistency.

A general argument to the contrary, is this: the whole idea of consis-
tency proofs started with Hilbert's problem how to control the introduc-
tion of ideal elements in a mathematical theory. Typically, these ideal
elements had to do with infinity. As long as everything was finite, there
was no problem. Hence, as all models are all finite to start with, consis-
tency is not of prime importance any more. Rather triviality is the key
issue. We do not want trivial models, say models with all statements
true-false. Thus, it seems obvious that consistency and triviality should
be considered separate concepts. Thinking within a paraconsistent
framework does precisely that. By dropping the ex falso, a theory does
not become trivial then inconsistent. But classical logic is to a large
extent identified by the ex falso. It therefore seems unavoidable that
strict finitism should go hand in hand with paraconsistent logic.

A more specific argument has to do with the paradoxical nature of the
very idea of a largest number (or numeral) L. The paradox is quite
familiar, of course: if L is the largest number, what prevents me from
writing down the next one, namely L& 1? Apparently nothing, as I have
just done precisely that. The strict finitist's answer is: there is no real
paradox as L&@1 = L. In other words, although the question can be
asked: “What is the result if 1 is added to L?”, the answer is quite
simply: "The number L". Note that in the question itself, only numerals
smaller or equal to L, are mentioned. Pleasing though this solution may
seem, it probably will not satisfy the anti-finitist. He or she will argue
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that, perhaps the set of numbers or numerals is finite, but, apparently,
the number of operations, say additions, I must be able to talk about,
must be larger. Therefore, the cardinality of the set of all additions is
larger than L. Hence, L is not the limit, and the paradox is restored.

In my [1987], I opted for a conventionalist solution: as it does not
make sense to talk about the largest number, I accepted instead a
provisional largest number in full knowledge of the fact that larger finite
numerals are imaginable. In the approach outlined here, another
solution is possible: the largest number is an inherently paradoxical
idea®. It is easy to show that if I'(x)=I'(y)=[L, L®], f, then both
1 € v*(x=y)and OeI*(x=y), hence the truth-value of x =y is {0, 1}.
Thus, if [L, L1, ...] is identified as the largest element of N* (a quite
natural suggestion), then the rich finitist model tells us that it is both
true and false that the largest natural number is equal to itself.

Another objection might be raised. If one claims that L = L&1 is
true-false, why then does it not follow that O = § O (or 0 = 1) is
true-false? What is wrong with the following argument? Finitistically
speaking, as the strict finitist theory extends the classical theory, the
well-known PA -axiom must hold:

(Vx)(Vy)((Sx = Sy) > (x = )) *)
Instantiate x by S(2)0 and y by S(Z-10, and (*) becomes:
(8510 = §5(:-10) > (SO = §E-D0) (**)

(or, if a slight abuse of language is allowed for,
(L+1=Ly>(L=L-1).)

Repeat the argument, and O = SO) is derivable. The answer is: because,
as we already indicated, the strict finitist theory does not extend the
notion of semantical consequence. It is sufficient to explicate the phrase
“repeat the argument” in the reasoning above. To arrive at the conclu-
sion O = SO, one needs modus ponens. Thus, the first step will be:

S50 = SS(-10, (SS(HO = SS1-0) 5 (S0 = S(L-10)
=S80 = S(L-DO

The first premise is true-false as has been shown. Likewise, the second
premise is true-false. It is sufficient to note that v.(SS(HO=

4 In Priest's terminology, the largest finite number would qualify as a dialetheia (see
Priest [1987], pp. 3-9).
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SS(L")O) ={0, 1} and v,.(S("0=S(t-D0)={0}. However, the conclu-
sion S{L0 = S(-1Q is exclusively false. Hence, there is a case such
that the premises are true and the conclusion false. Thus the conclusion

is not a semantical consequence of the premises, and the repetition
breaks down.

6.2. One might object that the use of the truth-value {0, 1} is a trick
needed to prove the richness of the finitist theory. Suppose that instead
of the set of truth-values {{0}, {0, 1}, {1}} we had used the set {0, 1/2,
1}, thus obtaining a familiar three-valued logic. Statements with
truth-value {0, 1}, now have truth-value 1/2. Instead of true-false, they
are now undecided. Does not this reflect more closely the finitist's atti-
tude? Actually, as has been shown by Priest, the three-valued logic is
equivalent to the paraconsistent logic, if validity is extended to 1/2. A
formula A is valid iff for all models M, v(A) = 1 or 1/2. Thus, the problem
really comes down to this: are there any arguments for the finitist to ac-
cept a statement that is undecided, in some cases as valid? Formulated
thus, the answer is yes. The undecided cases are precisely those cases
that are not accessible to the strict finitist (semantically speaking),
thus they should not play any part in the determination whether a sen -
tence is valid or not. In a way, the choice of {0,1} is much clearer than
1/2. *“Undecided” does not preclude that at a later stage, it either be-
comes “true” or “false”. The value {0, 1}, however, is a determined
value.

6.3. Let me try yet another argument to defend the use of paraconsis-
tent logic as the underlying logic of strict finitism. There is something
paradoxical about the fact that, on the one hand, semantically, every-
thing is strictly finite, while, on the other hand, syntactically, the strict
finitist and the classical mathematician are speaking the same lan-
guage. Thus, both are able to assert the statement S(X0=S(L+)Q.
They will, however, speak about different models, as for the infinitist,
the statement is false, whereas for the strict finitist it is true-false.
These considerations - as Priest remarks in his [1991] paper - must
remind one of the Léwenheim-Skolem theorems>. Actually, the corre-
spondence is quite strong. As an example, think about the notion of a
largest prime number. Although on the syntactical level, there will be a
proof of the statement that there is no largest prime number, in the
model there definitely is. But this semantical fact is not expressible in
the theory itself. It is reflected however in the fact that the theorem

5 David Isles has developed a similar idea (though not in a paraconsistent framework)
in his [1994]. His work is closer to the original work of Yessenin-Volpin, one of the
founding fathers of modern strict finitism. See Welti [1987] for details.
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“There is no largest prime number” will turn out to be true-false in any
particular model M. This can be seen as follows. Consider the two
statements

(Vx)(SO+ x + S0 =510+ x) and
(Vx)(SO+x+ S0 # SWO +x).

Both are true-false. In the first case, all numerals above L collapse, and
thus all prime numbers among them collapse as well, hence there is a
largest prime number. The theorem is false. But in the second case,
everything looks quite classical - all numbers larger than or equal to L
are distinct -thus the theorem is true. Given Priest's general method
outlined in paragraph 5 of this paper, the finitist analogue of
Loéwenheim-Skolem theorem is: Given a paraconsistent first-order the-
ory T with a finite number of predicates, if the theory has models
(countable or uncountable), it has finite models.

7. Strict finitism without classical mathematics in the background.

The strongest criticism imaginable is no doubt this: granted that a form
of strict finitism is possible, it is still the case that to be able to
formulate it, you need classical standard mathematics in the
background. To be more precise, the domain N* of the strict finite model
M* is a partition of a classical domain N of a classical model M. What if
these are not available? Or, if you like, should strict finitism not have its
own proper foundations? The answer is yes.

Suppose that a strict finitist starts with a limited domain Nf of natural
numbers (or numerals), Nf = {0, 1, 2, ..., L}. Let us, for the moment, ig-
nore the problem of there being a largest number or numeral L and how
the strict finitist is supposed to find it®. Suppose further that the finitist
wants to do mathematics over Nf. He or she defines a successor func -
tion, addition and multiplication over Nf, (possibly, though not neces-
sarily) in the following way:

(D1) Succ:  Nf —Nf, such that: if n < L, then Succ(n) = m
(whatever m is) and if n =L, then Succ(n) = L.
(D2) &: Nf x Nf — Nf, such that: n @0 =n

6 My [1987] focuses mainly on this type of problem, especially the first chapters where
an artificial mathematician, the sheet-mathematician, is introduced (or shemath for
short).
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n @©Succ(m) = Succ(n B m)
(D3) ®: Nf x Nf — Nf, such that: n® 0=0
n® Succ(m)=(n®@ m) Bn

Note that in (D2) and (D3), it is unnecessary to add the limit L. This is
taken care of by (D1). Example: suppose that Nf = {0, 1, 2}, i.e. L =2,
and that the result of 2 € 2 is asked for. Then 2 & 2 =2 @ Succ(l) =
Succ(2 © 1) = Succ(Z D Succ(0)) = Succ(Succ(2 & 0)) =
Succ(Succ(2)) = Succ(2) = 2.

Given such a set Nf with the appropriate functions, the language of
classical mathematics can be interpreted as follows:

Mf = <Nf, If, vf) > is a strict finitist model, such that:

(1)) Ifi0)=0
(12f) If(Sx) = Succ(If(x)) if If(x) is defined
=L, in all other cases

(13f) Ifix+y) = If(x) @ f(y), if If (x) and If(y) are defined
= L, in all other cases

(14f) If (x.y) = If(x) @ If(y), if If(x) and [f(y) are defined
=L, in all other cases

(I50) If +(=) = {<If (x), If(y)> | If(x) = If(y)}
If-(=) = (Nf x NO\ If+(=)) © (<L, L>}

The valuation function vf), (with range {{0},{0,1},{1}}) satisfies the
following conditions:

(V1) 1 evf,y(x=0) iff <If(x), If(y)> el +(=)
0 evfy(x=y)iff <If(x) If(y)> elf-(=)
(20 1 evf,(~A)iff ~0evf,(A)
0 evfy(~ A) iff ~1evf(A)
(V3f) 1 evf,(Av B)iff 1evf,(A) or 1€ vf,(B)
0 evf, (Av B) iff 0cvf, (A) and O € vf,,(B)
(V4f) 1 evf,(3xA(x)) iff there is an If ' that differs from If at
most in the value of If(x) such that 1€ vf.(A(x)).
0 €vf,(3xA(x)) iff for all If ' that differ from If at most in
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the value of If(x), 0&vf, (A(x)).

A formula A is rf-valid (= rf A) iff 1€vf,(A) for all models Mf.

Note that in the definition above, there is no need to refer to classical
mathematics at all. Hence, it is perfectly possible to formulate strict
finitist mathematics on its own (at least for elementary arithmetic).
But, it is not hard to see that the following theorem can be proved:

Theorem4. Erf A iff Er* A

Proof. Let Nf and N* be the domains of resp. Mf and M*. Define the
function J: Nf — N*, such that J(i) = [i], fori < L, and J(L) =
[LLL@1,...]. Note that J is a bijection. It is now a routine matter to
show that (/if) corresponds exactly to (/i*) and vice versa. The
conditions on the valuation function are identical in both cases, so we
need not bother about this. As an example, I will take (13*):

I*(x+y) [I(x)@ )] (where I is the classical interpretation
function wherefrom I* is derived)

Now, either If(x) and If(y) are defined or not. In the first case, it fol-

lows that both /(x) = If(x) and I(y) = If(y) (or, if necessary, a permu-
tation can be found). It then follows that:

(o +y)=[1(x) @ I1())] = JUx) @ 1)) =
J'(If(x) ® If(y)) = JUf(x + ).

In the second case, one or both of /(x) and I(y) are not defined. It then
follows that I(x) > L and I(y) > L and, certainly, I(x +y) > L. Thus:

I*(x+y)=I[L, L@1, ..]1=JL)=J(If(x + y)).
Summarizing, we find that for all x and y:
JIif(x +y) = I*'(x+y)

Finally, note the necessity in (/5f) to include <L, L> in the negative ex-
tension of =. This is necessary to obtain the translation. QED

Corollary: = cl A then = rf A

One might still object that, on the syntactical level, the strict finitist is
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still using the complete vocabulary of classical mathematics. This is in-
deed the case, but solely for the purpose of setting up a translation. If
the strict finitist is, in any reasonable sense of the word, strict, then he
or she will allow only a finite number of names for numbers. If we accept
L+1or L.L as names, then, obviously, one cannot avoid a (potentially)
infinite number of names. Thus, an additional restriction must be made,
to the effect that, e.g., only terms of a limited complexity are allowed,
where the limitations refer to the number of operations (additions and
multiplications) mentioned in the term. It therefore follows that, syn-
tactically, the language of the theory over Nf is less expressive than
the language of PA, hence it cannot be an extension. What remains,
however, is that it is still the case that, if A is a statement that is fini-
tistically expressible, then if A holds classically, it holds finitistically.
Thus, we remain as close as possible to classical mathematics.

Vrije Universiteit Brussel
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