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PROOF-THEORETICAL CONSIDERATIONS ABOUT THE LOGIC OF
EPISTEMIC INCONSISTENCY*

Ana Teresa de CASTRO MARTINST and Tarcisio H. C. PEQUENO

Abstract

The Logic of Epistemic Inconsistency (LEI) provides an interesting
example of a paraconsistent formal system from the proof theoretical
point of view. Although cut elimination theorem for its sequent cal-
culus presentation can only be proved with a restriction, this does not
damage its main desirable outcomes, that are still attained. Therefore,
consistency, subformula property and conservativeness of logical
constants definitions are well preserved. The motivation for LE]
designing, its sequent calculus presentation and most remarkable
theorems are presented. Instances of the unremovable cut-proof pattern
are analysed.

1. Introduction

The Logic of Epistemic Inconsistency (LEI) is a paraconsistent logic
designed to support reasoning under conditions of incomplete or unaccu-
rate knowledge. In these circumstances, conclusions must be grasped on
the basis of partial evidences. In the course of reasoning, partially sup-
ported conflicting conclusions may emerge. This kind of situation asks for
a criterious consideration of the total evidence available in order to solve
these conflicts but, it may eventually happen, the available knowledge not
being able to do so, making some of these pairs of conflicting partial
conclusions turn out as unremovable conflicts, being this the best that could
be possibly done under these circumstances.

It is our opinion that, when the term reasoning is used to express a more
general thinking process than mere deduction, as in the situation just
described, its role is not just the grasping of conclusions, as for deduction,
but to perform a more comprehensive analysis of the available knowledge.
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As a consequence of this disposition, the whole set of emerging con-
clusions, which includes the unresovable conflicting pairs, should be as-
similated and reasoned out by a suitable logic, able to do so without
provoking a logical collapse. The kind of inconsistency so arising should
be called epistemic, by reflecting not an inconsistency in the state of affairs
itself but a deficiency in our knowledge about it [Pequeno & Buchsbaum
91].

Incomplete knowledge reasoning has been the topic of study of the so
called nonmonotonic reasoning in artificial intelligence, for more than a
decade now. The current attitude in the field has been to avoid the haz-
adous of epistemic contradiction by taking a choice between two alterna-
tives. One, which has been called credulous, consists in accepting all
conflicting conclusions by splitting them into self consistent subsets [Reiter
80]. The other, sometimes called skeptical, consists in simply rejecting all
those conclusions [McCarthy 80]. In [Pequeno 90], it is suggested to keep
the whole set of conclusions, no matter they possibly being contradictory,
in a single theory, treating them paraconsistently. LE] has been designed
for this purpose and it is intended to be used in combination with a
nonmonotonic logic called IDL (for Inconsistent Default Logic [Pequeno
90]) which takes care of the dynamics of this kind of reasoning (the
incoming of knowledge and the dismissing of no longer supported
conclusions).

LET logical structure also fits a general pattern of situations in which a
plurality of views on a same subject is involved. This is the case, for in-
stance, when a same phenomenon is reported by many observers or, in
general, when it is observed in experiments under slightly varying condi-
tions, being these variations undetected and/or unrecorded along the ex-
periment, but anyway enough to affect it. Then, disagreement may also
occur, and again, by a lack of knowledge. This fact make of these situations
instances of epistemic inconsistencies. It is curious that, in the first case,
epistemic inconsistencies seem to arise from the underdetermination of
conclusions while, in the second one, they seem to come from their
overdetermination. The designing of LEI semantics has been based on the
intuition coming from this last scenario, while its Hilbert style axiomatics
is intended to match the pattern of reasoning upon incomplete knowledge
described before. LEI soundness and completeness establish an equivalence
between these two perspectives [Pequeno & Buchsbaum 91].

Reasoning upon partial/multiple knowledge is a central issue in many
Artificial Intelligence applications and its automatization is certainly
profitable. Tableaux systems for LEI have been developed in [Corréa &
Buchsbaum & Pequeno 93] and [Buchsbaum 91], and a sequent calculus in
[Martins & Pequeno 94]. Our aim here, is to discuss proof-theoretical
issues through LET sequent calculus by stressing LEI metalogical prop-
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erties. In section 2, LEI sequent calculus — proved correct and complete
with respect to the given LEI axiomatics — and main LEI theorems are
presented. Proof-theoretical considerations are detailed in section 3 and
conclusions, as well as further developments, are pointed out at the end.

2. LEI sequent calculus and main theorems

LET has been conceived as a maximal approximation of classical logic able
to support, without trivializing, epistemic contradictions arising from the
application of IDL (default) rules, which introduce defeasible conclusions.
To distinguish these conclusions from those irrevocable ones, a ? sign
marking the first ones is adopted in LEI. The intuitive meaning of o ? is
‘there are evidences to &’ or ‘« is plausible’. For the sake of meta
references, irrefutable, monotonic, formulas will be denoted by roman
capital letters, ?-formulas by greek lower letters and sequence of formulas
by greek capital letters.

Paraconsistency is attained in LEI by rejecting ex falso sequitur
quodlibet, ot — (—~a — B), to formulas suffixed by ?. Technically, LEI
differs from da Costa paraconsistent calculi Ci [daCosta 74] in some key
aspects, mainly: first, LEI retains more classical theorems than Ci — a
remarkable example of this is the schema —(a& A —o) usually taken as an
inner expression of the non-contradiction law. Although rejected in Ci, it is
still a theorem in LEI. Second, a recursive semantics has been provided for
LEI. Whereas — denotes negation in LEI, a paraconsistent negation, ~ ¢ is
introduced as a handy abbreviation for o — pA—p, being ‘p’ a
propositional letter. ~ can be shown to work as a classical, also called
strong negation in LEIL.

LET sequent rules are:

Structural Rules

Exchange
I o B, T'"F A FFA,a,ﬁ,A'RX

LB o ' A A B a A
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Weakening
Iw 't A 't A
I, o, F A 't a A

Contradiction
LCl“,a,a,l—A 'rte o A
I, a F A 'kFa A

'Fa-p A
I'ta?- B2, A
I'ta—>pB, A

RC

?-RC

Identity Rules

o+ a Identity

Ara AT, ot A
IL T'F A A

Cut

AFa AT, a?F A’
I, T'FA A

?—Cut

Operational Rules

Question mark
Ll?I‘,a?I-A Fl—a,Al?
I a??F A 'Fa? A

L I, a? 582+ A I'ta-p A .3
‘T, (a?—> B2+ A Tha?sp2 A 2

Negation
L A A I, ot A
I, -AF A 't =, A
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Conjunction
LA I otk A ILB+rA £ %
T, anffF A [, anf + A

Cra AT'FB A
[, T'FanB A A "

Disjunction
l’ I_ AJ
INak AT, B Ly

T, T, avB F A A’

T'Fa A kB A
_ —2 = RV
't avp, A I'tavp, A

1V

Implication
'ra AT, BF AN I, al + B, A
LT, a—=BF A A F'ra-p A
1 all variables are held constants and, either « is ?-closed or R2 ? and
R~ are not applied after the first time « occurs justified by being a

R—-

premise.
Double Negation
[ I, aF A I'F e A R
T, —_—a F A I'tF —a, A
Distribution of ‘ =’ over ‘v’
- T, ﬂa/\—!ﬁ FA Ttk —|a/\—|ﬁ, A RD-
I, —(avB)F A Tt —(avp), A 7
Distribution of ‘* =’ over ‘A’
- F, —la\/—\ﬁ F A F F —laVﬁﬁ, A RD-
" T, ~(anB) + A It —(anB) A °

Distribution of * =’ over ‘' =’
I an=f + A 't aaf, A
[, ~(a->p)+ A 't —(a->p) A

LD RD7
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Distribution of ‘ =" over ‘7’

b | ? : | ?
L (=e)?F A [ -2 A o
I F—(a?), A

?

I‘, —.(a?) F A

Distribution of *?” over ‘v’
2 B7?
LD [, a?vB?+ A
[, (avB)?F A

Classical Negation
I'ta A

Th~((~a)?) A

First Order Rules
Universal Quantification
T, a(t) + A T+ oax), A
I, Vxa(x) - A I+ Vxa(x), A

1 tis free for x in a(x)
2 xmustnot occurfreein I, A

Existential Quantification

?

I, a(x) + A T+ oo@), A .
T, 3xa(x) F A T+ Ixa(x), A
1 x must not occur free in I', A
2 tis free for x in a(x)
Quantifiers Equivalence
[V F, Elx(ﬂa) F A Tk EIx(—.a), A
F, —.(an) F A | ﬁ(an), A
13 I, Vx(—a) + A ' b Vx(-a), A
T, —(3xa) F A T+ —(3xa) A
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Extended Rule for Classical Negation

Classical Negation
'kt o A T, F A

L - a o R -
L ~a kA 'k ~oa A

LEI sequent rules are closely related to LEI axiomatics presented in
[Pequeno & Buchsbaum 91]. Paraconsistency has been captured by re-
stricting L— to classical, ?-free formulas. Double negation rule, distribu-
tion rules of — over A, vand — and quantifier equivalences are derivable
in classical logic but not in LEI and must be explicitly stated. Central focus
has been devoted to the new and peculiar ? operator. It has been defined by
operational rules but its structural aspects are also expressed by two new
rules: ?-Cut and ?-RC. The former states that: ‘if a comes from § and y
comes from o ?, then certainly ¥ also comes from the stronger a, or from
its proof using B’. The latter is closely related to the operational rule
R, ?. 7= RC restores the same context I' + o — 3, A if it was given as
premise a deduction where R, ?was applied.

Question mark rules reveal operational ?-features. R, ? states that from
@ you can extract its plausibility a?. The opposite is obviously not valid.
Nevertheless, a weak converse of R, ? — L, 7 — is valid. L, ? states that
additional ?'s are superfluous. L, ? expresses that external ?'s are irrelevant
to an implication when both antecedent and succedent are ?-closed (see
definition 2.2 below). R, ? provides the propagation of ? along inferences
when used in conjunction with L — to simulate a sort of ?-Modus Ponens
(ae?, @ — B/B?)as in the proof below:

I'Fa-op a’t a? B?+ B?
I, Fa?-p? a? - B? a?+ B?
T, F a? T, a’F B?
Bix T'y B BE

The same is achieved in LEI axiomatics using Modus Ponens and rule
a—-p

————— as in the following:
a?—f? 8
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o—p
a? a?—fp?

B?

Distribution of ? over v is assured by LD]. Its symmetrical RD’ is de-
rived. R~ states that it is impossible to be sure about o and, at the same
time, to have an evidence to its classical negation (~@)? A theory
including a and (~ )? is trivial in LEI Notice the double line at rules
R, ? and R~ It marks a restriction over R — application provided R, ? and
R~ do not hold constant the variables over evidences implicitly quantified
by 7. On the other hand, the implicative forms of R,? and R~, i.e.
(@—=B)—(a?—>p?) and a—-~((~a)?) would carry out a?—
which is not reasonable.
Main LEI theorems are:

Theorem 2.1. all thesis of classical logic hold to ?-free formulas in LEI.

Corollary 2.1. the negation symbol — behaves classically for ?-free for-
mulas in LEI:
F(A—B)—>((A—>—B)—>—A)

Theorem 2.2. The defined symbol ~ really behaves as classical negation:
F(a—B)—((e—~B)-~a)
F~~a-a

A form of replacement theorem can be recovered with the help of a special
implication introduced by definition [Pequeno & Buchsbaum 91].

Definition 2.1. (strong implication) a=> B is a short form for (ot — B) A
=B — —a) and (strong double implication) a < B is a short form for
a= B)A(—f=—a)

Theorem 2.3. (replacement) Let o' be a formula obtained from o by

substituting B' for some occurrences (not necessarily all) of B. Then
'rBep entails T Fas o

Definition 2.2. (?-closed formula) A formula is ?-closed, i.e., it is under the
scope of ?, if it has one of the forms o?, —f, ~p, B#vy, where 8 and y
are ?-closed formulas and #€{—, A, v}.
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Theorem 2.4. If o is a ?-closed formula, then + a < o ?.
A restricted version of the deduction theorem can be kept also.

Theorem 2.5. If T, o + B and if does not occur any free variable in the
set of premisses, then I' + o — 8 unless o is not ?-closed and the LEI
rules R,? or R~ are used after the first time & occurs in a proof by virtue
of being a premise.

3. Proof-theoretical issues about LEI

Cut elimination theorem was established by Gentzen for classical and
intuitionistic logics and assures that every derivation using sequent calculus
can be transformed into another one with the same endsequent, in which no
cuts occur [Gentzen 35]. Prawitz's Normal Form theorems assert an
equivalent result but for natural deduction calculus [Prawitz 71]. Proof-
theoretical issues concerned cut-elimination and normalization theorems in
LETI will be now discussed.

Cut elimination in LEI, established in [Martins & Pequeno 94], was
proved with a restriction: some proofs where R,? is applied aiming the
propagation of ? along — to simulate ?-Modus Ponens (a?, a—p/B7?).
In fact, appealing to history, Gentzen transformation of his Natural
Deduction calculi NJ and NK, for intuitionistic and classical logics
respectively, to his correspondent Logistic Sequent Calculi LJ and LK had
requested the use of cut rule to effectively translate elimination rules to left
ones [Ungar 92]. It will enforce our argument below in favour of cut
maintenance on such proofs. To illustrate this, consider, as a typical
example, the following proof:

ot a

=

F
atavf Bravp
l—aﬁy(txvﬁ) a?l-a?(avﬁ)?k(avﬁ)? »,B—-)(avﬁ) ﬁ?kﬁ?(avﬂ)?k(avﬁ)?
I-az?—)(avﬁ)? a?,a?—)(avﬂ)?k—(avﬁ)? Fﬁ?—)(avﬂ)?B?,ﬂf’a(avﬁ)?}—(avﬁ)?
a?}—(avﬂ)? ,B?F(avﬁ?)
a?vﬂ?r(avﬁ)?. (avﬂ)?
o?v B2 (av,ﬁ)?
Fanvp?o(avp)r

™




254 MARTINS & PEQUENO

If we translate this example in a natural deduction style we get (vide in
[Martins & Pequeno 94] the straightforward derivation of LEI natural
deduction rules from LEI sequent ones):

1. [a?vB?]

2. [er?]

3, []

4. avf

% a—(avp 1-(3, 4)
6. a?-(avp)?  L2(5)

7. avp)? E—(2, 6)
8. ﬁ?][

9. B]

10. avp

11, B—(avp)

12. a?—(avp)?

13. (avp)?

14. ovp)?

15. a?vB?—>(avp)?

In this translation, note that we do not have a characterization of a re-
dundant inference. In fact, in step 5, for instance, we have introduced an
implication that was subsequently eliminated, but only in step 7. We have
an intermediate step (the application of I,? or rule R,?) which cannot be
permuted in order to explicit this candidate to redundancy. This proof is
indeed in normal form: the analytical part corresponds to v elimination —
steps 1 to 14 — while the synthetical part is the — introduction — step 15
— and the minimum part is the conclusion of the analytical part and the
premise of the synthetical one, i.e. step 14. No reduction steps (ﬁ, n & )
can be applied in order to get rid off redundances. In fact, Normal Form
theorem was established in LE] [Martins & Pequeno 94] as in classical
logic just adding new B and 1 reductions to deal with question mark rules.
Nevertheless, no additional { reductions were necessary.

Backing to the correspondent sequent calculus proof, we can easily see
that rule R,? really disallow the characterization of a redundant cut:
between the elimination of — through the cut rule and the introduction of
— through R — rule, we have an application of R,?. Appealing to the
rewriting process behind cut elimination, there is no way to be free of such
intermediate rule by permuting cut upward, since this rule cannot be broken
through the deduction theorem represented by R —. In fact, R— is also
restricted to cases analogous to the ones related to quantifiers where either
the discharged premise « is ?-closed or rules R,? and R~ are not applied
after the first time o appears as a premise. It is a consequence of
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interpreting ? as a sort of existential quantification of hidden variables over
evidences. Hence, if the discharged premise o is not under the scope of ?
(o is not ?-closed), the application of R,? and R~ to @ will not hold
constant such ?-quantified hidden variables.

To end this section, we shall show that the main desirable consequences
of cut-elimination will be kept even though we have maintained some
special occurrences of cuts in proofs. Such cut-proofs can be framed in the
following pattern:

Ita—=B A T,ta? A, T, B2 LA,
MFa?—B2, A T, Ty, a?> B2 A, A,
T, T, I,FA, A, A,

The desirable outcomes of cut-elimination are:

1. Consistency of this calculus: even if I'; and A, were empty on the
above proof, we would never prove the empty sequent  since it will
always exist at least yel,UA,andSel;UA; st.y F &
orky, & ory, 6+ where ¥, & come from the application of opera-
tional rules to identity axioms upper to I, F @? A, and
Iy, B? | A, respectively.

2. Subformula Property: observe the following example:

ata BrB
cAfta arA_,BF,G
F‘((ZAﬂ)—)Q a?r‘a?(a/\ﬁ)?}-(a/\ﬁ)? k(amﬁ)—),ﬁ BPFﬂ?(aAﬁ)?r(aAﬁ)?
}-(a/\ﬁ)?—»a? (azxﬂ)?—»a?,(a/\ﬁ)?}-a? F(azxﬁ}?—»ﬁ? (an,ﬁ)?—)ﬁ.",(a/\ﬁ)?}—ﬁ?
(anB)rrar (anp?)7+ g2
(a/\,ﬁ)?. (a/\,ﬂ)?l- alAfp?
(anp)?r a?ap?
F(anB)? o arnp?

In this first example we have two occurrences of cut rule. Consider, for
instance, the one where the cuted formula is (@A f3)? — 7. Note that
such formula is the implicative form of the formulas which occur in the
sequent conclusion (i.e., (@ AB)? F B?) of this rule.
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] oa?to? BPEB?
BFB anfla (anp)?r(anp)?(anp)?e(anp)? ar, prrarap?
aAfBtp t—{a/\ﬁ)—ux (a{\,ﬁ}?—)a?, (anﬁ]?—),ﬁ?, (a/\,ﬂ)?.(az\,ﬂ}?l-a?z\ﬂ?
Faap)=p +(anB)?oar (anB)?oar (anp)?op2 (anp)?rarap?
Fanp)?— B2 (anp)?>B7 (@anB)rrarap?

(anB)? v arap?
3 (a;xﬁ)?—»cz?n,ﬁ?

This second example has the same endsequent but the proof tree is
somehow different. Now, the same cuted formula (o A 8)? — B? is not the
implicative form of (axAfB)? Fa?AB?, the cut sequent conclusion.
However, the consequent of (A f)? — 8?7, i.e. 7, can be obtained by
application of RA over (@A f)? F a?A 7 before applying cut. Actually,
it is what happens in the first proof. Hence, whenever the cuted formula is
not the implicative form of formulas in the cut sequent conclusion, you can
rewrite the proof applying the rewriting steps of cut-elimination [Martins &
Pequeno 94] in order to accomplish this constraint.

The last example is the following, where we consider as hypothesis
ceaand B B2

a’?Fa?

a’Ap?ta? x’Fa?

Fazap?)osa? (a2ap?)rr{a?aB?)?  a??7ra?

Fazap?)r s arr (arap?)?r > a2 (a?ap?)?t a? 12
(a7ap?)rrar (a2nB?)7v B2
(a?aB?)2, (a?aB?)?7r a?ap?
(@?2aB?) rarapn
(az\ﬁ}?ﬂzf\ﬁ
i—(anﬁ)?—}(a/\ﬁ)

1. using replacement theorem (see theorem 2.3), and the hypothesis
‘aea?and ‘o f?
2. the same proof of (0t?Af?)?F a?

In this example, the cuted formula is (a?AB?)? — ¢?? and the cut se-
quent conclusion is (@?A87)?F a?. Although the former is not the im-
plicative form of the latter, you can apply the replacement theorem to
satisfy this restriction since we have a?? < a? (see theorem 2.4).
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To sum up, subformula property is somehow modified to the following:
‘all formulas that appear in proofs where the only remaining possible cuts
are those pointed above are either subformulas (or rewriting formulas) of
those which occur in the endsequent or are implicative forms of
subformulas (or rewriting formulas) of them. Rewriting formulas are those
obtained through distribution rules or by the replacement theorem applied
to strong equivalences’.

3. Inversion Principle: R,? is an anomalous rule in the sense that it does
not have a left (operational) rule to confront with. Indeed, from
a?— B, it does not make sense to eliminate ? in order to get @ — f3.
Therefore, we really do not want an elimination rule to deal with such
case. Thus, the inversion principle, as stated in classical logic, holds to
all LEI logical constants but to ?. It does not carry out any dangerous
results. The conservative property, the main related result of the
inversion principle, still remains by the use of ?-RC (see below) which
could be thought as the ‘symmetrical’ rule of R,?.

4. Conservative Property: prima facie, it would seem that ? is not con-
servative since we have an ?-rule ( R,?) without any symmetrical one.
In fact, we do not have an operational ?-rule ‘to destroy’ the effect of
introducing ? over —, i.e.,

I a—-prHA
I, a?—> f?FA

L,?

In truth, this rule will allow to prove (@?— 7?)— (@ — B), and it does
not make sense. Nevertheless, ? is still a conservative operator but
characterized somehow differently from Gentzen operators. In Gentzen
(see [Gentzen 35] and [Prawitz 71]), each logical constant is defined
locally by introduction and elimination rules in his natural deduction cal-
culi NJ and NK or by right and left operational rules in his logistic sequent
calculi LJ and LK. The introduction of any logical symbol does not
presume a premise with a fixed pattern as the implicative formula o —
in the case of R,? and a?— 7 in the case of L,? Therefore, all LEI
logical symbols, with the exception of ?, obey Gentzen style.

It urges the necessity of characterizing ? properly. We have done it not
only by operational ?-rules but also by 7-RC and ?-Cut rule. ?-RC and ?-
Cut reflect a sort of structural property, an ordering of credibility or plau-
sibility, associated to ?-formulas. Thus, & — 8 may be considered as
stronger than &? — 7 in 7-RC and « stronger than «? in ?-Cut. Ergo,
the definition of the new logical constant ? is characterized not only by
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(question mark) operational rules as in standard Gentzen logical operators,
but also by the structural rule ?-RC and the identity rule ?-Cut.

To see why it is still a conservative definition, we have only to analyse if
the case where cut is preserved in the proof, i.e., when we use R, ?, still
keep the conservative property of ?, i.e., all we have introduced by means
of application of R,? can be discharged by another ?-rule.

Consider this rule:

Il'roe—p, A
Il'ra?—>p? A

R2|

As we have already said, it has not and could not have an operational
symmetrical left rule ‘to cancel’ the introduction of ? on the right hand side
of . This cancellation will be done through the structural rule ?-RC.

'roe—->p A
'rae?—>pB? A ?-RC
l're—p, A

Thus, the operator introduced by R,? can be eliminated by ?-RC. We
restore on the third line the same formula on the first line which was object
of R,? application.

4. Conclusions and Further Works

The Logic of Epistemic Inconsistency is here presented through sequent
calculus rules. It is a remarkable example of a formal system where a
normal form theorem can be proved but not unrestricted cut elimination. It
has been shown that a special cut-proof pattern cannot be eliminated in
proofs where R,? is applied. In such circumstances, there is no way of
rewriting the proof in order to become free off cut application since R, ?
cannot be ‘split’ into R— (the deduction theorem) due to existential in-
terpretation of ? over evidences. Fortunately, the preservation of this cut-
proof does not damage the desirable outcomes of cut-elimination: 1) the
calculus consistency has still been maintained; 2) subformula property,
although slightly modified: the cuted remaining formula has an im-
plicational form of endsequent subformulas. Thus, formulas in a (quasi)
cut-free proof is still predictable; 3) the inversion principle has not been
attested to 7 since a symmetrical left operational rule to R, ? does not make
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sense, but 4) the conservativeness of all logical constants has been assured,
even for ? where ?-RC plays the role of symmetrical rule to R, ?

As future work, we aim to extend sequent calculus treatment to those
dynamic aspects of incomplete knowledge reasoning covered by IDL. The
idea is to get an uniform formalization encompassing all the aspects of this
kind of reasoning.
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