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SIMPLIFIED GENTZENIZATIONS FOR
CONTRACTION-LESS LOGICS

Ross T. BRADY

Gentzenizations have been achieved for the contraction-less logics, DW,
TW, EW, RW and RWK in [2] and [3], and these are characterized by the
use of signed formulae, TA and FA, representing the truth and falsity of
the formula A, and the contraposed forms of the (T— ||-) and ( |FT-») rules.
There is an additional contraposed form of the (T— ||-) rule and an additional
premise in the (|FT-) rule, in comparison to that required in the Gent-
zenizations of positive logics, as introduced in Dunn [1] for R, and fur-
thered by Giambrone in [4] for TW, and RW, . Further, the Gentzenization
of EW contains the sentential constant t, which represents the conjunction
of all theorems. For this paper, we use the simplified version for the Gent-
zenization of RW that appears at the end of [3].

We will simplify the form of the consecutions in these Gentzen systems
by replacing them with single structures, this having the advantage of re-
ducing the number of rules virtually by half, in that only one form is gen-
erally required for each connective and sign, instead of the two forms for
each side of the turnstile |}, as at present. In the cases of RW and RWK,
this will yield a substantial reduction in the number of branches being
required in a proof, due to ( |FT->) being replaced by a single premise rule.
This can also be done for DW, TW and EW, but the reduction in branches
only occurs for a special case of the ( |FT-) rule, the full reduction being
possible with the addition of an extra structural rule. We also reduce the
kinds of structures that can occur in the Gentzenization of RWK, bringing
them into line with that for RW. Further, we eliminate the commutativity
rules, the associativity rules and the weakening rules, in the appropriate
systems, with a view to reducing the overall work in applying these systems,
whether manually or by computer. (")

(") None of these simplifications as such will provide any improvement in the prospects
of Gentzenization of a wider range of logics, including the quantified versions of the logics
under study. The reason is that any such improvement would require a Cut Elimination
argument for the new logic, but here 1 will rely on the Cut Elimination arguments from [2]
and [3], which are subject to the constraints given at the end of [2]. However, I have directly
constructed Gentzenizations for some logics, using the kinds of structures introduced here
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We first present Hilbert-style axiomatizations for the logics, DW, TW,
EW, RW and RWK. We take as primitives: ~, &, Vv, -. We consider the
following axioms and rules:

Axioms.

Al.  A-A.

A2,  A&B-A.

A3,  A&B-B.

A4,  (A-B)&(A-C) —». A-B&C.
A5. A-AVB.

A6. B—-AVB.

A7.  (A=C)&(B-C) ». AV B-C.
A8.  A&BVC) - (A&B)V (AKC).
A9,  ~ ~A—A.

A10. A>~B - B-~A.

All. A-B - B»C ».A-C.

Al2. A-B -. C—A —.C-B.

Al3. A - A-B-B,

Al4, A - BoA.

Rules.

R1. A, A-B=B.

R2. A,B= A&B..

R3. A-B, C-D = B-C —». A-D.
R4. A= A-B-B.

Systems.

DW = Al-10, R1-3.

TW = DW + All + A12 - R3.
EW = TW + R4.

RW = TW + Al3.

RWK = RW + Al4,

and thus bypassing consecutions, but this work will appear separately.
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1. The Gentzenizations LDW, LTW, LEW', LRW and LRWK,

We present the Gentzenizations LDW, LTW, LEW', LRW and LRWK from
[3], for the logics DW, TW, EW, RW and RWK, respectively. ‘t’ is added
as a sentential constant only for the Gentzenization of EW. We make some
minor changes in presentation.

Let a, 8, v, o, ... range over structures. We recursively define structures
as follows:

(i) A signed formula SA is a structure, where S is a sign, T or F.

(i) Ife, ..., a,are structures of type (i), (iii) or (iv), then the sequence
oy, ... ,0, IS a structure, where n > 2.

(iii) If o and S are structures then (c:8) is a structure.

(iv) If o and B are structures then (o;() is a structure.

Structures of type (ii) are called extensional sequences or e-sequences,
structures of type (iii) are called i-intensional pairs or i-pairs, and structures
of type (iv) are called j-intensional sequences or j-pairs.

A consecution is an expression of either the form ‘a |FSA’ or the form
“|FSA’, where « is a structure, S is a sign (T or F), and A is a formula.
We use square brackets to pick out substructures of a structure, e.g. y[«]
is a structure y which includes the substructure ov. Whilst structures o« are
non-empty, unless otherwise indicated, the containing structures y[«] can
be just c.

(i) We begin by setting out the Gentzenization LDW of DW, as follows:

Axioms.
(Ax.) SA |FSA

Structural Rules.

Ke|P yle] FSC
vla,81 [FSC

We |b) yla,a] ]I;SC
yla] |FSC

CelP) 7lo,8] IESC
~ vlB,e] |FSC
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Cilph  yl(e:p)] HESC
y[(B:a)] [FSC

Logical Rules.

(T& ) _yITA] |FSC y[TB] |-SC
Y[T(A&B)] |-SC Y[T(A&B)] [-SC

(FT& olFTA o |FTB
o |FT(A&B) , where o can be null.

(F& |F) y[FA]|FSC  y[FB] |SC
Y[F(A&B)] [FSC

(|FF&) o |FFA o [FFB
o [FF(A&B) o |FF(A&B) , where o can be null.

(TvIF) [TA]JFSC  y[TB] |FSC
[T VB [FSC

(FTv) «alfTA o |FTB
o |FT(AvB) a |FT(A v B) , where o can be null.

(Fv|F) _~[FA][FSC y[FB] |FSC
Y[FAAVB) [FSC  y[F(AVB)][FSC

(FFV) atFA o |FFB
o |[FF(AVB) , where o can be null.

(T~ |b) _[FA]|SC
y[T~A] ||FSC

(IFT~) o |FFA
o [FT~A , where o can be null.

(F~ [P o[TA]|FSC
v[F~A] [FSC

(FF~) alFTA
o |FF~A , where « can be null.
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(T>|) «|FTA  [TB] |ISC o |FFB  y[FA]|ISC
Y[(T(A-B);a)] [FSC Y[(T(A-B);a)] [-SC
(IFT=) (eTA) FTB  (o;FB) |FFA
a [FT(A-B) , where o can be null, in

which case the adjacent ;’ ’s are removed.

F->|P (TAFB)] |FSC
y[F(A~B)] [FSC

(FF>) «|FTA B |-FB
(:) [FF(A—B)

(ii) To obtain LTW, we add a further 4 rules:

Bj, IP  y[(e;(8;)1 |FSC
Y[((e;8);0)] [FSC

Bj, I ¥[(e;(8;60)1 |FSC
Y[((8;0);0)] [FSC

Bij, [F) ¥[((;6):6)] |FSC
Y[(e;(6:6))] [FSC

(Bij, [P yl(e:(8;8)] |FSC
¥[(B:(a:6))] [FSC

(ili) LEW" is LTW, with no consecutions of the form * [FSA’, with & non-

null in ([FT&), (|FF&), ([FTV), (JFF V), (JFT~), (|FF~) and (|FT-),
and with the addition of the following t-rules:

(Tl |b yla] |FSC
Y(TE;e)] [FSC

TLiE|H)  y[(Tt:x)] [FSC
yla] |FSC

TEEH  MTEISC  yleTe)] FSC
7] JFSC M TFSC
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(iv) LRW is LDW without the structural connective ;’, with the addition
of the following structural rule (Bi ||-), with the replacement of ‘;’ by *:” in
the (T— |b) and ( |FT->) rules, and where « can be null in the (T |}) rule,
with deletion of the adjacent *:’, and « and/or 8 can be null in the ( |FF-)
rule, with deletion of the adjacent ‘:’.

(Bi ) y[((c:8):8)] |FSC
v[(:8):8)] [FSC

(v) LRWK is LRW with the addition of consecutions of the form ‘« ||’ and
‘|, with ‘SC” in each structural and logical rule replaced by ‘(SC)’, in-
dicating that the position after the |’ can be empty, and with the addition
of the following rules:

S'|FS) «alFSA
a:S'A , where o can be null.

Kilp) _ylel JHSC)
Yl(:8)] |HSC)

(i) o

o |FSC |, where « can be null.

In LDW, LTW, LRW and LRWK, we say that a formula A4 is derivable iff
the consecution |FTA is derivable using the above axioms and rules of the
appropriate system. In LEW', we say A is derivable iff Tt || TA is.

2. The Replacement of Consecutions by Structures.

We now proceed to make the following uniform replacements in each con-
secution, for each of the systems, except for LRWK which will be dealt
with later in a similar manner. These are similar to the translations used by
McRobbie in [5], pp.65-7, where he shows that a range of Gentzen systems
are equivalent to their respective left-handed versions.

(I) Replace ‘T’ by ‘F’ and ‘F* by ‘T’ in the signed formula after the
turnstile * ||,
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(I) Replace * ||* by ‘:’, provided there is a structure to the left of * ||
If no such structure exists, just delete * ||

We end up with structures, rather than consecutions. We can then tidy up
the rules, simplifying the presentations and eliminating most of the right-
hand versions of the signed connective rules. In the process, we add the
following version of the (Ci) rule:

o

B:a
We represent these new structural Gentzen systems, L,DW, L, TW, L,LEW",
L,RW and L,RWK, as follows :
We define structures, as before.
A C-structure is a structure in which “:” is the main structural connective.
The following structural restriction applies to the given systems, with the
remaining systems to be specified later:
Each structure of L, DW, L,TW and L,RW is either a C-structure or a
signed formula.
The structures « are non-empty, unless otherwise stated, and the containing
structures y[c] can be just o, provided this is allowed by the structural
conditions placed on the system.
The rules of each of these systems are applied in accordance with the struc-
tural restrictions on the system.

L,DW.
Axioms.
(Ax.) TA:FA
Structural Rules.
(Ke) yle]
vle,B]
We)  yla,o]
yle]
Ce) Bl
v(8,c]

(&) R ()
Y
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Logical Rules.
(T&) Y[TA] y[TB]
Y[T(A&B)] v[T(A&B)]

(F&)  y[FA]  4[FB]

Y[F(A&B)]
(Tv) y[TA] 4[TB]
Y[T(A Vv B)]

Fv) y[FA] y[FB]

Y[F(A v B)] v[F(A Vv B)]
(T~) y[FA]

Y[T~A]
(F~) 1ITA)

v[F~A]

(T—i) «:FA B:TB
(c:8): T(A—B)

(T-j) o«:FA ¥[TB] o:TB

Y[(T(A~B);a)] Y[(T(A~B); )]

(F-i)  y[(TA:FB)]
Y[F(A-B)]

(F—j) («;TA):FB (o;FB):TA
- F(A>B)

L,TW.
Add to L,DW, the following rules:

Bi) B
v[((e;8);0)]
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Bj) i8]

YI((B;);0)]
Bij)  y[((x;8):0)]
Y[(e;(8:0))]
(Bij)  yl(e:(8;0))]
Y[(B:(a:0))]

LEW"

Each structure in L, EW" is a C-structure. Add to L,TW the following t-
rules:

(TjD) yled
YI(Tt;0)]
(TtiE) ~[(Tt:a)]
vle]
(TYE) [(Tt;m)] y[(e;TE))
vle] yla]
L,RW.

Replace all occurrences of “;” in L,DW with ‘:”, add the rule (Bi) below,
and replace the 4 ‘“—=’-rules of L,DW by the following (T—) and (F-) rules:

(Bi) Y[((c:8):0)]

yI((ex:6):6)]
(T-) a:FA v[TB] a:TB v[FA]
Y[(T(A-B):a)] Y[(T(A—B):a)] , where o can be

null, in which case the adjacent ‘:* ’s are removed. Note that y[TB] can be
TB. '
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(F=)  yI(TA:FB)|
Y[F(A-B)]

L,RWK.

Each structure in L,RWK can be arbitrary, i.e. extensional sequences of C-

structures and signed formulae are allowed as well. We add to L,RW the
following rule:

(Ki) vle]
Y[(e:8)]

InL,DW, L,TW, L,RW and L,RWK, we say that a formula 4 is derivable
iff the structure FA is derivable using the above axioms and rules of the
appropriate system. In L,EW*, we say A is derivable iff Tt:FA is.

Theorem 1. For all formulae A,

(i) If A is derivable in LDW then A is derivable in L,DW.
(if) If A is derivable in LTW then A is derivable in L,TW.
(iii) If A is derivable in LEW" then A is derivable in L, EW".
(iv) If A is derivable in LRW then A is derivable in L,RW.
(v) If A is derivable in LRWK then A is derivable in L RWK.

Proof.

(i) Make the replacements (I) and (II), given above, in a proof of |FTA in
LDW. Checking each axiom and rule of LDW, we see that, under this
replacement, a proof of FA is obtainable in L,DW. [Note that for ( [FT->),
when « is null, only one premise is used.] Each step in such proofs only
contains C-structures and signed formulae.

(ii) Doing the same for a proof of |FTA in LTW, we again see that FA is
provable in L, TW.

(iii) Similarly, a proof of Tt:FA is derivable in L,EW" where each step is
a C-structure.

(iv) For LRW, any proof of |FTA can be converted, under the replace-
ments, into a proof of FA, but for (|FT-), use is made of (Ci), (Bi) and
(F-»), and for ( |FF-»), use is made of (Ci), (Bi) and (T-»). [Note that only
one premise of ( |FT-») is used in this proof.]

(v) In LRWK, the structure | is not derivable as there is no rule that can
be applied to yield it. We are left with consecutions of the forms, ‘a |FSA’,
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‘|FSA’ and ‘a |I. So, we make the replacements (I) and (II), where (I) is
applied only when there is a signed formula after the ¢ |, and for (II) we
replace ‘ | by “:*, provided there is a structure to the left and to the right
of * |- If either of these structures do not exist, we just delete * [F°. Any
proof of |FTA in LRWK can be converted into a proof of FA in L,RWK,
noting that for (8’ [I-S) no rule is needed, and (Ki) suffices for both (Ki |F)
and ( |FKi).

The immediate advantage of the Gentzen systems, L,DW through L,RWK,
except for L,EW", is that they achieve some saving of branches, in com-
parison to their original systems, LDW, LTW, LRW and LRWK. Savings
in L,DW and L,TW occur when « is null in (|FT-), in that the single
premise rule (F-) is used in the new system. This saving would generally
occur at the start of proofs of formulae with ‘=’ as main connective. Ad-
ditional savings occur for L,RW and L,RWK whenever ( |FT-) is used,
since (F-), together with (Ci) and (Bi), suffices.(®)

We can save further branches in L,DW and L,TW, and save these branch-
es in L,EW" as well, by introducing the additional structural rule, (Ij), which
is as follows :

{1 (c;8):y
a:(B:y)

This would enable (F—j) and (T-i) to be derived using (F-i) and (T-»j),
respectively. The lack of (F-j) saves branching, whilst the lack of (T-»i)
gives a tidier presentation. Under “left-handed” interpretation, (Ij) repre-
sents the o -rule, (A o B)»C = A— B—C, derivable in the ‘ o ’-extension
of all three logics. However, the presence of (Ij) would open up more
deductive possibilities which may make deductions more complicated than
the presence of the extra two rules and the associated branching.

3. The Reduction of the Structures in LRWK.

We next reduce the structures that can occur in a proof in L,RWK to C-
structures or signed formulae, in order to bring L,RWK into line with the

(%) The savings here would reduce the number of steps a computer would need to apply

in a proof-searchtree, but the computational complexity classification would still be exponen-
tial.
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other Gentzenizations and to afford some further simplicity.

Theorem 2. :

Every step in the derivation of a formula in L,RWK can be restricted to be
either a C-structure or a signed formula.

Proof. Generally, any step in a proof in LLRWK can be taken to consist of
an extensional sequence of one or more elements, where the elements are
either C-structures or signed formulae. We prove, by induction on proof
steps, that one of these elements is independently provable, i.e. that a C-
structure or signed formula is provable for every step. We construct a
transformed proof in L,RWK, each step of which is a single element of the
corresponding extensional sequence in the main proof. We indicate, for each
step in the main proof, what rule is to be applied, if any, to the element in
the premise that is proved in the transform, in order to yield a provable
element in the conclusion.

(Ax). It is a C-structure, and will also be used in the transform.
(Ke). (i) «isa proper substructure of the provable element. Apply
(it) o is, contains or is separate from the provable element. No
rule needed.
(We). (i) « is a proper substructure of the provable element. Apply
(We).
(ii) o is, contains or is separate from the provable element. No
rule needed.
(Ce). (i) o and B are proper substructures of the provable element.
Apply (Ce).
(i) One of o or B is, contains or is separate from the provable
element. No rule needed.
(Ci). (i) «:B is oris a proper substructure of the provable element.

Apply (Ci).
(i) «:Bis oris a proper substructure of one of the other elements.
No rule needed.
(Bi). (i) (a:B):6 is or is a proper substructure of the provable element.
Apply (Bi).

(i) (a:B):6 is or is a proper substructure of one of the other ele-
ments. No rule needed.

(Ki). () «aisorisaproper substructure of the provable element. Apply
(Ki).

(i) o contains the provable element. Apply (Ke) and (Ce) to
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(iii)

(T&). ()
(ii)
(F&). (i)
(ii)
(iii)

obtain ¢ and then apply (Ki).

« is separate from the provable element. No rule needed.

TA (or TB) is or-is a proper substructure of the provable
element. Apply (T&).

TA (or TB) is or is a proper substructure of one of the other
elements. No rule needed.

FA is or is a proper substructure of the provable element in
one branch and FB is or is a proper substructure of the prova-
ble element in the other branch. Apply (F&).

FA (FB) is or is a proper substructure of the provable element
in one branch and FB (FA) is or is a proper substructure of
one of the other elements in the second branch. No rule is
needed, since the provable element of the second branch ap-
pears as an element in the conclusion of the main proof.

FA is or is a proper substructure of one of the other elements
in one branch and FB is or is a proper substructure of one of
the other elements in the second branch. No rule is needed,
since the provable elements in both these branches appear in
the conclusion. We just make a choice of one, if they are
different.

(TV). Similar to (F&).
(FV), (T~), (F~). Similar to (T&).

(T=). O
(i)
F=). ()
(i)

IB (or FA) in the second premise is or is a proper substruc-
ture of the provable element. Apply (T-).

1B (or FA) is or is a proper substructure of one of the other
elements. No rule needed, the first premise not being used.
TA:FB is or is a proper substructure of the provable element.
Apply (F-).

TA:FB is or is a proper substructure of one of the other ele-
ments. No rule needed.

The last step, which is of the form FA, is also used in the transform. We
have thus constructed a transformed proof in L,RWK, consisting solely of

C-structures and signed formulae. We will use this reduced form of L,RWK
in what follows.
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4. The Elimination of Commutativity and Associativity.

We next proceed to eliminate the commutativity rules, (Ce) and (Ci), from
all five Gentzen systems, and the associativity rule, (Bi), from L,RW and
L,RWK. We do this by replacing the extensional sequences by extensional
multisets in all systems, by absorbing (Ci) into the axiom and the forms of
appropriate rules in L,DW, L,TW and L,EW", and by replacing the i-pairs
by intensional multisets in L,RW and L,RWK.

We first form the Gentzen systems, L,DW through L,RWK, which are
the corresponding systems, L,DW through L,RWK, without (Ce) and with
the structural formation step (ii) replaced by :

(i)' If oy, ... ,, are signed formulae or i- (or j-)intensional pairs then the
multiset oy, ... o, is a structure, called an extensional multiset. [j-inten-
sional pairs are applicable to L,DW, L,TW and L,EW".]

The (Ke) and (We) rules, each of which specifically contain a comma,
would then be modified so that what was part of an extensional sequence
in L,DW-L,RWK becomes an extensional multiset or submultiset in L.DW-
L,RWK.

Theorem 3.

Any formula provable in L,DW, L,TW, L,EW!, LRW or L,RWK is also
provable in the corresponding system, L,DW, L,TW, L,EW', L,RW or
L,RWK.

Proof. We replace, in proofs in L,DW, L,TW, L,EW', L,RW and L,RWK,
each extensional sequence, occurring as a substructure of some step in the
proof, by a multiset of the same elements. Then, when (Ce) is applied in
the proof in L,DW-L,RWK, there is no change to the transformed proof as
the corresponding multisets containing the displayed extensional pairs are
unchanged. When (Ke) or (We) is applied, the transformed proof uses the
corresponding extensional multiset instead of the extensional sequence
containing the displayed extensional pair. The remaining rules are straight-
forwardly transformed using instances of the same rule.

We next eliminate (Ci) from L,DW, L,TW and L,EW* by absorbing (Ci)
into (Ax) and the conclusions of (T—i) and (F—j) and, for L,TW and L,EW',
the conclusions of (Bij,) and (Bij,). So, we form L,DW, L, TW and L.EW',
which are L,DW, L,TW and L,EW", respectively, without (Ci), but with
the following expanded forms of (Ax), (T-»i), (F-j), and, for L,TW and
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L,EW", expanded forms of (Bij,) and (Bij,) :

(Ax)) TA:FA FA:TA
(T-i) o:FA B:TB a:FA B:TB
(a:8):T(A-B) T(A-B):(a:B)
a:FA B:TB a:FA B:TB
(8:0):T(A—=B) T(A-B):(B:c)
(F»j)' (o;TAYFB  (o;FB):TA  (o;TA):FB (o;FB):TA
a:F(A-B) F(A-B):«
(Bij)"  y[((x;8):0)] Y[((c;8):0)]
y[(;(8:6))] v[(o;(6:8))]
Bij)"  yl(a:(8;8))] y[(c:(8;0))]
2 (CHERY)) y[((c:0):6)]
Y[(e:(8;0))] Y[ (ee:(8;0))]
Y[(B:(6:a))] Y[((6:2):8)]
Theorem 4.

Any formula provable in L,DW, L,TW or L,EW" is also provable in the
corresponding system, L,DW, L,TW or LLEW",

Proof. We add to L,DW, L,TW and L,EW", the expanded forms (Ax)’,
(T-i)’ and (F—j)’, and further add to L,TW and L,LEW", the expanded forms
(Bij,)" and (Bij,)', and then eliminate the expanded form (Ci)’ of (Ci) by
induction on the number of proof steps.

€)' ylley:B] -..[(e:B,)]
YBie)] - [Baie)]

where each of the (c;:8;) can occur in disjoint parts of y and are replaced
respectively by (8;:c;). The disjointness entails that o8, does not occur
inside an ¢; or B;, for any i and j. We include the case where v is just e;:3,.

There are two types of interaction between (Ax)’ or a rule of L.DW,
L,TW or LLEW"' and (Ci)'. In the transform, the conclusion of (Ci)’ may
be independently derivable, i.e. derivable without the use of (Ci)’, or de-
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rivable by applying (Ci)’ one step earlier, followed by a re-application of
the rule concerned. We will simply call this latter one a re-application of
the rule. -

We tabulate the cases, accordingly.

(Ax)’.  Independent derivation using (Ax)’.

(Ke). Re-apply (Ke), but, if (Ci)’ is totally applied within 8, then the
conclusion is independently derivable using (Ke).

(Bij))’. Re-apply (Bij,)’, except where (Ci)' is only applied to 8:5 or §:83,
in which case, the conclusion is independently derivable.

(Bij,)'. Re-apply (Bij,)’, except where (Ci)’ is only applied to 8:(«:6),
(a:6):8, B:(8:@) or (6:): 8, the conclusion is independently deriva-
ble.

(T-i)". If (Ci)' is applied totally within o and/or 8 then re-apply (T—i)'.
If (Ci)' is applied to one of the displayed ‘:* s then the conclusion
is independently derivable.

(F=j)’. If (Ci)’ is applied totally within c then re-apply (F-j)’. If (Ci)’
is applied to the displayed *:” then the conclusion is independently
derivable.

All the remaining rules involve a straight-forward re-application of the same
rule after (Ci)'.

We proceed to eliminate both (Ci) and (Bi) in the systems L,LRW and
L,RWK by replacing the i-pairs by intensional multisets. We form the
Gentzen systems, L,RW and L,RWK, which are the corresponding systems,
L,RW and L,RWK, without (Ci) and (Bi), and with the structural formation
step (iii) replaced by :

(iii)’ If o, ... ,o, are signed formulae or extensional multisets then the
multiset (o;: ... :ay,) is a structure, called an intensional multiset. (Ax) and
the (Ki), (T-) and (F-) rules, each of which specifically contain a “:’,
would then be modified so that what was an i-pair in LRW or L,RWK
becomes an intensional multiset or submultiset in L,RW or L,RWK.

We will need the following definition for L,RW and L,RWK :
Where an intensional sequence is a bracketed sequence of elements formed

by successive intensional pairing, a maximal intensional sequence is one
whose elements are signed formulae or extensional multisets, and which
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cannot be expanded any further by intensional pairing within the confines
of the structure of which it is a part.

Theorem 5.

Any formula provable in L,RW or L,RWK is also provable in the cor-
responding system, L,RW or L,LRWK.

Proof. We replace, in proofs in L,LRW and LLRWK, each maximal inten-
sional sequence of signed formulae and extensional multisets, occurring as
a substructure of some step in the proof, by an intensional multiset of the
same elements. Then, when (Ci) or (Bi) is applied in the proof in L,RW or
L,RWK, there is no change to the transformed proof as the multisets con-
taining the displayed intensional pairs are unchanged. When (Ax), (Ki),
(T-) or (F-) is applied, the transformed proof uses an intensional multiset
or submultiset instead of the displayed i-pair. The remaining rules are
straight-forwardly transformed using instances of the same rule.

5. Elimination of Weakening Rules.

We eliminate the weakening rule (Ke) in all 5 logics and eliminate (Ki) in
L,;RWK. We proceed to eliminate (Ke) in L,DW, L,TW, L,EW'and L,RW,
and then to eliminate both (Ke) and (Ki) in L,RWK. First we eliminate (Ke)
by absorbing it into (Ax) for L,DW, L,TW, L,EW' and L,RW, into the
conclusions of (T-i), (T-j) and (F-j), for L,DW, L,TW and L,EW", into
the conclusion of (T-) for L,RW, into the conclusion of the 4 B-rules for
L,TW and LLEW", and into the conclusion of (TtjI) for LLEW".

So, we form L.DW, L,TW, LLEW* and L.RW by dropping (Ke) from
their respective systems, L,DW, L,TW, L,EW' and L,RW, and adding
expanded forms of (Ax)’, (T-i)", (T-j), (F-j)’, (T~), (Bj)), (Bj,), (Bij,)’,
(Bij)" and (TtjI), all given below, to the appropriate logics.

(AX)" ... TA,......FA,... .sFA,......, TA,... ,where for L,RW
only one of these forms is necessary.
(T-i)"" o:FA . f:TB  o:FA 5:TB
-es(@2f),... ..., T(A—B),... ooy T(A=B),......,(a:f),...
a:FA B8:TB  «a:FA 3:TB

w(Bia),...:...,T(A=B),... saey LUARBY ows a0 o
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(T-j)’ o:FA v[TB] «:TB v[FA]
¥[(..., T(A=B),...;a)] yl(...,T(A—=B),...;a)]

(F-=j)'"" (TA)XFB  (o;FB):TA (o;TA):FB  (c;FB):TA
a....,F(A—=B),... ....,F(A=B),...:.at

(T—=) «:FA v[TB] o:TB v[FA]

(.. T(A=B), )] YC...T(A>B),....)] ,

where o can be null, in which case the adjacent *:” ’s and extensional mul-
tisets around T(A—B) are removed. Note that 4[TB] can be TB.

(Bj,)’' Y[(e;(8;6))]
Y[, (e:8),...;0)]
(Bjo)’ Y[(e;(8;0))]
Y., (8;0),...56)]
Bijp"”"  _ y[(«;8):0)] Y[((2;8):9)]
Yl(es;...,(8:6),...)] vl(es;...,(8:8),...)]
(Bij)"  _ y[(a:(8:0))] y[(o:(8;6))]
¥[(B:...,(e:5),..)] *[(...,(a:8),...:8)]
y[(ce:(8;0))] yl(e:(8;6))]

YI(B:....,(0:),...)]

¥I(...,(8:c),...:8)]

(TjD’ yla]
I(...,TE,...;00)]

Theorem 6.

Any formula provable in L,DW, L,TW, L,EW" or L,RW is also provable
in the corresponding system, L,DW, L,TW, LLEW" or L,LRW.

Proof. We add to L,DW, L,TW, L,EW"' and L,RW the expanded forms
(Ax)", (T=)"", (T=j)’, (F=j)"", (T-)', (Bj)', (Bj»', (Bij))"", (Bij,)"’ and
(TjI)’ of the rules appropriate to the logics, and then eliminate the ex-
panded form (Ke)' of (Ke) by induction on the number of proof steps.
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(Ke)' yle] ... (o]
Y[QI,BL] [an!Bn] >

where each of the ¢; ’s occur in disjoint parts of . The types of interaction
between (Ax)"’ or a rule of L,DW, L,TW, LLEW"' or L,RW and (Ke)’ are
of a similar sort to that for the elimination of (Ci). So, we use the same
terminology here.

We tabulate the cases.

(Ax)"'. Independent derivation using (Ax)'’.

(We).  Re-apply (We).

(Bj,)".  Re-apply (Bj,)’, unless (Ke)' is applied solely to element(s) of the
extensional multiset, ...,(c;B),..., in which case, the conclusion
can be independently derived using (Bj,)’.

(Bj2)', (Bij)"', (Bij,)"". Similar to (Bj,)".

(T—i)"". Re-apply (T-»i)"’, except where (Ke)’' is applied solely to the
element(s) of either or both of the displayed extensional multisets,
in which case, independently derive the conclusion by using
(T-i)"".

(T=j)". Re-apply (T—j)’, except where (Ke)' is applied solely to the ele-
ment(s) of the extensional multiset, ..., T(A-B),..., in which case,
the conclusion can be independently derived using (T—j)’.

(F—j)"'. Similar to (T-j)’, but with multiset, ...,F(A-B),...

(T-)'.  Similar to (T-j)’.

(TtjI)'. Similar to (T-j)’, but with multiset, ..., Tt,....

For the remaining rules, just reapply the appropriate rule after (Ke)'.

We now eliminate both (Ke) and (Ki) from L,RWK, by absorbing the two
rules together into (Ax) and the conclusion of (T—). Thus, we form
L,RWK, by dropping (Ke) and (Ki), and adding the expanded forms of (Ax)
and (T-), given below.

(Ax)'"". «a[TA]:B[FA]

(T-)"". o:FA y[TB] o:TB y[FA]
YI(BIT(A~B)]:a)] YIBIT(A=B):)] ,

where o can be null, in which case the adjacent ‘:’ ’s and the contexts 8
around T(A->B) are removed. Note that y[TB] can be TB.
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For all the remaining rules, just re-apply the respective rule after (Ke)’ or

(Ki)'.

Theorem 7.

Any formula provable in L,RWK is also provable in LLRWK.

Proof. We add to L,RWK the expanded forms (Ax)’’’ and (T-)'’, and then
simultaneously eliminate the expanded forms (Ke)’ and (Ki)’ of (Ke) and
(Ki), respectively, by induction on the number of proof steps.

(Ke)’ yle] ... [on]
‘Y[aliﬂl] [amlen] >

where each of the o;’s occur in disjoint parts of 7.

(Ki)' yley] ... [on]
yleBi - [eniBa

where each of the e; s occur in disjoint parts of . In tabulating the cases,
we consider both (Ke)’ and (Ki)’ together.

(Ax)""’. Independent derivation using (Ax)’’’, given that (Ax)''' just re-
quires TA and FA to be contained in superstructures which are
elements of the main intensional multiset.

(T-)"". If (Ke) or (Ki) are applied totally within S[T(A-B)] then the con-
clusion is independently derived using (T-»)"". Otherwise, re-apply

(T-')”.

This completes the elimination of the weakening rules and leaves the
contraction rule (We) as the only structural rule, except for the 4 B-rules
of L,TW and LLEW". However, using Giambrone’s reduction method of [4],
for each of the five Gentzen systems, L,DW-L,RWK, there is never any
need for more than one repetition of an element in an extensional multiset,
and thus (We) is never applied to the same elements more than once in
succession. In the process of proving this, (Ke) can be assumed, as we have
shown it to be admissible. Giambrone’s overall decision procedure does not
apply to L,EW", because of the t-elimination rules, but, nevertheless, his
use of reduced derivations does still apply, which yields the above restric-
tion on structures.
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6. Containment of the Gentzen Systems in the Corresponding Hilbert Sys-
tems.

In order to relate the Gentzen systems above with each of the five logics,
we need to show that the derivable formulae of each of L,DW-L . RWK are
contained in their corresponding Hilbert system, DW-RWK, which, together
with the containment of these Hilbert systems in their respective Gentzeniza-
tions, LDW-LRWK, will complete the cycle of containments. Thus, all of
the various systems representing each of the five logics will have the same
set of derivable formulae.

Theorem 8.

Any formula derivable in L,DW, L,TW, LEEW', LRW or LRWK is also
derivable in the corresponding Hilbert system, DW, TW, EW, RW or
RWK.

Proof. We require an interpretation into the corresponding Hilbert system,
for each structure in LDW, L,TW, L.EW', LRW and L, RWK. This is
determined inductively on structures, as follows :

(i) ITA) = A.

(i) IFA) = ~A.

(iii) I(eryy ooonery) = o) & ... &I(er,).

(iv) Ko:B) = I(e)®BI(B)), for LLDW, L,TW and L,EW".

V) Koy: ... i) = Ho)® ... Bl(ex,), for LRW and LLRWK, where ‘@’
is associative.

(vi) Ko;6) = () o I(B), for L,DW, L,TW and L. EW",

For all these logics, A@B = ~(A—-~B)

for L.DW, L,TW and L EW", “ o’ is represented by the additional two-way
rule, A->B-C & AoB-C, and

for LJEWt ‘t’ is represented by the additional rule, A © t—A.

Once the interpretation I is determined for a structure proved in one of
L,DW-L,RWK, we finally prefix ‘ ~ * as the structures are regarded as “left-
handed™. It is this negated interpretation which is used for mapping struc-
tures of L,DW-L,RWK to formulae of the respective Hilbert system, DW°,
TW?°, EW®', RW° or RWK".

We show that, under this negated interpretation, each axiom of L,DW-
L,RWK is a theorem of the respective DW°-RWK®° and each rule of
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L,DW-L.RWK yields a derived rule of the respective DW°-RWK®°. Most
steps are straight-forward and we just pick out the key theorems and derived
rules of DW°-RWK?°, :
The following derived rules and theorems apply, for all 5 logics :

A-B C&A - C&B
A&C - B&C
COPA-CODB
A®C - B®BC
CoA-CoB
AoC—-BoC

by

(These yield A»B = y'[A] — 4'[B], for any context v’, made up of ‘&’,
‘@’ and ‘ o’. This is used for all single premise rules.)

(AVB)&C - (A&C) V (B&C)
C&(A VB) - (C&A) Vv (C&B)
(AVB)®C - (ABC) v (BSC)
C®(AVB) - (CHA)V (COB)
(AVB)oC = (AoC)V(BoC)
Co(AVB) - (CoA)V(CoB)

(These yield y'[AV B] = y'[A] V ¥'[B], where v' is a context as above,
and are for (F&) and (TV).)

The following are additional key theorems of TW® and EW°".
(AoB)oC—=Ao(Bo()

(AoB)oC—+Bo(Ao()

Ao B®C) > (AoB)®C

ADBSOC) »BD(A0C)

The following are additional key theorems of EW°* :

A—-Aot
A->tDA

For RW*®, we add the key theorem, Ao (Bo C) «» (AoB)oC.

This will then suffice to show that any formula derivable in one of L,DW-
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L,RWK will be derivable in its corresponding Hilbert system, DW®°, TW®,
EW*!, RW® or RWK®°. Due to the conservative extension results for ‘o’
and ‘t’ for the respective logics, given in [6], pp. 350-4 and 365-6, since
the formulae involved do not contain ‘o’ or ‘t’, the above derivability
extends to DW, TW, EW, RW or RWK. This completes the theorem.

By the results of [2] and [3], any formula which is derivable in one of the
Hilbert systems, DW, TW, EW, RW or RWK, is also derivable in its
respective Gentzen system, LDW, LTW, LEW', LRW or LRWK. This then
completes the cycle of containments and yields the following theorem.

Theorem 9.

() DWESLDW S LDW S LDW < L.DW S LDW S DW.

(ii) TWCLTWSLTWCLzTWCLgTW LTW © TW.

(ii) EW € LEW' € LEEW' € LEEW' € L.EW' € LEEW' € EW.

(ivv RW € LRW € LRW S LRW S LRW S LRW € RW.

(vv RWK <& LRWK < LRWK & LRWK &£ L,RWK
€ LRWK € RWK.

Proof. By [2] and [3], and Theorems 1-8.
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