Logique & Analyse 137-138 (1992), 101-137

SOME STRUCTURAL AND LOGICAL ASPECTS
OF THE NOTION OF SUPERVENIENCE

Lloyd HUMBERSTONE

Abstract

The sophisticated philosophical literature on supervenience stands in
need of supplementation by a treatment of more fundamental questions
about what features this notion possesses solely in virtue of the form of
the definition it is standardly given. We provide a discussion of these
features without getting involved in the merits of particular superve-
nience claims advanced and contested in that literature. The discussion
touches on the relation between supervenience and the notion of a
closure operation (§§2,3); the more ‘logical’ part of the discussion—in
the sense that we consider formal languages and valuations (truth-value
assignments)—takes us into the relationship between what we call
inference-determined and supervenience- determined consequence
relations (§§4,5). An ‘edited’ reading of the paper is available for those
wishing to ignore the Appendix to §1, and the various passages
explicitly marked ‘Digression’.

1. Introduction

A common way of introducing the idea of supervenience is as follows. One
class P of properties is supervenient on another class Q just in case it is
not possible for objects to be alike in respect of all the properties in Q
without also being alike in respect of all the properties in P. In calling
objects x and y ‘alike’ in respect of a property what is meant is that either
x and y both have the property or else x and y both lack the property. An
alternative way of putting this is to say that x and y agree on (or agree with
respect to) the property concerned. Another—and this time dangerously
misleading—alternative terminology which you may sometimes see (and
often hear) would say that x and y share the property in question. The
reason that this is misleading is that we ordinarily understand talk of x and
y’s sharing a property to mean that x and y both possess (‘have’) the
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property, whereas x and y also count as agreeing, no less equally, in
respect of the properties that they both lack.

Now the above way of introducing the terminology of supervenience,
although not suggesting that the supervenience relation is symmetric, still
exhibits a certain symmetry between the two classes of properties—P, the
supervenient class, and Q, the ‘subvenient’ class, in that it takes both as
inhabiting the same set-theoretic level: both are classes of properties.(*) For
example, when we instantiate the general definition taking P and Q to
comprise, respectively, the moral properties and the non-moral properties
(supposing for the sake of exposition that we have some idea of what
distinction between properties is being alluded to here), then the familiar
supervenience claim of ethics is the claim that it is not possible for things
alike in respect of their non-moral properties to differ in respect of their
moral properties: no moral difference without a non-moral difference. This
makes it sound as though the supervenient class (here, the class of moral
properties) and the subvenient class (the class of non-moral properties) are
on an equal footing as relata of the supervenience relation. And though
there is nothing wrong with our general definition, there is something
wrong with this impression it may convey. A supervenience claim of the
above form involves a hidden asymmetry between the supervenient and the
subvenient: for we can see properties individually as supervenient on
classes of properties, with the supervenience of a class P on a class Q as
the supervenience of each element of P on the class Q, whereas we cannot
see the supervenience of P on Q as the supervenience of P on each
element of the class Q. That is to say, though there is technically nothing
amiss with our opening definition, we could have proceeded by initially
defining the relation of supervenience to hold between a property P and a
class of properties Q, thus:

P is supervenient, on Q just in case it is not possible for objects to be alike

in respect of all the properties in Q without also being alike in respect of
the property P.

The subscript ‘1” has been used to distinguish this relation, which holds

(") R. M. Hare —to whose usage the current popularity of the term ‘supervenient’ is due—
is said to regard the commonly heard ‘subvenient’, for a putative converse, as a barbarism,
preferring ‘subjacent’ in this role (on etymological grounds). We stick with the common
though disfavoured term here, however, in order to reduce terminological novelties.
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between a property and a class of properties, from that introduced in our
opening definition which relates, instead, two classes of properties. The
connexion between supervenience and supervenience, is obvious enough:

P is supervenient on Q iff for each P € P, P is supervenient, on Q (1)

What we have here is a kind of reduction in set-theoretic level (or ‘rank’)
for one of the two relata—namely the first—of the original relation of
supervenience. Accordingly, we will say the relation is reducible in the first
position. (Actually, in a closer examination of these matters in the
Appendix to this section, we will say, to record the ‘for each P’ part of (1),
that the relation is ‘v-reducible’ in the position in question.)
Warning: Various notions going under the name of reducibility in the
literature on supervenience pertain to the idea of reducing—in the sense of
reductionist theses—some (concepts of) properties to others, have nothing
to do with the present structural notion of reducibility. (See Hellman and
Thompson [1975], Tennant [1985], Bacon [1986], Petrie [1987] for the
notion(s) here distinguished from current concerns.)

Not only is supervenience definable in terms of supervenience,, as in (1),
but, conversely, starting with supervenience as defined in our opening

paragraph, we can use (2) to define supervenience, in terms of supervenien-
ce: _

P is supervenient, on Q iff {P} is supervenient on Q. )

There is, by contrast, no similar reducibility in respect of the second
position. This point can be established by applying the general necessary
and sufficient conditions for reducibility in a position, provided in the
Appendix, but for the moment we can make it visible by contrasting the
two positions of the universal quantifiers over properties in the definition
of supervenience. With the aid of a sloppy but convenient notation, we can
write the definiens as (3):

vavy[vQ € Q(Qx < Qy) = VP € P(Px < Py)] &)

(This formulation is sloppy because the variables ‘P’, ‘Q” occupy term
positions in the quantifier prefixes in which they are followed by ‘€°, but
predicate position in “Px’, etc.) Then the point is that we can always move
universal quantifiers on the consequent of a conditional so that they have
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broader scope, as in passing to (3a), from which we move to (3b) by
‘commuting like quantifiers’:

VXVyVP € P [VQ € Q(Qx < Qy) = (Px « Py)] (a)
VP € Pvxvy[vQ € Q(Qx < Qy) = (Px « Py)] (3b)

And (3b) makes clear the availability of the above definition of superve-
nience,: wiping out the initial ‘vP € P’ gives the condition for a property
P to be supervenient, on Q, so the equivalence of (3b) with (3) means that
P is supervenient on Q iff every property in P is supervenient, on Q. But
we cannot similarly move the universal quantifier ‘vQ € Q’ from the
antecedent of (3) so that it has broad scope, since in general Vve(v) = ¥
(with the variable v free only as shown) is not equivalent to ¥v(e(v) = V).
(This corresponds to the difference between ‘if every... then_’ and ‘if any...
then_’.)

A well-known anomaly of classical logic is that, the latter non-
equivalence notwithstanding Vve(v) — , is indeed equivalent to
3v(e(v)>y), which may seem to offer hope of some kind of reducibility
(‘existential’ perhaps, rather than universal: see Appendix) in the second
position. There is a minor hitch here in that we have used 3-restricted
quantifiers and (vv € X.¢(v)) = y is only equivalent to 3v € X(o(V) = V)
with the additional assumption that 3v.v € X. In our case, this amounts to

the assumption that Q is non-empty. Making that assumption, we arrive at
(3o)

vxvyiQ € Q[(Qx < Qy) » VP € P(Px « Py)] Bo)

and here a major hitch arises, since we cannot move the ‘3Q € Q’ out to
the front (unlike quantifiers not commuting) and get the desired existential
reduction, of the form: P is supervenient on Q iff for some property Q in
Q... (the dots being filled by something analogous to supervenience,).
Before taking up, in the following section, the general question of when
a relation (between classes of, e.g., properties) admits of the kind of
reducibility in one position but not another which we have noted the
supervenience relation to possess in its first though not its second position,
we pause to address a worry that may have been raised by our recent talk
of classical logic and the properties it accords to conditionals. The worry
is that perhaps we should not have been involving ourselves with these
material conditionals at all: wouldn’t strict conditionals (in a modal
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predicate logic) have been more appropriate to capture the original idea?
After all, according to that characterization, P supervenes on Q when it
is not possible for objects to be alike in respect of all the properties in Q
without also being alike in respect of all the properties in P. The exact role
of modal notions in characterizing supervenience is a somewhat delicate
topic of considerable logical interest—cf. especially the works by
McFetridge and Bacon cited below—but on which we shall say nothing here
beyond this: we may satisfy ourselves that the modal element has not been
omitted by noting a particular way our official rendering of that

characterization, namely (3), can be interpreted. We repeat (3) here, for
convenience

Vavy[vQ € Q(Qx < Qy) » VP € P(Px « Py)] 3)

The way to interpret (3) so that the required modal force is present even
though explicit modal operators are absent is that urged by David Lewis (in
many places, but see pp.14-117 of Lewis [1986], in which such
formulations of supervenience theses are explicitly discussed): think of the
individual variables (‘x’,‘y’) as ranging over all possible objects, and make
the assumption that no object exists in more than one world. (The latter
assumption allows us to think of instantiating the property variables—‘P’,
‘Q’—to such things as ‘being round’, rather than to ‘being round in world
w’. Properties are taken as simply classes of possible objects.) This
corresponds to what is called strong (or ‘inter-world’) supervenience in the
literature, and is the only notion of supervenience we consider here. For
distinctions and relations between the various other notions and this one,
see Kim [1984, 1987, 1988, 1990], Teller [1985], McFetridge [1985],
Bacon [1986], Noonan [1987].

Appendix to §1: Reducibility in a Position

If R is an n-ary relation between sets we will use capital italics to range
over such sets, lower case italics to range over their elements, drawn from
some underlying set U (so that R & HU)") and write ‘<X,,....X,> € R’
rather than ‘R(X,,...,X,)’. Such a relation will be described as V-reducible
in its k® position (where 1 <tk <n) just in case there is some relation R’

AU x U x AUY™ such that for all X,,....X, (X, € AU)) we have
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CXjpo s> € R iff e € X <X XX Kpiivnda> € R “4)

The definition of what we shall call 3-reducibility in the k* position for R
is similar except that the ‘v’ in (4) is to be replaced by ‘€’. Our primary
interest is in v-reducibility. What we saw in §1 was that taking R as the
relation of supervenience (so n = 2), R was V-reducible in the first
position vig R’ as the relation we called supervenience,. (Warning: for this
example, the underlying set U contains properties, not the individuals
which have or lack those properties.) To think about these matters in a
general way, it will pay us to consider first the even simpler case in which
n = 1. We further identify the ordered 1-tuple <X> with its sole element,
(the set) X. In this case, there is only one position concerning which the
question of v-reducibility can arise, and the above definition tells us that
a l-ary relation (a collection of sets, that is) R is v-reducible (in that
solitary position) just in case there is some subset R of U for which (5),
below, holds, for all X € U. (We write ‘R’ rather than ‘R”’ to stay in line
with the idea of using italic capitals for a set-theoretic level one lower than
whatever level the courier characters—R, R',...—range over. In the general
case, given by (4), still has all but its &* position at the level of subsets of
U, so we use ‘R” for the ‘reducing’ relation there.)

XER iffvx € Xx ER (5)

Given R, we may enquire as to when there exists R € U for which (5)
holds. Two conditions come to mind immediately as necessary, namely that
R should be closed under subsets and that R should be closed under
unions; in other words, that (6) and (7) are satisfied:

X € R, Y € X together imply: Y € R 6)
X €E R, Y € R together imply: X U Y €E R @)

As to (6), if X € R this means, by (5), that every element of X belongs
to R, so if in addition ¥ € X, every element of Y also belongs to R, and
by (5) again, we should have ¥ € R. As to (7), the hypotheses mean that
all elements of X, as well as all elements of ¥, belong to R, in which case
all elements of X U Y belong to R, and we have the conclusion of (7). This
latter justification of (7) works for arbitrary unions, so what we should
really write for the ‘closure under unions’ condition is
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R, S R implies J{X|X € R;} €ER (7a)

(7) was the special case in which Ry, = {X,Y}. (7a) is more general, in
including closure under infinite unions, as well—moving in the opposite
direction—as in subsuming the case of R, = &J; here the antecedent is
automatically satisfied (i.e., is satisfied for any R), and since the union of
the empty set (thought of as a collection of sets) is the empty set, (7a) tells
us that & € R if R is V-reducible. Looking back to (5), we notice that
its right-hand side is automatically satisfied when we take X as &.

We have seen that the conditions (6) and (7a) are necessary for the v-
reducibility of R; we shall now show that they are sufficient. Suppose,
then, that R satisfies (6) and (7a). We must find R for which (5) holds, for
all X. Define R = {x € U|{x} € R}. (Compare (2) in §1.) We show that
(5) holds with R so defined. In other words, that we have

XERiffvx € X{x} ER 8)

But the ‘only if” direction of (8) follows from the supposition that R is
closed under subsets (alias (6)), since we are looking here at the singleton
subsets, and the ‘i’ direction of (8) follows from the supposition that R is
closed under arbitrary unions (alias (7a)), since any set is the union of its
singleton subsets (or ‘atoms’).

In a moment, we pass to the general case of v-reducibility in the k®
position, but before doing so, we should look at 3-reducibility for 1-ary
relations. Instead of (5), what we are concerned with here is those
R € HAU) for which there exists R € U such that for all X € U

XERIiff wxEXxER (8a)

In view of the duality between ‘v’ and ‘3’, one might expect that necessary
and sufficient conditions for R to be 3-reducible in this sense, are provided
by: closure under supersets, and closure under (arbitrary) intersections. But
this is overhasty dualization. The first expected condition is indeed
necessary: if X € R and this is a matter, as (8a) says, of X’s containing
some element which belongs to R, then any superset of X will contain that
element (or those elements), and so likewise belong to R. But the second
expectation is not satisfied. X and ¥ could each belong to R in virtue of
different elements, neither of which survives into X N ¥, belonging to R.
What we need, corresponding to (7), is rather
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X U Y € R implies: either X € R or Y € R 9

or, more generally, corresponding to (7a):
U{X|X € Ry} € R implies: for some X € R,XER 9a)

It is clear that conditions (7) and (9a) are necessary for R to be 3-
reducible, and a proof that they are sufficient proceeds alongs the same
lines as that given above in the case of v-reducibility. (In particular, given
R satisfying those conditions, we can define R, as before, by putting x €
Riff {x} € R))

So much for the one-place case. The results established for that case can
be applied for the general case, once we define appropriately generalized
versions of the conditions of closure under subsets and arbitrary unions ((6)
and (7a) above: we concentrate on the conditions for v-reducibility).
Accordingly, understand by the condition of closure under subsets in the
k* position, for a relation R S FAU)", with 1 < k < n, the following
condition:

<X,...X,> € R, Y € X, imply: <X,,....X,,,¥,X,,,,....X,> € R (10)

and by the condition of closure under arbitrary unions in the k* position,
the condition:

If, for some Ry < #AU), X, = U{Y|Y € R,} and for each Y € Ry,
<X, Xp s V. X, 5., X,> € R, then <X,,....X,> € R. (11)

THEOREM 1.1 Any relation R S HU)" is v-reducible in its k* position
if and only if R is closed under subsets and arbitrary unions in the k*
position.

To conclude this discussion, we apply the above Theorem taking R as
the relation of supervenience; thus n = 2 for the case in which we are
interested. We have already seen that this relation is v-reducible in the first
position. For a similar reducibility to obtain in the second position, we
should need (according to the Theorem) closure under subsets in this
position, as well as closure under unions there. We state these as (12) and
(13); the latter is the special case of binary unions.
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P supervenient on Q, Q'U Q, together imply P supervenient on Q'.(12)
P supervenient on Q, P supervenient on Q',
imply P supervenient on Q U Q' (13)

Now (12) is clearly false (consider Q" = &), so one of the two necessary
conditions for v-reducibility fails. But let us look at (13) anyway. (13) is
clearly true, with its consequent following from either antecedent taken
separately. This is because our relation is closed under—not subsets
but—supersets in its second position. (Understand this as given by (10) but
with the inclusion in the antecedent reversed.) So perhaps we have a case
of 3-reducibility in this position. However, though we have not formulated
the general analogue of condition (9a), it is not hard to see that even the
special ‘binary unions’ case of this condition, here further specialized to
n = k = 2, is not satisfied:

P supervenient on Q U Q' implies P supervenient on Q
or P supervenient on Q' (14)

For a counterexample to (14), let U consist of properties of points on the
surface of the earth, with Q = the class of latitude properties (i.e., for
each latitude, the property of having that latitude) and Q' the class of
longitude properties. For any P, P is supervenient on Q U Q’, since if
points x, y, have the same latitude and the same longitude, then x is the
same point as y. But obviously we can find P not supervenient on either
Q or Q' separately (e.g., P = Q U Q). So the supervenience relation
is neither ¥- nor 3-reducible in its second position.

2. Supervenience and Closure

Consider the mapping Spv which takes a collection Q of properties to the
class of all properties which are supervenient, on Q. In view of the v-

reducibility of the relation of supervenience, we have not only (15) but also
(16):

P is supervenient, on Q iff P € Spv(Q) (15)
P is supervenient on Q iff P < Spw(Q) (16)

In the discussion following (13) in the Appendix to §1, we had occasion to
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observe that the relation of supervenience was closed closed under supersets
in its second position. Let us write this observation in terms of Spv; it
emerges as a monotonicity property:

Q < Q' implies Spv(Q) € Spv(Q”) a7

Now the condition (17) describes as satisfied by Spv is one of three
conditions customarily used to circumscribe the class of ‘closure’ operations
(or ‘closure operators’). It does not take much reflection to see that the
other two are also satisfied by Spv. The general definition is as follows.
Given a non-empty set U we say a function C: #AU) - AU) is a closure
operationon U iffforall X, Y € U

X S Yimplies C(X) S C(Y); X € C(X); C(CX)) < CX). (18)

In our case, U should be taken to be some set of properties (again echoing
our earlier warning: not the set of individuals which have or lack those
properties).

The following further terminology is used in connexion with closure
operations. If C is such an operation on U then the subsets X of U for
which C(X) = X are called closed, and in general when C(X) = Y, X is
called a basis for Y, and Y the closure of X. For the proof of Theorem 2.1
below, we shall need to note that U is itself a closed set since it is included
in its closure by the second condition in (18) and its closure is included in
it since C maps subsets of U to subsets of U. We shall also need to exploit
the fact—an easy consequence of the above definitions—that the intersection
of two closed sets is closed.

One might wonder whether, just in virtue of the way Spv was defined, it
is guaranteed to satisfy further general structural principles in the style of
those listed in (18), beyond such principles as follow from those listed.
That is, could we usefully single out a proper subset of the closure
operations as the ‘supervenience closure’ operations, by supplementing (18)
with some further conditions? The question is vague as it stands, because
we have not said what should be understood by a ‘supervenience closure’
operation. In making it precise, we should find a generalization of the
notion of supervenience freed of the presumption that we are dealing with
a relation between classes of properties: for no such presumption was
present in the definition of a closure operation, and we wish to show that
no special further conditions need to be laid down by showing that every
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closure operation can be seen as ‘supervenience-like’. (A more restrictive
generalization will appear in the following section, under the terminology
‘strictly supervenience-like’.) To see how to abstract from the fact that
supervenience itself relates classes of properties, we should first note that
we can rewrite our definition (3), repeated below as (19), once we agree
to abbreviate ‘Qx < Qy’ (etc.) as ‘x =, y’. (Notice that the relations =,
are indeed, as the notation suggests, equivalence relations.) In the terms
introduced in §1, for any property Q, =, is the relation of agreement in
respect of Q; we will sometimes call it Q-indiscernibility in what follows.

vxvy[vQ € Q(Qx < Qy) > VP € P(Px < Py)] 3
vxvy[vQ € Q(x =,y) = VP € P(x =,))] : (19)

Thus a given property P is, as we put it, supervenient, on Q when
VxWy[VQ € Qx =5 y) > (x =, y)] (20)

In other words, as we may put it, P is supervenient, on Q when objects

which are Q-indiscernible for each Q € Q are always P-indiscernible.
More concisely:

M{=oloea S =, (21)

Since (21) gives what it is for P to belong to Spw(Q), we abstract from the
property-specific nature of our discussion of supervenience by allowing the
equivalence relations indexed here by properties to be relations on any
collection of things whatever (rather than specifically the objects which
have or lack those properties): then we need no longer think of the indices
as representing properties. This motivates the following definition. A
closure operation C on a set U is supervenience-like if there is some set S,
and some map assigning each u € U to an equivalence relation on § we

shall denote by =, (i.e., =, S § x §), for which (22) holds, for all
yeu,XxXcU: '

y € CX) if and only if (\{=,},ex € =, (22)
The closure operation Spv is supervenience-like in the sense here defined,
taking § as the set of individuals which may have or lack the properties in
U (so that “x’, ‘y’ now range over those properties, not the individuals in
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§), since the right-hand side of (22) is in this instance just (21). Further,
it is not hard to see that if we start with some set § together with the
indexed equivalence relations =, on S, for ¥ € U, and treat (22) as
defining the mapping C, then the map so defined is automatically a closure
operation. What we are currently concerned with is the converse of this
question, namely, whether or not every closure operation can be obtained
in this manner. And to this question, we may return an affirmative answer:

THEOREM 2.1 Every closure operation is supervenience-like.

Proqf. Given a closure operation C on some set U, define

§={Xc U|X=CX)}

and, for X, Y € §, u € U, put

X=YifX=Yorue€XnY (23)

It is left to the reader to verify that the relations =, as defined by (23) are
equivalence relations. We now claim that (22) is satisfied, and hence that
C is supervenience-like. First, to show that the ‘if’ direction of (22) holds,
suppose that y & C(X). We need to show that we do not in that case have
N{=,}.ex € =,; i.e., that for some V, W € §, we have V =_ W for all
x € X,but Ve« W Choose V= Uand W= CX). Since U = C(U), as
noted in the paragraph following (18) above, and C(X) = C(C(X)), by the
second and third conditions listed in (18) itself, we have V € Sand W €
S, as desired. Note that since y € U while y € C(X), for this choice of V,
W, we have V ¢ W. By (23) then, forallu € U,V =, Wiffu € VN W.
Since V = U, this holds iff u € W (= C(X)). And since x € C(X) for all
x € X, by the second of the defining conditions on closure operations listed
in (18), V =, Wfor all x € X, while, sincey & C(X), we have V = W
Next, to show the ‘only if* direction of (22), suppose y € C(X) but, for a
contradiction, that also, for some V, W € §: V =_Wforallx € X, while
V&, WSince Ve W, Ve Wby (23));50,as V=, Wforallx € X, we
have x € V N W for each x € X (consulting (23) again), and, similarly,
y & V N W. By the first condition on closure operations listed in (18), as
XS VN W wehave C(X) S C(V N W), and so, sincey € CX), y €
C(V N W). Now we recall the fact that § comprises the C-closed subsets
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of U, and the fact that the intersection of two closed sets is closed, to infer

that C(V N W) = V. N W. This gives the desired contradiction, since we
have already concluded thaty € C(V N W) whiley € V N W.

REMARK 2.2. The rather unusual equivalence relations defined in (23)
figured in a similar proof in Humberstone [1991], Theorem 4.2. One might
have expected instead the more straightforward definition X =, Yiffu €
X < u € Y, but the ‘only if* part of the argument does not go through
using such relations: one needs to bring in u’s membership in the
intersection X N Y. (And we can’t simply put X =, Yiffu € X N Y,
since this is in general not reflexive—hence not an equivalence relation.
This is the point of disjoining ‘X = ¥’ on the right-hand side.)

Digression. What is ‘unusual’ (to quote the above Remark) about the
equivalence relations figuring in the proof above? Ore [1942], p.583,
defines a partition to be singular if at most one of its blocks contains more
than one element; let us transfer this terminology to the associated
equivalence relation. Thus an equivalence relation is singular if at most one
of its equivalence classes contains more than one element. Now, as a piece
of temporary terminology, let us define an equivalence relation = on a set
§ to be special if there is some subset S, of § such that for all 5,7 € §, we
have

s=tiffs=tors € Syandt € §,. (23a)
(23a) looks a bit different from what was written above as (23):
X=YifX=YorueXnY (23)

but in fact the relations =, are special in the sense just defined since we
may take §, as the set of subsets of § which contain u as an element, in

which case (23a) says exactly what (23) says (given a change in the style
of variables used). And we have:

PROPOSITION 2.3 An equivalence relation is special iff it is singular.

Proof.

‘If . Suppose = is a singular equivalence relation on a set § and let P_ be
the associated partition. Thus at most one block of P_ has cardinality > 1.
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If there is no such block, take S, = &; (23a) is then easily seen to held.
If there is one such block, take S, to be that block; again one can check that
(23a) holds. :

‘Only if . Suppose = is a special equivalence relation on §, but = is not
singular. Then there are distinct blocks B,, B,, of P_ each containing more
than one element of §; say, s,, #, € B, while s,, ¢, € B,, with 5, ¢ t,,
S5, € ,. Where S, is a subset of S in virtue of which = counts as special, in
satisfying (23a), since s, = ¢, and s, < ¢,, (234) tells us we must have 85
t, € 8. Similarly, we must have s,, ¢, € S, By (23a) again, since s,,
5, € §o, we have s, = 5,, contradicting our assumption that the blocks, B,
and B,, from which these elements were drawn, are distinct.

Now that we have had some practice with the notion of a singular
equivalence relation, we can extract a stronger conclusion from the proof
of the Theorem above, than the Theorem itself provides. A supervenience-
like closure operation on U was to be defined to be one for which there
could be found a set § together with a family {=}, of equivalence
relations on S, such that (22) was satisfied:

y € CX) if and only if Y{=,},ex € =, 22)

Let us now define C to be singularly supervenience-like if there is a set §
together with a family {=,} ., of singular equivalence relations on S, for
which (22) is satisfied. It is clear from the form of the definition that every
singularly supervenience-like closure operation is a supervenience-like
closure operation, but the proof of the Theorem above gives a converse to
this. For, as we have noted, the equivalence relations =, provided by the
proof are ‘special’, and so—by the above Proposition—singular, so every
closure operation is singularly supervenience-like. Thus the three
descriptions: closure operation, supervenience-like closure operation,
singularly supervenience-like closure operation, in fact all pick out the same
class of maps. (However, we have abstracted further than is called for from
the original motivating example, and the following section will call
attention to a more restricted class—suggested by that example—comprising
what we call strictly supervenience-like closure operations.)

As a coda to this Digression, let me define a binary relation on a set U
to be transitive* when the following holds for all x, y,w,z € U

(Rxy A Rwz) > (x =y V w =12z V Rx3) (+)
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One can easily check that any transitive® relation is transitive, though not
conversely. Bearing in mind the usual definition of an equivalence relation
as a relation which is reflexive, symmetric, and transitive, let us define a
relation to be an equivalence” relation if it is reflexive, symmetric, and
transitive®, and note the following (easily proved):

PROPOSITION 2.4 A relation is an equivalence* relation iff it is a singular
equivalence relation.

We remark that if an addition is disjunct ‘x = z’ is added to the consequent
of (+) above, we obtain the defining condition given in Goodman [1951],
p.83, for what it is for a relation to be ‘self-complete’. For reflexive
relations, the properties of self-completeness and transitivity* coincide. (On
the other hand, if the ‘=" disjuncts of (+) are omitted from the consequent
altogether, we obtain the condition on binary relations called [&] on p.369
of Humberstone [1984].) End of Digression.

The point was made above that if we regard (22), repeated here, as
defining C, then C is guaranteed to be a closure operation:

y € C(X) if and only if (\{=2.ex € =, 22)

It is worth emphasizing that this fact has nothing to do with the require-
ment—part of our definition of ‘supervenience-like’—that the relations =,
(4 € U) be equivalence relations. For any binary relations whatever, the
analogue of (22) defines a closure operation. Indeed, we can generalize
further and note that given any condition expressed by an open formula ®,
(8;,---,8,) in n+1 free variables (written here in a manner suggestive of the
special case (22)), if we put:

Yy € CX) if and only if for all s,,...,s, € S, if ®, (s,,...,5,)
Jor each x € X, then @, (s,,...,5,) (24)

then the mapping C so defined is a closure operation. And of course, it
follows from the above Theorem that every closure operation can be so
represented; but what we wanted to know specifically was that such a
representation could be obtained for the special case of (22) in which
equivalence relations were involved.
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Digresssion. It is an interesting question whether some of the extra
generality here observed is of any use in the theory of properties, in the
way that supervenience itself has been. (We revert here to the earlier use
of variables.) Our equivalence relations =, could be replaced by partial
orderings <,, for example, so that, just as we defined x =, y to hold
when Qx < Qy, and rewrote (3)~ (= (3) without the universal quantifier
on ‘P’) as (20):

VIVy[VQ € Q(Qx = Oy) = (Px = Py)] (3)
VINY[VQ € Qx =) = & =, )] 20)

so we could define x <, y to hold when Qx - Qy, and rewrite (25) as
(26):

vxvy[vQ € Q(Qx - Qy) > (Px - Py)] @5)
Vavy[VQ € Qx <,) = (x <, )] (26)

But whether any interesting relation between Q and P is here isolated
remains to be seen. (Note that if the consequent of (37) has ‘e’ replaced
by ‘=’, then the result is just equivalent to (37) itself, and also that if Q
is closed under complementation, so that whenever Q € Q, we also have 0
€ Q, O being the property possessed by all and only the individuals that
do not possess Q, then changing ‘e’ to ‘=’ in the antecedent of (37) also
makes no difference.) End of Digression.

3. Supervenience and Consequence

An interesting special case of (24) arises when we take n = 1, taking U to
be the set of formulas (or statements) of some language, and the auxiliary
set S to be some class of truth-value assignments (alias valuations), with the
condition ®, (s) which arises for this case of (24), namely

y € CX) if and only if for all s € §,
if @, (5) for each x € X, then &, (s) 27

being the condition that (the formula) x is true according to the assignment
s. Then what (27) defines as C is the consequence operation (determined
by §); for example, if U and § comprises the respectively the usual
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language of sentential logic and the familiar ‘boolean’ valuations—truth-
value assignments respecting the standard truth-table stipulations, that
is—then C maps a set X of formulas to the set of all formulas which are
tautological consequences of X. (These ideas will be presented in a more
general setting in the following section.)

In the case of consequence operations, an alternative conceptualization is
often found more convenient in practice, namely in terms of consequence
relations. Such a relation holds between a set of statements and an
individual statement, and is often denoted by some such symbol as ‘" or
‘ |F°. The defining conditions for a relation to be a consequence relation are
so chosen that such relations are in a one-to-one correspondence with
consequence operations via the equivalence X + y iff y € C(X), where C
is the associated consequence operation. (Of course, a more suggestive
notation would usually be employed, such as ‘T — A’ rather than ‘X + y’:
we shall be employing the more suggestive notation in the following
section.) We could help ourselves to an analogous approach in the case of
any closure operation, such as the operation Spv with which we started. Say
we agree for the moment to write ‘Q || P’ in place of ‘P € Spw(Q)’. This
is of course just a different way of expressing what we earlier put by
saying: P is supervenient, on Q. But it usefully directs our attention to the
possibility of certain parallels between supervenience and logical
consequence, to which we now turn.

Let us consider the operation of conjunction, symbolized by A, regarded
as a binary operation on statements. We can say what is needed for an
operation to deserve this name in any of several equivalent ways. One
would be say that the consequence relation, , we are interésted in,
satisfies, for all statements A, B:

ALB-AAB AANBKA AANBFB (28)

where braces (‘{’, ‘}’) have been suppressed for the sake of legibility and
familiarity on the left-hand sides. Another way of doing the same
job—which is to say selecting the same pairs <+, A > as standing in a
relation we might put by saying that the consequence relation — treats the
operation A as conjunction—would be to say that A A B satisfies the first
condition laid down in (28), and is such that that for any statement C
satisfying that condition (i.e., A, B — C) we have A A B ~ C. While
(28) gives essentially the ‘introduction- and elimination-rules’ characterizati-
on of conjunction, this last formulation can be paraphrased—familiarly
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enough—by saying that the conjunction of two statements is the strongest
statement (to within equivalence) which is consequence of the two of them
taken together. Yet another characterization expresses the idea that the
conjunction of two statements is the weakest statement from which both
those statements follow. And there are numerous further (equivalent)
characterizations which could be given.

Now let us ask after a parallel in the case of supervenience. Instead of an
operation on statements, we will want an operation on properties. To steer
clear of some distracting associations, let us not write this as ‘ A’, but as
‘o’. But the idea is to relate properties P and Q to a property P o Q
using the relation || (the converse of the relation supervenience,) in the
same way that statements A and B are related to the statement A A B using
the relation(s) ~ in (28). Accordingly we first transcribe (28) into this new
setting and then ask what the result might mean:

P,OIFPoQ PoQ]|P PoQ|Q (29)

It is perhaps already clear why we don’t want to write ‘A’ for o, the
formal similarities notwithstanding. For there is already a perfectly good
notion of the conjunction of two properties, P, Q, as the property possessed
by precisely those individuals which possess P and also possess Q. That is
a deserving thing for ‘P A Q' to mean, and is near enough what P o Q
would have meant if we had used ‘" in place of * | in (29), and adapted
the idea of consequence (in the obvious way) so as to apply to properties
rather than statements.

Given that o, satisfying (29) for all properties P and Q, is not property-
conjunction, what is it? What, for a given pair P, Q, of properties, is the
property P o Q7 Again, we should think of the corresponding logical
question: what, for a given pair A, B, of statements is the statement
A A B?In a moment, we shall refine the analogy a little, but for now, we
can notice what is needed by way of a supplementation to the answer: it is
the statement satisfying, for the given A, B, the conditions listed in (28).
The needed supplementation is a justification of the use of the definite
description ‘the statement satisfying...’ in this answer. There are two
aspects of such a use of ‘the’: an existence claim and a uniqueness claim.
In the case of sentence connectives (operations on statements—perhaps
some restricted subset thereof), these questions were raised in Belnap
[1962]. The uniqueness claim needs modifying if ‘statement’ is intended (as
I'have been intending it) linguistically: we should say that (28) uniquely
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characterizes A fo within equivalence, meaning by this that for any
statements C and C’ satisfying, for a given A, B, the conditions imposed
by (28) on A A B, we have C 4 C'. (It is an easy exercise to demonstrate
this uniqueness property—all but explicit in the ‘inferential strength’
characterizations given @ propos of (28) above—for the present case.) For
the existence question, Belnap suggested that we think of matters from the
point of view of a consequence relation to be extended to one satisfying
such conditions as (28) imposes, and accept that the compounds (here
A A B) involved indeed exist as long as the extension was conservative.
But it seems there may be additional grounds for denying the existence of
a connective with given inferential powers other than the non-conservative
extension its postulation would yield of some antecedently favoured
consequence relation, and we do not wish to go into these questions here.
Rather, we proceed to what was described above as the task of refining the
analogy here in play.

There are two respects in which the discussion of operations like A on
statements and operations like o on properties are disanalogous which
should be cleared away so that the present point of interest emerges more
clearly. First of all, we are not thinking of properties as linguistic
expressions (predicates, for instance), but rather as something (to use a
deliberately vague word:) signified by such expressions. In fact, at the end
of §1 it was suggested that we think of properties David Lewis’s way: as
classes of possibilia. By contrast, we have been thinking of statements as
linguistic expressions. To iron out this difference, we should have instead,
non-linguistic potential significata for such expressions; the term
‘proposition’ is traditional in this role, and for definiteness, we again follow
Lewis (and others) and conceive of propositions as sets of possible worlds.
But there is a second way in which our presentation of (28) and (29) has
involved a gratuitous disanalogy. This is best brought out by imagining the
preceding disanalogy ironed out in the opposite direction: by sticking with
statements, and, to have a linguistic analogue in the property case, moving
to talk of predicates for the discussion of supervenience. Then although we
have linguistic expressions in both cases, the remaining disanalogy is that
we are treating predicates as having a fixed interpretation, while subjecting
statements to varying interpretations. Such variability was introduced in the
discussion following (27), where a restriction amongst arbitrary truth-value
assignments to the boolean valuations amounted to treating all but the
sentential connectives as uninterpreted vocabulary. This uninterpretedness
can be represented at the non-linguistic level of propositions by considering
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the assignment of a proposition to a statement—or, better, a formula
(emphasizing the uninterpretedness)—as relative to a Kripke model. To
eliminate this feature, we should think (or at least pretend to think) of an
intended such model, in which the assignment to a statement is of the
proposition (= set of worlds) at which that statement, considered as fully
interpreted (e. g., as some disambiguated indexical-free declarative sentence
of English or some other natural language), is true. (We return to the
‘uninterpreted” perspective in §4, where A, B,... will be taken to represent
formulas in some formal language.) If we now think of the variables in (28)
as ranging over such propositions, rather than statements, then (28) in
effect identifies A A B with the proposition A N B, and in general, rather
than writing (30), we can write (31):

A,...A, B (30)
ALN..NA CB 31)

What becomes of the existence and uniqueness questions now? They
become special cases of the corresponding questions concerning intersecti-
ons of sets. The existence question is not really settled by appeal to this
broader setting, however, since although one may be inclined to say that
it is obvious that any family of sets has an intersection, any further
explanation of the point to someone sceptical on this score will simply
make use of conjunction (as when one says that A, N A, has as elements
precisely those things which are elements of A, and elements of A,). The
uniqueness question is answered more satisfactorily, however, since any
sets including only the common elements of A, and A, will be included in
each other and hence be the same set. (Thus we do not have to say that
propositional conjunction is uniquely characterized ‘up to equivalence’ any
more, as we did when considering conjunction as an operation on
statements.)

We return to the case of the envisaged operation o on properties,
governed by (29) above, repeated here:

P,Q|FPoQ PoQ|P PoQ|Q (29)

The existence and uniqueness questions for our operation are quite
interesting, and we shall consider the latter first. The formal similarity
between (28) and (29) may lead us to expect the uniqueness question to be
resolved affirmatively. Writing ‘P 4 Q” (etc.) for ‘P |F Q and Q |} P,
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we easily obtain the result that if o and o’ are two operations each
satisfying all three conditions in (29), then we have (for all P, Q):

PoQ4Po0 | 32)

and so it might seem that a unique property has been fixed as the result of
applying the operation o to any given pair of properties. But this would
be quite wrong. All that a claim of the form R 4+ § (for properties R, S)
says is that each property is supervenient, on the (unit set of the) other.
When such a claim is correct we may call the properties concerned
equivenient. And although equivenience, so understood, is an equivalence
relation, a pair of equivenient properties can be about as far from
‘equivalent’ in any everyday sense of the term, as it is possible to imagine:
for example, a property and its complementary property are equivenient.
Thus (32) can be true while the properties (if there are such properties—we
have postponed our discussion of existence, to deal with uniqueness first)
mentioned on the left and the right are not identical, so we must agree that
the uniqueness question has not successfully been resolved in the
affirmative by pointing to (32).

Digression. Before proceeding, we pause to correct the misleading
impression conveyed by saying, in the last sentence but one, ‘for example,
a property and its complementary property are equivenient’, as though this
is an example plucked from a welter of alternatives. In fact, we can easily
show that if properties P and Q are equivenient, then either Q = P or else
Q= P For if Q « P then there is some individual @ such that either Qa
and Pa or else Qa and Pa, and if Q¢ P, then there is some individual b
such that either Qb and Pb or else Ob and Pb. So if Q is identical neither
with P nor with P, then one of the four composite situations obtains:

(i) Qa, Pa, Qb, Pb
(i) Qa, Pa, Qb, Pb
(iii) Qa, Pa, Qb, Pb
(iv) Qa, Pa, Ob, Pb

But none of these can arise if P and Q are equivenient: (i) and (iv)
contradict the supervenience, of P on Q (i.e., on {Q}), since in these cases
we have a =, b without @ =, b, while (ii) and (iii) similarly contradict the
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supervenience, of Q on P. End of Digression.

What the equivenience of R and § means is that the equivalence relations
=, and = are identical, not that the properties R and § are. (Recall that
for any property Q, we defined = , as the relation—" Q-indiscernibility"—of
agreeing in respect of Q.) In general, as we rewrote (30) to (31), we can
re-express (33) as (34)

P,..P, |FQ (33)
=, N..N =, € =, (G4

It was keeping these equivalence relations out of the picture that was
responsible for any impression there may have been that (32) showed the
properties constructed by the o operation to be fixed uniquely. What is
uniquely fixed here is rather the associated equivalence relations: so what
one should say is that the properties concerned are fixed uniquely to within
equivenience. This bears directly on the question of existence, to which we
now turn. At the level of equivalence relations, we can certainly make
sense of what (29) is trying to do, writing ‘=" (unsubscripted):

===,Nm, (35)

We can regard (35) as a definition of the relation symbolized on the left,
and there is nothing misleading about the notation since the intersection of
two equivalence relations is indeed an equivalence relation.(*) But what (29)

itself requires is that, given properties P, Q, there is a property P o Q
such that

=po= =N =, (35a)

and this claim, as we shall see in a moment, is false. So not only the
uniqueness question, but also the existence question, associated with the
putative operation o must receive a negative answer.

The falsity of the claim that for every P, Q there is a property P o Q
satisfying (35) is easily seen. Call an equivalence relation bipartite if it has

Q) Incidentally, it was to avoid the complications that would arise here if we had considered
a supervenience analogue of disjunction —since the preceding claim would be false with
‘union’ replacing ‘intersection’— that we chose to consider the parallel with conjunction.
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at most two equivalence classes (the associated partition has at most two
blocks, that is). In other words, = is bipartite when for all a, b, c:

Eithera = bora=corb = ¢

It is clear that the equivalence relations =, for a property R are all
bipartite. For a property possessed by some but not all individuals, the
associated partition has two blocks, whereas a property possessed by all
individuals or by none induces a one-block partition (the one-block partition
of the set of individuals, indeed). Conversely, though this is not something
we need to exploit for present purposes, every bipartite equivalence relation
is of the form =, for some property R. Now, using the fact that all
equivalence relations of the form in question are bipartite, we can see that
there is in general no such property P o Q as (29)/(35) requires. For the
intersection of two equivalence relations is not in general bipartite, even if
the relations intersected are bipartite. By way of example, consider the
intersection, call it =, of the two relations =, and =, associated with the
properties M, of being male, and U, of being under thirty years of age
(now, say). Then = has four equivalence classes, collecting together (i)
individuals which are both male and both under thirty, (ii) those that are
neither of them male and both of them under thirty, (iii) those that are both
male with neither of them being under thirty, and (iv) those neither of
which is male and neither of which is under thirty. Thus = is not bipartite,
and so not of the form =, for any property R; in particular, then, there is
no property M o U such that = is =,,,,,.

The above negative results suggest that such operations as our imaginary
o be specified using the conditions in (29) re-written so that the property
variables P, Q, are replaced by variables standing for partitions (or
equivalence relations). The conditions then define o as the meet operation
in the lattice of partitions of the set of individuals (having or lacking the
properties concerned). We shall not pursue this theme further here,
however, though aspects of the behaviour of a sentential connective
analogous to ‘ o ” will occupy us again in §5, at the end of which we shall
also revisit the conclusions of the preceding paragraph.

The introduction of the notion of a bipartite equivalence relation suggests
a strengthening of the concept of a supervenience-like closure operation.
Let us recall the definition given earlier. We described a closure operation
C on a set U to be supervenience-like if there was some set S, and some
map assigning to each u € U an equivalence relation =, on §, such that
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forally € U, X c U:
y € CX) if and only if (\{=,}ex € =, 22

And we pointed out that Spv is a supervenience-like closure operation in
this sense on the set U of properties, since we may take S as the set of
individuals which may have or lack the properties in U. But we now
observe that the original case of Spv satisfies a stronger condition than has
explicitly been built into the definition of ‘supervenience-like’: namely, the
equivalence relations in this case are all bipartite. This suggests a stricter
notion of supervenience-likeness, capturing this feature of the prototype
Spv. Accordingly, let us say that a closure operation C on a set U is strictly
supervenience-like when there exist a set § and a map assigning each
u € U a bipartite equivalence relation =, on §, such that for all y € U,
X € U, (22) above holds. The question then naturally arises as to whether
every closure operation is strictly supervenience-like. Inspection of the
proof of Theorem 2.1 (to the effect that every closure operation is
supervenience-like) certainly does not enable us to extract an affirmative
answer to this question, since the equivalence relations defined in that proof
are not bipartite. (Recall that in the proof of Theorem 2.1, we put, for C-
closed subsets X, Y of U, and elements u of U: X =, Yiff X = Yoru €
X N Y, and noted in the Digression following Remark 2.2 that this made
=, ‘singular’, in the sense of having at most one equivalence-class with
more than one element. There is no limit built in here to the number of
one-element equivalence classes, so in general the relations will not be
bipartite.) Further, it is easily seen that nor every closure operation is
strictly supervenience-like, since all strictly supervenience-like operations
satisfy various conditions whose satisfaction is by no means guaranteed by
the definition of the notion of a closure operation. Here are two examples
taken from Humberstone [1993]. We use the relational notation (‘X | y’
for ‘y € C(X)’, further abbreviating ‘{x,u}’ to ‘x,u’, etc.):

x |-y implies eithery |Fxor |Fy fie., & |Fy) (36)
X, u lFyandx,y |Fuimplyeitheru,y |Fxoru |Fy 37)

What it would be good to have would be some conditions which are not
only, as (36) and (37) are, necessary for C to be strictly supervenience-like,
but also sufficient for this. This problem remains unsolved as of the time
of writing, however.
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Note. (36) and (37) are special cases of the more general condition:

Ux |Fyandx, y | uforeachu € U imply
either U,y |FxorU |y (38)

(36) arises by taking U = & and (37) by taking U = {u}. (38) is the
strongest condition the author has been able to find which is satisfied by all
strictly supervenience-like |}-.

4. The Logic of the Strictly Supervenience-like

The question unanswered at the end of the preceding section can be thought
of as a straightforward question about consequence relations in a formal
language L. Recall the usual notion of such a relation, + being determined
by a class 7 of valuations for L (maps from L to {T,F}; we often suppress
the ‘for L’ when this can be appropriately recovered from the context): for
all € L,B € L, wehaveI' + B if and only if for each v € ¥ such that
WA) = T for all A € T, v(B) = T. Thus when + is presented by means
of some proof-system, if + is determined by ¥, we may think of 7 as
affording a semantics w.r.t. which the proof-system is ‘sound’ (the ‘only
if’ part of the above condition) and ‘complete’ (the ‘if’ part). In the
interests of greater clarity, we relabel this relationship between — and 7%
+ is inference-determined by 7. The intended contrast (as in Humberstone
[1993]) is with the following notion. Given again a class of valuations 7 we
say that + is supervenience-determined by ¥'when for allT' S L, B € L:
I' + B if and only if for all u, v € ¥ such that u(A) = w(A) for each
A €T, we have u(B) = v(B). The problem at the end of the preceding
section then transmutes into: find some conditions on consequence relations
which are such that a consequence relation is supervenience-determined by
some class of valuations precisely when it satisfies the conditions. Note that
we make no assumptions about the presence of any particular connectives
in L, or about how they might behave according to — should they be
present. (In the case of inference-determination, it is well known that every
consequence relation is inference-determined by some class of valuations,
since one can always take the class of all valuations ‘consistent with’ + in
the sense of not verifying all of I" while falsifying B, for any T, B such that
I' ~ B. This terminology is adapted from Scott [1974], q.v. for related
considerations. We give a version of this argument for a simplification of
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the notion of a consequence relation in the proof of Theorem 4.2 below).
As already indicated, conditions (36)-(38) must be satisfied, at the very
least. In the present context, (36) would more naturally be written as

A+ BimpliesB+ Aor+ B 39)

understood as universally quantified: for all A, B € L (where — S #L)
X L.) Note that we write ‘-’ indifferently, whether we are interested in
inference- or in supervenience-determination (as opposed to using | for
the latter, as in §3), since we wish to emphasize that in both cases we have
a consequence relation.

Now, rather than discuss further the case of consequence relations, we
move to a simpler setting in which the question of supervenience-
determination can be answered by a few elementary considerations. What
we have in mind is a restriction to the case of B’s being a consequence of
I, for T' a unit set: {A}, say. In this case, we could regard the relation
under investigation as simply a binary relation on L, think of the relation
as obtaining between A and B when B is a consequence of {A}. First, we
rehearse the details of this with inference-determination in mind; only then
will we pass to the case of supervenience-determination.

Because we are considering a restriction of the idea of consequence
relations, we shall here continue to use the notation ‘"’ for what is now
a binary relation on (any given) L. But what kind of relation? The
appropriate general conditions are simply reflexivity and transitivity—(R),
(T) below—which is to say that - S L X L is to be a pre-order on L:

® Ar-A (T) A+~BandB r Cimply A — C

for all A, B, C € L. It is clear that, for any class 7 of valuations, the
binary relation on L defined to hold between A and B iff for all v € ¥
VA) = T implies w(B) = T, does indeed satisfy (R) and (T). We call this
relation the pre-order inference-determined by ¥, for continuity with the
previous discussion. Are any additional conditions, not following from (R)
and (T), guaranteed to be satisfied by the relations inference-determined by
classes of valuations? No: every pre-order is the pre-order inference-
determined by some class of valuations. For consider the class of valuations
consistent with a pre-order +, in the sense (specializing that given above
for consequence relations) of not verifying and falsifying, respectively, any
A and B for which A — B. We use the notation Vad ) for the class of all
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valuations consistent with +, and define v, (for A € L, the language of
) thus: v, (C) = T iff A + C (for all C € L). The crucial relationship
between these ideas is given by:

LEMMA 4.1 For any language L and any pre-order + onL, {v, |A € L}
C Vad+).

Proof.

If v € 7ad), this means that we have some B, C € L such that B
C, withv, B) =T, v, (C) = F. That is A — B while A #C; since B
C, this is impossible (by (T)): so we must have v, € Yad).

We can now give the promised ‘abstract completeness theorem’ for the
conditions (R) and (T):

THEOREM 4.2 Any pre-order v is inference-determined by Vad-).

Proof.

We must show that for all A, B: A + B iff for all v € Yad), v(A) =
T implies w(B) = T. The ‘only if" direction is an immediate consequence
of the definition of the consistency of a valuation (with a pre-order). For
the “if’ direction, suppose A H-B, with a view to finding v € 7ad+) with
WA) = T, v(B) = F. Choose the valuation v, for this purpose. By Lemma
4.1, v, € Yad-), and ex hypothesi, since A H-B, v, (B) = F; finally, by
(R), v, (A) = T.

Thus every pre-order is inference-determined by some class of valuations.
Before passing to a consideration of when a pre-order is supervenience-
determined by some such class, we pause to make an observation that will
be of assistance in that enquiry, arising out of Lemma 4.1: can the ‘S’ of
that Lemma be strengthened to ‘="? What we need to observe is that the
answer to this question is No. For let v; be the unique (for a given L)
valuation which assigns the value F to every formula (of L). Clearly v, is
consistent with every pre-order (on L), since otherwise we have A — B
with vz (A) = T while v; (B) = T: but we can never have v; (A) = T.
And vg is not v, for any formula A, since v, (A) = T. Dually, there is the
valuation vy which assigns T to every formula and is likewise consistent
with every pre-order: in this case the same reasoning does not apply to
show that vy is not v, for any formula A, since there may well be A € L
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such that A + C for all C, in which case vy is v,. (Of course, there may
be other such ‘all implying” formulas A’: but then v,. = v,.) But there may
not be! And v; still belongs to ¥ad ).

Digression. A puzzle is set up by beginning, as above, a sentence with
“dually’, and continuing with ‘the same reasoning does not apply’: given
the symmetry between the left and the right hand sides of the ‘" in our
pre-order framework, an explanation for this disanalogy is called for. The
explanation lies in the definition of the valuations v, as those assiging T to
precisely those C for which A — C. Suppose instead we had defined
valuations 9, (for B € L) by: ¥, (C) = T iff C k B. Then the analogue of
Lemma 4.1 would have held that all such 7, belong to %ad+ ), by a similar
appeal to (T), since otherwise there are A, C with A +— C, B(A) =T
li.e., A ¥B] and 9, (C) = F [i.e., C ~ B], and the proof of Theorem 4.2
would have ended with a similar appeal to (R): given A KB, we have Vs
(A) = T and 9, (B) = F. So the asymmetry noted lies, not in the material,
but in an arbitrary choice of one (‘v’) rather than another (‘¢") way of
presenting that material. As for v; and v;, had the alternative here described
been employed to begin with, we would have been observing that v, is
never of the form v,, since 9, (A) = F, and 9; may or may not be of the
form in question, depending on the existence of a formula which is, relative
to the given pre-order (not ‘all-implying’) but ‘all-implied’. (In terms of the
partial ordering < of valuations mentioned in the following paragraph, we
can give the following characterization of v, and ,: v, is the least A-
verifying valuation consistent with -, while 9, is the greatest A-falsifying
valuation consistent with +.) End of Digression.

As the above Digression reveals (incidentally), there are many more
valuations consistent with a pre-order + that those of the form Vv, together
with the special cases of v; and v;. There are even more such valuations
than the above comments reveal. Consider the partial ordering < on the
class of all valuations (for a given language) defined by: u < v iff for all
A, u(A) = T only if v(A) = T. Then the class of valuations consistent with
F is closed under least upper bounds (‘disjunctive combinations of
valuations’) and greatest lower bounds (‘conjunctive combinations’) w.r.t.
the ordering; in fact the status of v and v; emerges as the result of taking
the special case in which we take the empty collection of valuations (as a
subset of Yad)) and form, respectively, disjunctive and conjunctive
combinations. (By contrast, the class of valuations consistent with a



SOME ASPECTS OF THE NOTION OF SUPERVENIENCE 129

consequence relation is only guaranteed to be closed under conjunctive
combinations, and need not contain v;.) Only v; and v; require explicit
attention from amonst the valuations consistent with a pre-order in what
follows, amongst consistent valuations not of the form v,. And we shall be
not be treating these two in the same way, for our proof of the analogue of
Theorem 4.2 for supervenience-determination (Theorem 4.6 below). First,
we extract the following, by inspection of the proof of Theorem 4.2:

PROPOSITION 4.3 For any given pre-order +— on a language and any
class 'V of valuations for L, if {v, |A € L} € ¥ S Val(+-), then + is
inference-determined by V.

COROLLARY 4.4 Where Val™ () = Vad+) - Vg, +— is inference-
determined by Val (&)

Here we have our difference in treatment between v; and v;: we shall be
concentrating on ¥a¢~ (), from which v; has been excluded, but in which
vy remains. (In fact, any other class of valuations consistent with +,
containing vy and all the v,, but not v;, would do equally well for the proof
below.)

To address the topic of supervenience-determination by a class of
valuations, we need to recall (39) above:

A+~ BimpliesB+ Aor+— B (39)

This condition no longer makes sense for pre-orders because of the
appearance of & on the left of the second disjunct: we require a formula

to occupy this position. The next best thing is to say that the condition
holds whatever formula we put into that position:

A + B implies: either B — A or, foreveryC € L, C — B (40)

Revising the notion of supervenience-determination given above for
consequence relation to the present more restrictive framework, we say that
a pre-order + is supervenience-determined by ¥ when for all A, B € L:
A + B if and only if for all u, v € ¥ such that u(A) = V(A), we have
u(B) = v(B). The analogue of Theorem 4.2 for inference-determination (or
more accurately, of the conclusion we drew from it: that every pre-order
is inference-determined by some class of valuations) is then given by the
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‘if’ direction of Theorem 4.6, for the proof of which, we enter the
following: :

LEMMA 4.5 Suppose that for some formula B (in the language of a pre-
order ), C + B for every formula C. Then for all v € Vad\-), if
V # Vg, then v(B) = T.

Proof.
Suppose C + B for every formula C. If v # v then there is some C such
that W(C) = T. So if v € ¥ad), then, since C - B, wB) = T.

THEOREM 4.6 A pre-order + is supervenience-determined by a class of
valuations if and only if + satisfies the condition (40).

Proof.

‘Only if’: left to the reader (or: see the proof of Prop.3.5 in Humberstone
[1993].)

‘If : Suppose that + satisfies (40). We show that — is supervenience-
determined by the class ¥a¢ () defined in Coro. 4.4.

We must show that for all A, B, we have:

A+ Biff forall u, v € ¥al (), u(A) = v(A) implies u(B) = w(B).
‘If": Suppose A #B, then v, (A) = T and v, (B) = F, while v; (A) =
vi(B) = T. So v, and v; agree on A but not on B, and both valuations
belong to 7al ()

‘Only if’: Suppose, for a contradiction, that A — B and that we have u,v
€ Yal () with u(A) = v(A) but uB) = v(B). Without loss of
generality, we can take it that u(B) = T and wW(B) = F. Since v € Yar~
(+) and Yal () S Val+), WA) = F (as A + B). Thus we have:

A B
u. F T
v. F F
Now, since A +— B, we have, by (40), either B — A, or C ~ B for all C.
But since u € Yaé~ (+) € Yadr), B HA. So C ~ B for all C.

Therefore, as WB) = Fand v € ¥a/ () S Yad+), by Lemma 4.5, it
must be that v = v;: but this is impossible, since vy & Yat ().

This concludes our discussion of the supervenience-determination of pre-
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orders by classes of valuations. As indicated at the end of the preceding
section, the problem remains open as to how to characterize the class of
consequence relations—for which more than one formula may appear to the
left of the ‘+’—supervenience-determined by classes of valuations. Two
loose ends remain to be tidied up: the title of the present section, and the
connexion between its contents and that of the earlier sections, which

mainly concentrated on the supervenience of one class of properties on
another.

5. Closing Comments

The first of the two issues just raised—over the ‘strictly’ in the title of
§4—is easily dealt with. Consider the relations =, for A € L between
valuations u, v for L, defined by: u =, v iff u(A) = v(A). Since there are
only two truth-values, each such relation is a bipartite equivalence relation,
so the closure operation mapping a set of formulas T to the set of all
{B | I~ B}, where — is the consequence relation supervenience-
determined by some class of valuations is a strictly supervenience-like
closure operation. (Our definition for what made + supervenience-
determined by ¥'was that I' — B should hold if and only if for all u, v €
¥ such that u(A) = v(A) for each A € T, we have u(B) = v(B): but of
course this is just another way of saying that for all u, v € ¥ such that u
=, vforeach A €T, wehaveu =,v.)

As to the matter of how these investigations are related to supervenience
among properties, we may think of L not as a language in the usual sense
but as a set of properties; valuations are then just characteristic functions
for subsets of this set. Specifically, where I is the set of (possible)
individuals, interpret, for i € I, the valuation v; as mapping to T precisely
those properties possessed by the individual i. Reverting to our earlier
notation, of |- (rather than +) for the consequence relation on L
supervenience-determined (as we are now saying) by {v; |i € I}, and P,
Q (rather than A, B) for elements of L, we have, for example:

P, P, |FQ iff foralli,j € I v,(P) = v,(P) and v(P, = v(P)
only if v, (Q) = v, (Q)

That is: Q is supervenient (or ‘supervenient’ in the more explicit
terminology of §1 above) on {P,, P,} when agreement in respect of each
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of P, and P, implies agreement in respect of Q. Admittedly we have
deviated from our ‘logical’ treatment, with an assimilation in the direction
of such formulations as (3) from §1, in saying ‘for all i, j € I’ rather than
‘for all v, v; (with i, j € I)’: but on any conception of ‘property’
sufficiently liberal to allow an unencumbered discussion of supervenience
(such as that proposed by Lewis and mentioned in the discussion following
(3)), v; = v; if and only if i = j. So this deviation is without significance.

More significant is the fact that some of the kinds of valuations we have
had occasion to consider, especially in the above working-through of the
case of supervenience-determined pre-orders, are without analogy amongst
the v;. First to come to mind under this heading are perhaps v; and v
corresponding to these would have be individuals (elements of I) which
respectively had and lacked all properties. But of course there are no such
possible individuals. Even in the case of the valuations v, which verify
precisely the consequences of A, there is are no corresponding v,. With the
present shift of notation, ‘v,” becomes ‘v,’, and we should want v, (Q) = T
iff possession of Q followed from possession of P (or more accurately, on
Lewis’ conception of properties: iff P S Q). So for this to be v, for some
i € I, i would have to possess precisely such properties as follow from
possession of P. In general, no such i can be found since there will be
properties Q for which neither Q nor Q (the complementary property)
‘follows from’ P, yet one of which must be possessed by i. As this example
illustrates, the problem arises from the boolean structure of the collection
of properties. A suitable reaction, then, would be to reduce the level of
abstractness of the above logical discussion, and consider the issue of
supervenience-determination by classes of boolean valuations for various
L (closed under conjunction, negation, etc.). The same reaction is similarly
called for by another analogy with the philosophical literature on
supervenience: what Kim [1984, 1987] calls ‘global supervenience’. A
global supervenience thesis maintains that worlds cannot differ in the
(claimed) supervenient respect unless they differ in the respects on which
supervenience is claimed. The respects in question may be taken to be
propositions (classes of worlds), a domain which again carries its own
boolean structure.

We can accommodate these considerations within the ‘logical’ approach
of the preceding section by asking about consequence relations (or, less
ambitiously, pre-orders) supervenience-determined by classes of boolean
valuations. For the sake of continuity with the discussion in §3, let us
consider a language whose sole connective is A (conjunction). The boolean
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valuations for this language are then just those v such that for all formulas
A, B, satisfy: A A B) = T iff (A) = v(B) = T, and the consequence
relation inference-determined by the class of all such valuations is the least
 satisfying (for all A, B) the conditions listed as (28) in that section. A
similarly ‘syntactic’ specification of the consequence relation supervenience-
determined by this class of valuations may be found in Humberstone
[1993], where corresponding questions for the case of various other
connectives are also answered. To avoid confusion, let us revert to the
notation of §3, and denote the latter consequence relation by ||. The details
(simple though they are) of the relationship between || and the inference-
determined consequence relation need not concern us here, beyond the
observation that these relations are quite distinct. For example, we certainly
do not have: A A B | A in general, since boolean valuations u, v, may
agree on A A B without agreeing on A (by having u(A) = T, v(A) = F,
u(B) = v(B) = F). The situation is precisely as in §3, where we noted that
a putative operation o on properties satisfying the analogues of the
‘conjunction conditions’ (28) but with || rather than ~, would not itself
be property conjunction. We went on to observe that there was in fact no
such operation, and we can usefully see what becomes of that negative
verdict when the discussion is transposed to the present setting of an
uninterpreted formal language. Leaving the topic of supervenience-
determination by classes of boolean valutions behind, then, our final
remarks address that question.

The new conditions for the case of properties were listed as (29) in §3;
trading in our property variables for schematic formula letters, we obtain

.

A,B|FA o B AoB|FA AoB|B 41)

We will in fact restrict attention to the second and third of these two
conditions: their repercussions are already quite revealing, and this allows
us to treat |- as a pre-order, rather than a consequence relation, thereby
keeping the discussion within the range of the preceding section’s results.
The assumption whose repercussions we are to explore, then, is that we
have some L with binary connective o, on which |F is a pre-order
supervenience-determined by some class 7 of valuations, with |} satisfying
the second and third parts of (41). To anticipate: we shall find that this
assumption has extremely restrictive consequences for what 7 can be like
(Prop. 5.2 below). To deliver those consequences, we first make a rather
general—and in itself quite surprising—observation about binary relations.
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(The present author, at any rate, was surprised to find this, as Exercise
X2120 on p.71 of Andrews [1986].)

Given a binary relation R on.a non-empty set U, we call an element of
U a universal source if it bears R to every element of U, and a universal
target if every element of U bears R to it. Then the needed observation is:

PROPOSITION 5.1 With respectto U ¢ &, R € U X U, if every element
of U is either a universal source or a universal target, then some element
of U is a universal source, and some element of U is a universal target.

Proof.

Assume every element is either a universal source or else a universal
target. We show that U contains some universal source. (The argument for
the case of universal targets is analogous.)

Take a € U. If a is a universal source, we have the desired conclusion. So
suppose a is not a universal source, i.e., there is » € U such that not aRb.

In that case b is not a universal target, so by our assumption, » must be a
universal source.

We return to our pre-order | on L supervenience-determined by some
class ¥ of valuations, and assumed to satisfy the second and third
conditions listed under (41). The second condition tells us that A o B |-
A, forall A, B € L, so by Theorem 4.6 we have, for all such A, B: either
A |FA o Borelse C || A, for every C € L. By the third condition
under (41), the former alternative implies A | B. So our assumption
implies that for every A, B, C € L: A |F Bor C | A. This is a stronger
conclusion that the already anomalous special case: for all A, B € L, either
A |FBorB | A (“|is a total pre-order”), and we can extract from this
stronger conclusion the information we seek about ¥, Reformulating that
conclusion, we get:

For all A € L, either A || B for everyB € L,
orC | AforeveryC €L (42)

Now (42) says that, with respect to the binary relation | on L, every
element of L is either a universal source or a universal target. So we may
appeal to Proposition 5.1 to conclude, that there is a universal source in L
(and that there is a universal target —but it is the former conclusion we are
interested in here):
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For some A € L: A || B foreveryB € L. (43)

We shall appeal to (43) in our proof of Proposition 5.2, for a more concise
formulation of which we introduce the following terminology. We call a
pre-order |l on L downward directed when for every A, B € L there
exists some C € L such that C | A and C || B. The conclusions we have
been drawing ((42), (43)) do not mention ‘ o ’, so the assumption that we
have drawn them from—that our supervenience-determined pre-order
satisfies the second and third parts of (41)—is equivalent to the assumption
that |l is downward directed. The above reasoning can be thought of as
proceeding thus: since for every A, B there is a C, possibly depending on
A and B, such that C || A and C | B, let us pick one such C and call it
A o B (to record that dependence).

PROPOSITION 5.2 If the pre-order supervenience-determined by some
class ¥ of valuations is downward directed, then | V] < 2.

Proof.

We have already seen that if the pre-order || on a language L supervenien-
ce-determined by some 7 is downward directed, then |} satisfies (43).
Accordingly let A € L be some universal |--source. Suppose, for a
contradiction, that there are more than two elements in %, so that we can
choose v,, v, v; € ¥, all distinct. Since there are only two truth-values,
at least two of these three must assign the same truth-value to A. Without
loss of generality, we may take it that v, (A) = v, (A). Now A | B for all
B € L, and || is supervenience-determined by ¥, so v, (B) = v, (B) for
all B € L. Thus v, = v,, contrary to our selection of v,, v,, v, as three
distinct elements of 7.

Proposition 5.2 is illustrative of the limited prospects for mirroring the
inferential behaviour of the boolean connectives by ‘supervenience’
analogues: unless there is a severe restriction on the classes of valuations
allowed into consideration, even just the ‘A -elimination’ properties of
conjunction cannot be mirrored by any such analogue. There is another
moral, too, made available by the ‘{v, |i € I}’ manoevre of the second
paragraph of this section, and this concerns the would-be operation on
properties likewise denoted by “ o’ in §3. Recall that, with example of the
properties of being male and being under thirty, we showed that not every
pair of properties had a ‘ o -composition’ & la (29), repeated here:
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PQIFPoQ PoQ|P PoQ|Q (29)

The argument for this conclusion was that such a P o Q would have to be
such that it would require =,,, = =, N =,, with =,,, being bipartite:
but the intersection of bipartite equivalence relations is not in general
bipartite. Our discussion of the sentential version of this issue, in the
present section, set as it was in the framework of pre-orders rather than
consequence relations, put the analogue of the first of the conditions in (29)
to one side, and still concluded that a supervenience-determining ¥ could
not have more than two elements. This means that, returning to the case of
properties, even the one-way inclusion =,,, S =, N =, (corresponding
to the joint imposition of the second and third conditions under (29)), with
supposedly bipartite =,,,, should give trouble in the presence of more
than two individuals. And one can easily see the trouble it gives, by taking
a, b, c as three distinct elements of I (the set of individuals), with P = {a},
Q = {b}. Then the equivalence classes of =, are {a} and I-{a}, while
those of =, are {b} and I - {b}. Thus any equivalence relation more
refined than (i.e., included in) =, N =, must have {a}, {6} and at least
one other (containing c) as equivalence classes: so it cannot be bipartite. So
much the worse, then, for =, .

Monash University

References

Andrews, P. B. [1986] An Introduction to Mathematical Logic and Type
Theory. To Truth Through Proof, London: Academic Press.

Bacon, J. [1986] ‘Supervenience, Necessary Coextension, and Reducibili-
ty’, Phil. Studies 49, 163-176.

Belnap, N. D. [1962] ‘Tonk, Plink, and Plonk’, pp.132-137 in P. F.
Strawson (ed.) Philosophical Logic, London: Oxford University Press
1967.

Goodman, N. [1951] The Structure of Appearance, Second Edn. 1966,
Indianapolis: Bobbs-Merrill.

Hellman, G., and F. W. Thompson [1975] ‘Physicalism: Ontology,
Determination, and Reduction’, Journal of Philosophy 72, 551-564.

Humberstone, I. L. [1984] ‘Monadic Representability of Certain Binary
Relations’, Bull. Australian Math. Soc. 29, 365-376.

Humberstone, I. L. [1993] ‘Functional Dependencies, Supervenience, and



SOME ASPECTS OF THE NOTION OF SUPERVENIENCE 137

Consequence Relations’, Journal of Logic, Language, and Information
2, 309-336.

Kim, J. [1984] ‘Concepts of Supervenience’, Philosophy and Phenomenolo-
gical Research 45, 153-176.

Kim, J. [1987] ‘“Strong” and “Global” Supervenience Revisited’,
Philosophy and Phenomenological Research 48, 315-326.

Kim, J. [1988] ‘Supervenience for Multiple Domains’, Phil. Topics 16,
129-150.

Kim, J. [1990] ‘Supervenience as a Philosophical Concept’, Metaphilosop-
hy 21, 1-27.

Lewis, D. K. [1986] On the Plurality of Worlds, Oxford: Blackwels.

McFetridge, 1. G. [1985] ‘Supervenience, Realism, Necessity’, Phil.
Quarterly 35, 245-258.

Noonan, H. W. [1987] ‘Supervenience’, Phil. Quarterly 37, 78-85.

Ore, O. [1942] ‘Theory of Equivalence Relations’, Duke Mathematical
Journal 9, 573-627.

Petrie, B. [1987] ‘Global Supervenience and Reduction’, Philosophy and
Phenomenological Research 48, 119-130.

Scott, D. S. [1974] ‘Completeness and Axiomatizability in Many-Valued
Logic’, in L. Henkin et al. (eds.) Procs. of the Tarski Symposium,
Providence, Rhode Island: American Math. Soc.

Teller, P. [1985] ‘A Poor Man’s Guide to Supervenience and Determinati-
on’, Southern Journal of Philosophy 22 (Supplement: Spindel
Conference 1985), 137-161 (with Comments by J. F. Post, ibid., 163-
167).

Tennant, N. [1985] ‘Beth’s Theorem and Reductionism’, Pacific Phil.
Quarterly 66, 342-354.,



