Logique & Analyse 141-142 (1993), 135-148

AN ALGEBRAIC ANALYSIS OF THE LOGICAL FORM OF
PROPOSITIONS

Daniel VANDERVEKEN and Marek NOWAK

The main purpose of this paper is to use algebraic methods in order to
formulate a new simple logic of propositions which is adequate for the pur-
poses of universal grammar. Recently many logicians and linguists have
used and improved the formalisms of modern logic to interpret directly or
after translation important fragments of ordinary language. Thus Cresswell
[CRE75], Kaplan [KAP70], Lewis [LEW72], Montague [MON74], Prior
[PRI67] and Vanderveken [VAN90-1] have formulated philosophical log-
ics of sense, denotation, time, modality or force which are contributions to
the foundations of the formal semantics of English. Like Montague and
others, we think that there are no important theoretical differences between
natural and formal languages.

However, we do not believe that the primary units of meaning in the use
and comprehension are isolated propositions with truth conditions. On the
contrary, following Austin [AUS62], Searle [SEA69] and other philoso-
phers of language, we think that the meanings of utterances are complete
speech acts of the type called illocutionary acts like assertions, requests,
and promises that speakers intend to perform and communicate in speaking.
Most elementary illocutionary acts are of the form F(P): they consist of a
force F with a propositional content P. Thus as Searle and Vanderveken
[SEAB5] have argued repeatedly, every elementary sentence (whenever its
logical form is fully analysed) contains an illocutionary force marker in
addition to a clause expressing a proposition. From a linguistic point of
view, the most common syntactic features of force markers are the verbal
mood, the sentencial type and other features such as the intonation contour
(when the utterance is oral) or the punctuation signs (when it is written).
Consequently, if we want to interpret adequately all syntactic types of sen-
tences (and not only declarative sentences) and to formalize practical as
well as theoretical inferences in formal semantics, it is better to take into
account the following fact: any proposition P that is the sense of an
elementary sentence in the context of a model must also be the possible
content of an illocutionary act. Indeed it is part of the meaning of that
sentence that it can be used literally to perform a speech act of form F(P) in
that context.
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On this view, a natural logic of propositions that is adequate for formal
semantics must take into account their double nature. On one hand, propo-
sitions are senses of sentences with truth values. On the other hand, they are
also the contents of conceptual thoughts such as speech acts and attitudes.
In particular, it is necessary to formulate a logic of propositions that is
compatible with the general principle of their expressibility in language
use. According to that principle, any proposition that is the sense of a sen-
tence in a context of utterance is always expressible in the performance of
an illocutionary act. Now it is clear that the human beings who use and un-
derstand natural languages have restricted cognitive abilities. They can only
utter finitely long sentences and make a finite number of acts of reference
and of predication in each context. Consequently, there are cognitive
constraints on an adequate analysis of the logical form of propositions. For
example, a proposition must have a finite number of propositional con-
stituents. Otherwise, we could not apprehend it in an act of thought. Most
propositional logics until now have unfortunately neglected such cognitive
criteria of adequacy so that formal semantic theories of natural languages
often do not account for the fact that these languages are human.

A simple natural logic of propositions satisfying these requirements has
already been formulated in [VAN91] and [VAND94] using axiomatic as
well as model-theoretical methods. That new logic of propositions is justi-
fied by a large philosophical discussion on the foundations and formal on-
tology of semantics.

In this paper, we will use algebraic methods to describe the logical form
of propositions advocated in this new logic. In our approach, as in
Cresswell's hyperintensional logic and Parry's logic of analytic implication
[PAR33], a proposition conceived as the sense of a sentence has a structure
of constituents in addition to truth conditions. From a logical point of view,
each proposition is an ordered pair, whose first element, called its content,
is a finite set of so-called atomic propositions that represents how the
propositional constituents are related by predication. The second element of
a proposition represents how the truth conditions of that proposition are de-
termined from the truth possibilities of its atomic propositions. It is the set
of all truth value assignments to atomic propositions that make that propo-
sition true.

Our new logic of propositions differs from other non classical logics of
propositions under two aspects:

First, the content of a proposition is not like in Parry's analysis just the set
of all senses that are propositional constituents. It is a finite set of atomic
propositions that also represents how the propositional constituents are re-
lated by predication in the proposition. Thus, for example, we distinguish
the proposition that John loves or does not love Mary and the proposition
that Mary loves or does not love John, even if these two propositions have
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the same propositional constituents and the same truth values in the same
possible worlds.

Second, unlike other non classical logics that assign to propositions a
content in addition to the truth conditions, our propositional logic does not
only consider extensionally the truth conditions which are in modal logic
simple functions from possible worlds (or contexts) to truth values. On the
contrary, we consider also the nature of the function by the application of
which we determine the truth conditions of a proposition from the list of
the truth possibilities of its atomic propositions. Thus we will distinguish
propositions with different cognitive values like the proposition that arith-
metic is complete and the proposition that arithmetic is both complete and
incomplete, while these strictly equivalent propositions with the same con-
tent are identified in Parry's logic. Moreover, we also identify propositions
with the same cognitive value like the proposition that the morning star is
the evening star and the proposition that the evening star is the morning
star, even if the corresponding hyperintensions of the two sentences are dif-
ferent contents of thought in Cresswell's logic.

The set of propositions that are expressible in the formal language of our
logic obeys the laws of a model-theoretic algebra that is similar to the syn-
tactic algebra of the language. One advantage of that algebraic approach is
to enlarge the notion of "strong implication" and to formulate a new defini-
tion of the relation of logical consequence (in the tradition of Tarski
[TAR36]) on the algebra of propositions. The second advantage of that al-
gebraic approach is to conceive the notion of proposition in a new way.

1. The algebra of propositions.

Let U be any non-empty set of individual objects and I be any non-empty
set of indices, which represent possible worlds (or possible contexts of ut-
terances). In our logic, there are two different types of propositional con-
stituents: first the individual concepts that serve to refer to individual ob-
jects and second the attributes (properties and relarwns) that serve to
predicate. Following Carnap, we will use the set U’ of all functions §:
I — U in order to represent the set of individual concepts, and for any n

= 1,2,..., the set (@(U 22 of all functions R _: I - @(U ) in order to re-
present the set of n-ary attributes or relations in intension.

Each atomic proposition &4 has a finite positive number of propositional
constituents namely: one attribute &, of degree n = I and a number
k (1< k <n) of individual concepts @'1, , @k In an atomic proposition the
attribute R, is predicated of a n-ary sequence of the objects that fall under
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these individual concepts and that predication determines the truth condi-
tions of that atomic proposition. For example, if the order of predication is
such that the attribute &, is predicated of the sequence of individuals that
fall under the concepts @j,...., &y. in the atomic proposition & then o is
true in a world i iff <@y(i),..., Ey(i)> € R (i).

From a logical point of view, two atomic propositions are identical in our
logic iff they have the same propositional constituents and the predications
that are made with their constituents are such that they are true in the same
possible worlds (or contexts).

Thus we can define as follows the logical type of the so-called atomic
propositions. From a logical point of view an atomic proposition & is an
ordered pair: its first element is a set of intensions containing a single at-
tribute of degree n, n 2 1, and a number &, (I < k < n) of individual con-
cepts; the second element of an atomic proposition & is a subset of the set
1, that contains all possible worlds i € I where that atomic proposition is
true given the predication that is made with its constituents.

Thus, by definition, the set U, of all atomic propositions is

[<{2,6,..6,}L{ie:<E\()..6E,0)>R,()}>

2, e(#(v")),6,... €, U n=12,..}.

Now we can define inductively the set of propositions as the smallest
subset Up of the set @(Ua)x QD(@(UG)) satisfying the following condi-
tions:

i < {&i’}.[{&f}) >: feU,}cU,, where forany W U,
W) = {We2(U,): wew]},

(i) foranyPeU, <id\(P)P(U,) - idy(P)>€U,,

(iii) forany P, QeU, <id(P)vid\(Q), id,(P)Nid,(Q)>eU,,
where for any <4, B> € P(U,)x P(P(U,)), id /(<A B>)=A4,

id,(<A,B>)=B.

Now, consider an algebra U_=(U_, o, A, Vv, —)) generated by the set
of elementary propositions {(«f): €U, }, ()= <{«}, [{=£})>,
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where forany P, QeU,:

—P= <id(P), ®(U,) - id,(P)>,

PAQ= <id(P)uid(Q) id,(P)nid,(Q)>,

PvQ= —(=PA—Q)= <id(P)uid,(Q), id,(P)uid,(Q)>,
P—Q=-PvQ= <id(P)uid(Q) (P(U,)-id)(P))uid,(Q)>,

This algebra U » Will be called hereafter the algebra of propositions.

It is clear that any element P of that algebra of propositions is an ordered
pair, whose first element is a finite non-empty subset of the set of atomic
propositions Uy ; it is the content of that proposition P. On the other hand,
the second element of the pair is a subset of P(U,); it serves to determine
the truth conditions of the proposition P.

2. Language and its interpretations.

As we said earlier, a proposition should be considered simultaneously as
the content of possible human thoughts and as the sense of possible sen-
tences of natural languages - which are sentences which could be used lit-
erally to express these thoughts. In section 1, we have defined the formal
concept of a proposition in a language independent way. Now we will also
describe propositions as the senses of sentences. For that purpose, we will
present a special formal object-language which contains formulas whose
senses belong to the set U, of propositions. This formal language is a
simple first-order language - without quantifiers, individual variables and
functional symbols.

Let Const and Pred be respectively a set of individual constants and a set
of predicate symbols. Our formal language is the algebra
L=(L, —, A, v, —) freely generated by the set At of free generators of
the form: r,(c,,...,c,) , where r, is n-ary predicate symbol and Lpmens
are individual constants, n = 1,2, ... .

By the interpreting function of the language L we understand an assign-
ment

n

a

s: Const U Pred U At ->U’uu{(@(v"))'.-n=1,2...}uu

such that for any ¢, ¢;, ..., ¢, € Const, r, € Pred:
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s(c)eU’, s(r,)e (?P(U" ))l, s(rn(c], wonns By )) =
=< {s(rn). s(e) oo s(cn)}, {i el: <s(c)i) ..., s(c,)i)>es(r, )(t)} >,
Given the following homomorphism h:L—U - forany A € At,
h,(A) = (s(A)), we can say that for any e € L, the proposition k() is the
sense of sentence o with respect to s.

3. Analysis of the content and of the truth conditions of a proposition.

In order to characterize the content of a proposition let us first make the
following obvious definition of the occurrence of an atomic proposition in
a proposition:

For any atomic proposition %&:

(1) B occurs in (A) iff B=oA,

(2) B occurs in —P iff 9B occurs in P,

(3) B occurs in PAQ iff B occurs in P or B occurs in Q.

Forany PeU,, id,(P) is the set of all atomic propositions occurring in P.
Notice that the content of any proposition is always a finite non-empty
subset of U,.

In order to characterize the truth conditions let us consider each proposition
as a sense of sentences.

For any interpreting function s consider the function g, : @(Ua) - {01},
where {0,1} is the set of truth-values, with the following property: for any
WeP(U,) g,(W):L— {0,1} is the classically admissible valuation on L
such that forany A€ At, g (W)(A)= 1iff s(A)eW.

Lemma 3.1. For any interpreting function s, for any e Land W U,:
W eid,(h()) iff g, (W)(@) =1

Proof. (By induction on the length of ) Let s be any fixed interpreting
function of Land W U,.

1) Let & € At. Then h () =(s()) and consequently
W eid, (h,(e)) iff W e[{s(ex)}) iff s(o) € W iff g, (W)(ex) = 1.
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2) Let a be of the form —f3, where 3 € L is such that

(*) W e id,(h,(B)) iff g,(W)(B) =1 Then W eid, (h,(—B))iff

W eid, (—h,(B))iff W e id, (h,(B)) iff g, (W)(B)=0 iff g, (W)(=B) =
1 by (*) and the fact that g, (W) is classically admissible.

3) Let o be of the form B A ¥, where (*) is assumed for 8

and for y. Then W €id,(h,(B A 7)) iff W e id, (h,(B) A k(7))

it W < id, (1, (8)) id, (1, (7)) iff ,(W)(B) = g, (W)(1) =1
iff g,(W)(BA7)=1 O

Lemma 3.1 enables to give a simple characterization of the set id,(P) for
any proposition P. Indeed, for a given P, one can choose the formula o
and the interpreting function s such that P=h (). So if for instance we
consider the proposition P of the form: (—.(.524 )/\ (£, )) —(s4,), then we
should take into account the formula (-4, A )—) A, A, A, € Az, and the
interpreting function s such that s(A,.f) =4, i=1, 2. Then id,(P) is the
family of all W U, such that the functions g (W) associated with W
forms the set of all classically admissible valuations on L which take the
value 1 on the formula (—A, A 4,) - A,

4. Some logical properties of a proposition.

First of all, we should define when a proposition P is true or false. If we
consider an elementary proposition of the form:

(<{#..€, .. 6,} {iel:<C\(i) ..., €,()>en,()}>)
we can obviously say that it is true in a context i e [ iff

<G,(i), ... G, (i)>eR, (i)

Given the nature of elementary propositions and of truth functions, we
obtain the following general truth definition for complete propositions:

(i) forany S eU,, (o) istrueiniiffieid,(),
(ii) for any PeU, —Pistruein i iff P is false in ¢,
(iii) for any P, Qe U,, PAQistrue in i iff P and Q are true in i.

However we should connect the fact that a proposition is true or false with
its truth conditions. The following Lemma establishes such a connection:
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Lemma 4.1. Let for any iel, U, be{sdeU,:ieid,()} Then for any
proposition P, P is true in i € I iff U’ eid,(P).

Proof. Straightforward by induction on the form of a proposition P. a

We can now define as follows other important properties of propositions:

A proposition P is a tautology iff id,(P) = P(U,),
P is a contradiction iff id,(P) = &,

P is necessary iff foreach i€ I, Pis truein i,

P is impossible iff for each i € I, P is false in i.

According to Lemma 4.1, it is easily seen that any tautology is a neces-
sary proposition, but that the converse is not true. And similarly, any con-
tradiction is an impossible proposition, although not conversely. Such dis-
tinctions are important from a philosophical point of view, because there
are many necessarily true propositions which unlike tautologies are neither
true a priori nor known to be true by virtue of linguistic competence.

5. Two consequence relations on the set of propositions

We will now define two relations of logical consequence on the set of
propositions: the first relation, that is called the "strict" or "usual” conse-
quence relation is expressed by the modal connective of strict implication
(hence the term "strict"). Although it can be defined easily in logic, it has
no systematic psychological reality, in the sense that human beings are not
able to infer all strict consequences of a proposition whenever they reason
from the hypothesis of the truth of that proposition. On the contrary, the
second consequence relation, that we will call the "strong" consequence
relation, has a psychological reality and can be taken as the formal ground
of many human reasonings with simple propositions.

Let 'c U, and PeU, We will say that T strictly entails P (T <P in
symbols) iff forany i€/, P is true ini whenever each Q€T , is true in i.
In that way, we have for instance the law of introduction of disjunction:
{P}€ PvQ, which is often not applied in our practical reasoning.
The strong consequence relation is closely related to the algebraic struc-

ture of the set of propositions. So first let us mention some properties of the
algebra U .
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Lemma 5.1. For any equality o in the signature (—,A,v,—), ¢ is an
equality in the algebra U, iff o is a Boolean equality and the set of vari-
ables occurring in the left term of o is identical with the set of variables oc-
curring in the right term.

Proof. Assume that we have the following variables: x,, x,, ...,
and let ¢ be of the form: f(x,-l,..., x,-")=g(le, o X ) where x, , ..., x;

Iy

Xjsear X )are all the different variables occurring in the term

f( L )(g(xj, xim))
(=): Assume that o holds in the algebra U U, . First suppose that
i'xrl,. }:{x } Let x, E{x } for some ke {L,..,n}

otlce that accorcimg to fhe assumptlon for any prop0s1t10ns

Py Qves @ if idy (F(P,, .., P,))=id,(8(Q .-» ©,)) then id,

(P,)u...uid,(Pn)=id1(Q1)u...uid1(Qm). Thus, substituting: x; — P
foranyl=1,...,m, x, = Pforany I=1,...,nI#k where P is any pro-
position, and x, — O, where @ is such that id,(Q) Zid, (P), we obtain
that id, (P)uid, (Q) = id,(P), which is impossible. Analogously if
{le, o X } Z {x,.l, o X

In order to show that ¢ must be Boolean equality, notice that for any
propositions P,,..., P,:id ( FP; )) & (1d (P% ,id,(P )) for any
function f of n varlables n the 51gnature (—1,/\ v, —)) where f is set-
theoretical operation corresponding to f. So the equality: f(x;,..., x,)=
g(x,, ..., x,) holdsin U, iff it is Boolean.
(&<): by the last argument of the proof (=). O

Following Lemma 5.1, the equalities:

XAX=X,
XAY=YAX,

xa(yaz)=(xay)az

are satisfied in U,. So we can consider the reduct (U i A) of U, as a
meet-semilattice.

We will say that forany =I'c U, PeU, »» I strongly entails P (T P
in symbols) iff P €[I"), where [I'), is the filter generated in the semilattice
(U /\) by the set I". We also put {PE U,: 2w P}=0@.
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The following obvious lemma explains the strong consequence relation
in terms of content and of truth conditions:

Lemma 5.2. For any Qi;tl"c;Up,‘PeUP:
T P iff there exists {P,, ..., P,} <T such that

id,(P)cid,(P,)u...uid,(P,) and
id,(P,)N...Nid,(P,) cid,(P).

Proof. Notice that forany @#I'cU,, PeU,, Pe[T)iff P A...AP <P
for some P,, ..., P, €T, where < is tﬁe partlal ordering of the scrm}attlce
U A whlch is defined as follows: for any P,QeU,: P<Qiff PAQ=

zﬁ’ id (Q)cid,(P)&id,(P) c id,(Q). O

One can show using Lemmas 4.1 and 5.2 that forany @#I'cU , PelU ,
'+ P implies that I" €P. But the converse does not holds; for instance in
general {P}+ Pv Q does not hold.

6. A representation of propositions.

Now we are going to formulate a different algebraic approach to the con-
cept of proposition equivalential to the one that has just been presented. A
proposition will be conceived less intuitively but its structure will turn out
to be more simple. We will be able to identify a proposition with an ordered
pair consisting of two finite sets.

Let us introduce for any non-empty and finite set W c U, the following
equivalence relation on the set P(U, ¥

forany Vand V'e P(U,), V=V'(W)iff WAV=WAnV"
We will need the following lemma about propositions:

Lemma 6.1. For any proposition P and any W €id,(P):

[W)i4,(p) S1d,(P), where for any finite @# V c U, and any W c U,,, [W],
={wcu,w=w'(V)}

Proof. Straightforward by induction on the length of the proposition P. [

We will use Lemma 6.1 in the proof of the following:

Lemma 6.2. For any finite @# W c U, and any ‘W ¢ P(W):
<W,U {[W1],: WeW}>eU,
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Proof. Let W={s,,..., &,} U, and W={W,,.., W,}, where
0<k<2", be any family of subsets of the set W.
1) Suppose that k >0, so that W # &. Foranyj=1,..., k let W;=

{.s&'f, o) .ﬂ;(j)}, W-W, ={“dff(j)+1’ .91{1} where f(j)€{0,1,..., n}

(in case f(j)=0, W, =@ and similarly when f(j)=n, W~ W, = )

We show that: <{s,,..., o, },[W,], U...0[W,] >=

((.91})/\ A(.sai}(l))/\—.(.ﬁ}(l)ﬂ)/\-... Aﬁ(&fl ))v

(G LN A T N PR )|

Let the last proposition be P, . It is obvious that

id (1) A (58 ) A (8 ) 5o A(t)) = ., ), o amy
J=1,..., k. This means that idl(PO) = {&f,, . } Next notice that

W, e idz((&f{ JAc At ) At ) A A ))

Consequently, foranyj=1,..., k, W, €id,(P,). Solet Ve[W,] u...u
[Wt]w. Then W; = V(W) for some j. Hence, by the Lemma 6.1: V e id, (P, )
And conversely, if V e id,(P,), then V eid, ((.99'{)/\ A(&f’}m)/\ —:(.Qf‘}u)_'_l)
A-.. A=t} )) for some j. And this implies that W; NV = W, and (W - W)
AV=B.So WV =(W,u(W-W,))nV=(W,nV)o((W-w,) V)=
W,=WnW, thatis Ve[W,| c[W,],u...u[W,],.

Finally: [W,], U...u[W,] =id,(P,)

2) Suppose that k = 0, so that W =@. It is obvious that in case:
<{sty, .. 4, D>=((st,) A ~( ) A (y) A (s Ao A (A, ) O

Now, consider the following algebra Y, similar to U 5

v,= (Vp, - AV, —~)), where V, = {< W, W>WeP,(U,)Wc @(W)},
P »(U,) is the family of all non — empty and finite subsets of U, and for
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any <W,, W,> <W,, W,>eV,:

—<W, W, >=<W,, P(W,)-W,> <W,, W, >A<W,, W,>=
=<W,UW,, {V\UV,: Ve W, V,eW,, V,AW,=V,"W,}>,
<W, W >SV<W, W, >==(=<W, W >r-<W,, W, >),
<SW, W, >o<W,, W,>==<W, W, >v<W,, W, >

Theorem 6.3. The algebras U, and V , are isomorphic.

Proof. We show that the function g:U, >V, defined as follows:
forany PeU,, g(P)=<id,(P), {Wnid,(P)We i(i2 (P)}>,is the required
isomorphism.

Following Lemma 6.2, we can consider the function f:V, — U, defined
as follows: forany <W, W>eV,,

fl<W, W>)=<W,U{[W],:WeW}>=<W{VoU,;:VnWeW}>.
Then forany <W, W>eV,, g(f(<W, W>))=<W,{VAW:Ve
{vieU,:vinwe ‘W}} >=<W, W > Moreover, forany PeU,, f(g(P))=
<id, (PY (WL, W'e{W nid,(P): W e idy(P)}}>=<id, (P),
U{[W]idl( py We idz(P)} >. According to Lemma 6.1, U{[W]id, )
Weid,(P)}cid,(P), the converse inclusion is obvious, so f(g(P))= P.
Thus, the function g is 1-1 and onto. In order to show that g preserves the

operation —, notice that:

(1) 2(id,(P))={W Nid,(P): W eid,(P)} U{W nid,(P): W e id,(P)},
and .

(2) {Wnid,(P): W eid,(P)} " {Wid,(P): W ¢ id,(P)} =@, forany *
PelU,.

(One can prove (2) by a reduction ad absurdum. Suppose that it is false.
Then there exist W, € id,(P) and W, e id,(P) such that W, = W, (id, (P)).
So, by Lemma 6.1, we obtain a contradiction).

In that way, the following law holds for any PeU,:

g(=P)=<id,(=P), {W nid,(—P): W eid,(—P)} >=<id,(P),
{Wnid,(P): W gid,(P)}>=<id,(P), #(id,(P)) -

{Wnid,(P): W eid,(P)}>=—g(P), due to (1) and (2).

Moreover, for any P, Qe U,, we have:



AN ALGEBRAIC ANALYSIS OF THE LOGICAL FORM OF PROPOSITIONS 147

g(PAQ)=<id (PAQ) {Wnid (PAQ):Weid,(PAQ)}>=<id,(P)U
id, (Q), {(W nid,(P)) u(W id, (Q)): W eid,(P)&W eid,(Q)}>.

But obviously the following inclusion holds:

{(Wnid,(P)U(Wid, (Q)): W eid,(P)&W eid, (Q)} =

{v, uV,:V, e{Wnid,(P): W eid,(P)}&V, e {W nid,(Q):

W eid,(Q)}&V, nid,(Q) =V, nid,(P)}.

And in order to show that the converse inclusion holds, notice that for any
W, €id,(P), W, €id, (Q):

(3) W, nid, (P) = ((W, nid, (P)) U (W, Nid,(Q))) Nid, (P), and

(4) W, nid, (Q) =((W, nid, (P))u(W, nid, (Q))) Nid,(Q), whenever

(W, nid, (P)) nid, (@) = (W, nid, (@) nid, (P).

Further put W = (W, Nnid, (P))u(W, Nid,(Q)). According to Lemma 6.1,
from (3) and (4) we obtain that W € id, (P) and W € id,(Q). Thus g(P A Q)
=<id,(P)uid,(Q), {V, U V,:V, {Wnid,(P): W eid,(P)}&V, €
{Wnid,(Q) W eid,(Q)}&V, nid,(Q) =V, Nid, (P)} >=<id,(P),
{Wnid,(P): W eid,(P)} > A <id,(Q), {Wnid,(Q): Weid,(Q)}>=
8(P)~ g(Q). O

Obviously we can treat a proposition as an ordered pair of the form
<W, W >. One can express all the properties of propositions and of
consequence relations in the new way. For instance, < W, #'> is a tauto-
logical (contradictory) proposition iff W =P(W)(W = &), for any
<W, W, > <W,, W, >V, {<W, W >he<W, W, >iff W, c W, &
{VAaw,:VeWw,}cW, etc.

These logical investigations on propositions have been further devel-
opped in order to analyse quantification and modalities. They will be pub-
lished in Vanderveken's next book on The logic of propositions.

Daniel VANDERVEKEN -
Université du Québec A Trois-Rivieres
Marek NOWAK
University of Lodz
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