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SEMI-ANALYTIC TABLEAUX FOR PROPOSITIONAL NORMAL
MODAL LOGICS WITH APPLICATION TO NONMONOTONICITY

Rajeev GORE

Abstract

The propositional monotonic modal logics K45, K45D, §4.2, S4R and
S4F elegantly capture the semantics of many current nonmonotonic
formalisms as long as (strong) deducibility of 4 from a theory ', T'
A, allows the use of necessitation on the members of I'. This is usually
forbidden in modal logic where T is required to be empty, resulting in
a weaker notion of deducibility.

Recently, Marek, Schwarz and Truszczyriski have given algorithms
to compute the stable expansions of a finite theory T' in various such
nonmonotonic formalisms. Their algorithms assume the existence of
procedures for deciding (strong) deducibility in these monotonic modal
logics and consequently such decision procedures are important for
automating nonmonotonic deduction.

We first give a sound, (weakly) complete and cut-free, semi-analytic
tableau calculus for monotonic S4R, thus extending the cut elimination
results of Schwarz for monotonic K45 and K45D. We then give sound
and complete semi-analytic tableau calculi for monotonic K45, K45D,
54.2 and S4F by adding an (analytic) cut rule. The proofs of tableau
completeness yield a deterministic satisfiability test to determine theo-
remhood (weak deducibility), -, A, because all proofs are constructive.
The techniques are due to Hintikka and Rautenberg. We then show that
the tableau calculi extend trivially to handle (strong) deducibility, I' +
A, for finite T'.

Using a general theorem due to Rautenberg we also obtain the (weak)
interpolation theorem for K45, K45D, §4.2 and S4R.

Keywords.: modal theorem proving, semi-analytic tableaux, nonmono-
tonic modal logic.
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1. Introduction

Propositional modal logics have been used to model epistemic notions like
knowledge and belief for quite a while now where the formula (A is read
as “A is believed” or as “A is known”. Given a (monotonic) modal logic
§ and a set of formulae T', the formula A is a monotonic consequence of I'
in § if it is deducible in § from T, usually written as T g A. The set I' is
usually called a theory and the monotonic consequences of I' in § are all the
formulae deducible from I' in §; that is CndT") = {4 | T 4 A}. The
system is “monotonic” in that if A is in CngT') then it will be in CnyI™) for
any superset I'" of T".

To obtain nonmonotonicity we assume —1[JA (“A is not known™) if there
is no deduction of 4 in § from I" and previous assumptions. More formally,
the theory T is an S-expansion of theory I' if it satisfies the equation T =
CngT U {—04A4 | A &€ T)}. Since T appears in the right hand side, the
definition is circular, and consequently, a theory I' may have zero, one, or
more S-expansions. To compensate for this phenomenon, the set of non-
monotonic consequences of I' in § is usually defined as the intersection of
all S-expansions of I'. The new system is “nonmonotonic” because, although
A may be a nonmonotonic consequence of I', it may not be a nonmonotonic
consequence of a superset of T".

Concurrently, various nonmodal formalisms have also been used to model
epistemic notions giving rise to default logics and autoepistemic logics.
Recently, the nonmonotonic modal logics based on the (monotonic) modal
logics K45, K45D, S4R, §4.2 and S4F have been shown to capture the
minimal model semantics for some of these nonmodal nonmonotonic for-
malisms; for example, nonmonotonic K45D captures the semantics of auto-
epistemic logic while nonmonotonic S4F “naturally generalises default logic
and autoepistemic logic”[Sch, Trua, Trub, ST]. Indeed, Marek, Schwarz
and Truszezyfiski [MST91] give algorithms to compute the S-expansions
of a finite theory I in a wide class of nonmonotonic modal logics. However
their algorithms assume the existence of effective procedures for deciding
deducibility, I 4 A, in the underlying (monotonic) modal logic S. There-
fore decision procedures for deducibility in these particular (monotonic)
modal logics are crucial for automating nonmonotonic deduction in both
modal and nonmodal formulations,

Using the technique of semi-analytic tableaux we provide deterministic and
nondeterministic decision procedures for deducibility in monotonic K45,
K45D, S4R, §4.2 and S4F. Specifically, we give sound and complete (non-
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deterministic) tableau systems for deciding theoremhood in each of these
(monotonic) modal logics. Each proof of tableau completeness is construc-
tive thereby yielding a deterministic test for satisfiability and hence a deter-
ministic test for theoremhood. The system for S4R does not have the subfor-
mula property but is cut-free proving that Gentzen’s cut-elimination theorem
holds for S4R. The systems for $4.2 and S4F also break the subformula
property and require an analytic cut rule for completeness but remain de-
cidable. Cut-free systems for monotonic K45 and K45D have been given
already by Schwarz [Shv89] in sequent form, but by adding an analytic cut
rule we obtain greatly simplified completeness proofs. The techniques are
due to Hintikka and Rautenberg [Rau83, Rau85].

In (monotonic) modal logic, the ability to decide theoremhood in a logic
L does not automatically enable us to decide (strong) deducibility, I' -, 4,
in L because theoremhood is defined only when I' is empty. The tableau
calculi can be extended to handle deducibility, in a trivial way, as long as
I' is finite.

The outline of the paper is as follows. In Section 2 we give definitions of
the syntactic and semantic concepts we need. In Section 3 we review Rau-
tenberg’s tableau formulation which is slightly different than the standard
one due to Smullyan and Fitting [Fit83]. In Section 4 we prove soundness
and completeness. In Section 5 we discuss the nondeterministic and deter-
ministic decision procedures obtainable from these proofs. In Section 6 we
show that the structural rules in our systems are also eliminable. In 7 we
show how to extend our tableau procedures to handle strong deducibility
and in Section 8 we relate the tableaux systems to sequent systems. In
Sections 9 and 10 we mention related work and further work.

2. Definitions and Notational Conventions
2.1 Propositional Normal Modal Logics

We consider only propositional modal logics. We use a denumerable set of
primitive propositions ® = {p,, p,,...} and use A, = and OJ as primitives.
Then the other usual connectives are defined as abbreviations: (4 v B) =
(7(m4 A 7B)); (A=B) = (—(A A —B)); and (¢ A) = ("~ A) where
the = sign is merely a meta-linguistic notation. We also use 0 to denote a
constant false proposition and use & to denote the empty set.

The definition of (well formed) formulae is as usual. Lower case letters
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like p and ¢ denote members of ®@. Upper case letters from the beginning
of the alphabet like A4 and B together with P and Q (all possibly annotated)
denote formulae. Upper case letters from the end of the alphabet like X, Y,
Z (possibly annotated) denote finite (possibly empty) sets of formulae.

The logics we consider are all normal extensions of the minimal normal
modal logic K and are axiomatised by taking the rules of necessitation and
modus ponens as inference rules, by taking the axiom schemas of classical
propositional logic, and by taking K and combinations of formulae from
Figure 1 as further axiom schemas. For an introduction to modal logics see
[HC84].

The name of a logic is usually formed by concatenating the names of its
(modal) axiom schemas to X to denote that the logic is a normal extension
of K. However we use the traditional names of the more famous logics; for
example §4 is K74 and §4.2 is KT42. The logic S4R is also known in the
literature as $4.4 and as SW5, while S4F is also known as §4.3.2 [Seg71].

2.2 Deducibility and Theoremhood

A deduction of a formula A in logic L from a finite set of formulae T is a
finite sequence of formulae 4,, A,,..., A4, such that 4, = A and each 4, is:
(1) a member of T; or (2) an instance of an axiom schema of L; or (3) equal
to 04, for some j < i; or (4) obtained from some A; and A, via modus
ponens where k < i and j < i. We write T' , A to indicate there is a
deduction of A4 in L from T.

This notion of deduction is stronger than the one usually employed in
modal logic where “I' =, A” corresponds to the statement that for some
finite subset {4,, A,,..., A,} of T, wehave -, A, A A, A..A A, = A
[Gol87]. For example, p -, Op is a perfectly legal deduction in our for-
mulation but +, p= [p is rarely a theorem in modal logics. If T is empty
then the two notions coincide and we say that 4 is a theorem of L if -, A.
Clearly, the deduction theorem is the key but for most of this paper we shall
deal with the weaker notion called theoremhood.
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Axiom Defining Alternative
Name Formula Names

K 0@ = B)= (JA = 0OB)

OA= 4 M
OA4A= 004

CA=[010A4 E

o 04 = (4 = OA) w5
(O@EA=B)) v (¢OB=4)
CcOA=0¢9¢04

T
4
5
D OA= ¢4
R
F
2

Figure 1 : Axiom names and associated schemas.

L L-frame

K45 | type 1: al lone cluster (degenerate or nondegenerate); or
type 2 : a degenerate cluster followed by a nondegenerate
cluster

K45D | type 1 : a lone nondegenerate cluster; or
type 2 : a degenerate cluster followed by a nondegenerate
cluster

S4R | type 1 : a lone nondegenerate cluster; or
type 2 : a simple cluster followed by a nondegenerate clus-
ter

S4F | a sequence of at most two nondegenerate clusters

S4 any reflexive and transitive frame

§4.2 | any reflexive, transitive and convergent frame

Figure 2 : Definition of L-frames.
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2.3 Kripke Semantics

We assume familiarity with the notions of Kripke frames (W, R) and Kripke
models (W, R, V). A possible world w satisfies an atomic formula p if and
only if w € V(p). We write this as w |=p and write w Fp to mean “not
w [ p”. The semantics of the other connectives and modal operators are
as usual.

We often use annotated names like w, and w, to denote possible worlds.
Unless stated explicitly, there is no reason why w, and w, cannot name the
same world. We use R as a name of an axiom schema and also for the
reachability relation but the context should make clear which R is meant.

In any model (W, R, V), a formula A is true in a world w € Wifw |
A. A formula A4 is valid in a model M = (W, R, V), written as M | A, if
it is true in all worlds in that model; that is, if vw € W, w |=A. A formula
A is valid in a frame F = (W, R), written as F = A, if A is valid in all
models based on F ; that is, if vV, (W, R, V) £ A. Suppose C is a class
of models, or of frames. A formula A is valid in a class C, written as C
[ A, if it is valid in every member of C. An axiom is said to be valid in
a model (valid in a frame) if all instances of that axiom have that property.
If we have a set of formulae X then M | X (F  X) denotes that all mem-
bers of X are valid in M (F).

Let C be either a collection of models, or of frames. Then logic L is
sound with respect to C if for every formula A we have that -, 4 implies
C | A [HC84]. Logic L is complete with respect to C if for every formula
A we have that C = A implies +, 4 [HC84]. A logic L is determined or
characterised by a class C if it is both sound and complete with respect to
C; that is, when C | A iff ~, A.

A frame (W, R) is: reflexive if vw € W, w R w; transitive if ¥ w,,w,,w,
€ W, w; Rw, and w, R w, implies w, R w;; serial if vw, € W,3w, €
W, w; R w,, symmetric if v w,, w, € W, w, R w, implies w, R w,; and
convergent itV w,, w, € W, 3w, € W, w, R w, and w, R w, (where i and
J are positive integers).

If (W, R) is a frame where R is transitive, then a cluster C is a maximal
subset of W such that for all distinct worlds w and w’ in C we have wRw’
and w’Rw. A cluster is degenerate if it is a single irreflexive world, other-
wise it is nondegenerate. A nondegenerate cluster is proper if it consists of
two or more worlds. A nondegenerate cluster is simple if it consists of a
single reflexive world. Note that in a nondegenerate cluster, R is reflexive,
transitive and symmetric. If the frame is transitive and convergent then there
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is guaranteed to be a last cluster which is reachable from every other clus-
ter. In the case where the clusters form a tree (or a linear sequence), the
leaf nodes are known as final clusters. For an introduction to Kripke frames,
Kripke models and the notion of clusters see Hughes and Cresswell [HC84].
A frame is an L-frame if it meets the conditions for L as shown in Figure
2. It is known that logic L is characterised by the class of all L-frames
[Seg71, pages 77-78 and 160], [Sch]. Then, a model M = (W, R, V) is an
L-model if (W, R) is an L-frame. Also, M is an L-model for (a finite set of
formulae) X if there exists w € W such that w = X. Recall that w | X
means that w |= A for all A € X. A formula 4 is L-valid iff A is valid in
all L-models, and hence in all L-frames. A finite set X is L-satisfiable iff
there exists an L-model for X. So, X is L-unsatisfiable iff there are
no L-models for X.

3. Semantic Tableaux and Tableau Rules

Since our tableau systems work with finite sets of formulae, we use the
following notational conventions: (1) P and Q stand for formulae; (2) U,
X, Y, Z stand for finite (possibly empty) sets of formulae; (3) “X; Y stands
for X U Y, (4) “X; P” stands for X U {P}; (5) OX stands for {OP | P
€ X} and (6) ~OX stands for {~OP | P € X}. To minimise the number
of rules, we work with primitive notation in terms of =, [J and A . Each
of our tableau rules has a dual rule which can be easily obtained by using
the definition of ¢ as =[] —. The tableau systems and the completeness
proofs are based on those of Rautenberg [Rau83].

3.1 Syntax of Tableau Systems

Tableau systems consist of a collection of tableau (inference) rules. A ta-
bleau rule consists of a numerator above the line and a list of denominators
(below the line). The denominators are separated by vertical bars. The
numerator is a finite set of formulae and so is each denominator. We use
the terms numerator and denominator rather than premiss and conclusion
to avoid confusion with the sequent terminology.

Figure 3 shows the tableau rules we require. Each tableau rule is read
downwards as “if the numerator is L-satisfiable, then so is one of the de-
nominators”. A tableau calculus is a finite collection of tableau rules iden-
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tified with the set of its rule names. Thus the tableau calculus for propositio-
nal classical logic PC is CPC = {(0), (1), (8), (A), (V)}. The other
tableau calculi we consider are shown in Figure 4. The (§4.2) rule is the
only potentially dangerous rule since its denominator contains a formula to
which the rule can be applied in an endless fashion. To forbid this the new
formula is marked with a star and the (§4.2) rule is restricted to apply only
to non-starred formulae. All other rules must treat starred formula as if they
were non-starred.

Following Rautenberg [Rau83, Rau85], a CL-tableau for X is a finite tree
T with root X whose nodes carry finite formula sets stepwise constructed
by the rules of CL according to: if a rule with n denominators is applied to
a node then that node has n successors with the proviso that if a node E
carries a set Y and Y has already appeared on the branch from the root to
E then E is an end node of T. A tableau is closed if all its end nodes carry
{0}. A set X is CL-consistent if no closed CL-tableau for X exists.

When formulated using sets rather than multisets, tableau systems include
an implicit rule of contraction since the set X; P; P is the same as the set
X; P. In order to eliminate contraction, we explicitly build contraction into
the rules. For example, the (7) rule contains a form of contraction on (JP
since (JP is carried from the numerator into the denominator. We return
to this point later in Section 6.

The subformula property for tableau systems in primitive notation is
slightly different than that for sequent systems. In a sequent I' — A, the
left side and right side of the sequent arrow respectively act as signs repre-
senting “true” and “false”. In fact, Fitting makes these signs explicit in his
signed tableau [Fit83]. In our tableau systems, the formulae from the right
side of the sequent arrow appear with an extra negation sign in the tableau
node carrying I' U —A. Hence the “subformulae” we need to consider in
our tableaux must contain the negated versions of the sequent subformulae.
The following definitions cater for this change.

X;PAQ OPﬁP X, (PAQ)
(4) X:P,0 © 0] v X;mP | X;mQ
X;— P XY x,ap

(™) 0 —- (V) B —

X;P X X:0OP,P
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0x,-0y;-0OpP s Ox;-~0OpP
4 ——— —————
) X;,0x;,-~0Oy,-0pP; P (54 UX;—P
ux; -0y, -0°pP
(45D) X.0X.~0OY. - 0P —P where Y;P may be empty
X;~Qap

R
® X;-~0pP;,-P | X;~OP,O0-0OP,P

v,0x;-0p,-03OY
v;,0x;-~0p,0-0pP | OX;-OP;,~0OY; P
X;-0Or

54.2 here —1P is not starred
42 N ~OP,0-0P | X,-0P.0(<0 - Cpy-here "Pismots

(S4F)

X;2(PAQ)
X;2PmQ | X;0PQ | X;PmQ
X;-gp
Xy OFP | X»0OPP

X.arp
X;0pPP | X;0OP;-P

(sfc)

X;m(PAQ) X;-Op
X;7P2Q | X,mPQ | X;P;mQ X;-OPP | X,-0OP;-P

(sfcT)

Figure 3 : Tableau rules



82 RAJEEV GORE

CL Static Rules Transitional Rules  Structural Rules
CPC 0),(7),(A), (V) . ()]
CS4 0),(7),(A),(V),(D (54) ()]
CK45 ©0),().(A)(Vv) (45) (6)
CK45D  (0),(7),(A) (V) (45D) ()]
CS4R 0),(7),(A),(V),(D),(R) (54) )
CK451  (0),(m),(A),(sfe) 45) (6)
CK45DF  (0),(7),(A),(sfo) (45D) )
C84.27  (0),(7),(A),(sfeD)(T),(54.2) (549 (6)
CS4FF  (0),(7),(A),(sfeD),(D),(54.2) (S4F),(54) (6)

For a formula 4, the finite set of all subformulae Sf{4) is defined inductively
as usual where A € Sfid). For any finite set X :

- let SAX) denote the set of all subformulae of all formulae in X;
- let 75A(X) denote {—P | P € SAX)};

- let X denote the set SAX) U —SAX) U {0} ;
- let Xogys = X;‘Kﬁf~= Xevaso = Xewaspr = X;
- let Xooe = SROX).

- let Xog o = Xesy = SROOX).

Thus, the set carried by any node in any CL-tableau for X must be a subset
of X¢;. A tableau system CL has the subformula property if X;, = X, and
when this holds, CL is said to be analyric [Fit83). If X C X., then CL
breaks the subformula property and is said to be semi-analytic since CL may
not be a decision procedure. However, as long as X, is finite then any CL-
tableau for X is guaranteed to terminate (for finite X) and there are only a
finite number of such tableaux, so that even a semi-analytic CL is a decision
procedure. Some of our systems are semi-analytic since they break the
subformula property, and some even contain an (analytic) cut rule, but in
each case, X, is finite.

Intuitively, we can associate the numerator and the denominator of a
tableau rule with possible worlds. We classify a rule as a static rule if the
numerator and the denominator correspond to the same world and classify
a rule as a transitional rule if at least one of the denominators corresponds
to a different world. Note that there is only one explicit structural rule (6).

A set X is closed with respect to a tableau rule if, whenever (an instan-
tiation of) the numerator of the rule is in X, so is (a corresponding instan-
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tiation of) at least one of the denominators of the rule. If C is a finite collec-
tion of tableau rules then a set X is closed with respect to C if it is closed
with respect to each rule in C. For each L, a set X is CL-saturated if it is
CL-consistent and closed with respect to the static rules of CL.

Lemma 1 For each CL-consistent X there is an effective procedure to con-
struct some finite CL-saturated X" with X € X* € X,.

Proof: The proof is based on the facts that: (0) is not applicable at any stage
since no CL-tableau for X closes by supposition; that each sequence of rule
applications is guaranteed to terminate (possibly with a cycle); and that each
rule application is guaranteed to give at least one CL-consistent denominator.
That is, X" is obtained as the union of stepwise tableau rule applications.
Since each tableau rule maps a subset of X;, to another subset of X},, we
must have X € X7, ke

Such CL-saturated sets are important because they provide a direct connec-
tion between the syntactic and semantic aspects of tableau systems. This is
the subject of the next section.

3.2 Soundness and Completeness of Modal Tableau Systems

For soundness we have to show that for each CL-tableau rule: if the nume-
rator is L-satisfiable then at least one of the denominators is L-satisfiable.
For completeness we have to show that if there is no closed CL-tableau for
X then X has an L-model (i.e. there is an L-model which is an L-model for
X). The basic idea is due to Hintikka.

The following definition from Rautenberg [Rau83] is central for the model
construction mentioned above. A model graph for some finite fixed set of
formulae X is a finite L-frame (W, R) such that all w € W are CL-saturated
sets with w S X, and

(i) X< w,for somew, € W;

(i) if "OP € w then there exists some w’ € W with wRw’ and ~P €

w

2

(i) if wRw’ and OOP € wthen P € w’.
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Lemma 2 If (W, R) is a model graph for X then there exists an L-model for
X at node w, [Rau83]

Proof: Suppose (W, R} is a model graph for X. Then w, is CL-saturated.
Take the valuation V from atomic propositions to subsets of W, where V :
p b {w € W | p € w}. Using simultaneous induction on the degree of
P € wit is easy to show that: (a) P € w impliesw = P and (b) ~P €
w implies w B P. By (a), w, | X, hence (W, R, V) is an L-model for
X. u

This model graph construction is similar in spirit to the subordinate frames
construction of Hughes and Cresswell [HC84] except that they use maximal

consistent sets and do not consider cycles, giving infinite models rather than
finite models.

4 Soundness and Completeness
4.1 Soundness

Theorem 1 (soundness) : If L is one of K45, K45D, 54, S4R, 54.2 and S4F
then the tableau calculi CL and CLt are sound with respect to L-frames.

Proof . 1t is easy to show that the rules (0), (—), (A), (@), and (V) are
sound with respect to all our L-frames. The (sfc7) rule is merely a reflexive
counterpart of the (sfc) rule.

The soundness proofs of the modal rules are very similar so we give the
intuitions behind the more arcane rules.

Proof for (S4F) for S4F-frames : Suppose (W, R, V) is an S4F-model con-
taining a world w, such that w, | U; OX; =0OP; =Y. Thus there exists
a world w; with w,Rw,; and w, | OX; —P by transitivity. There are two
cases depending on whether w, appears in a final cluster or in a nonfinal
cluster.

Case 1: If w; occurs in a nonfinal cluster C, then w, must also occur in
Cy Also, since R is universal over nondegenerate clusters we must have
w,Rw,. Hence by transitivity w, | OX; =P; ~0OY: =[P and we are
done.
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Case 2: If w, occurs in a final cluster C, then w, | —~OP by reflexivity
of R. But then, regardless of where w, occurs, we must have w, | -0 P
and hence w, F U; OX; -0OP; ~0OY; O-0OP. L]

Proof for (45) for K45-frames: Let M = (W, R, V) be a K45-model and
suppose that w, € Wand w, | OJX; ~Y; ~[OP. We have to show that
there exists a w’ € Wsuch thatw’ | X; OX; ~0OY;, ~0OP; —P.

Clearly, the X; [JX part will follow from the transitivity of R so we need
only prove that there exists a w* € Wsuch that w’ | ~(Y: ~0OP; ~P.

If (W, R) is of type 1 then it cannot be a single degenerate cluster since
w, | 7 OP. But it may be a single, proper or simple, (nondegenerate)
cluster. So if (W, R) is of type 1 then there must be some w* € W such that
WRW and w’ | —P. Also, w’ must be reflexive since (W, R) is a non-
degenerate cluster, hence w’ = = (JP; —P. In a nondegenerate (reflexive,
transitive) cluster, R must be symmetric as well, so w’Rw,. But in a reflex-
ive, transitive and symmetric cluster, w, = =Y implies w, | -0,
hence w’ | ~OP; =P; Y and we are done.

If (W, R) is of type 2 then, regardless of whether w, is in the first or last
cluster, there must be some w’ in the last (nondegenerate) cluster such that
W' | 2Psincew, | —OP. Similarly, if ¥ = {Q,, Q....., O, }, then there
must exist (not necessarily distinct) worlds w;, w,,..., w,, in the last non-
degenerate cluster such that w; = —(, for each Q, € Y. Since R is reflex-
ive, transitive and symmetric over a nondegenerate cluster, this means that
w' | -P, 20OP; -~0OY. .

Proof for (45D) for K45D-frames.: Let M = (W, R, V) be a K45D-model
and suppose that w, € Wand w, | 0JX; 20OY; ~JP. We have to show
that there exists a w* € W such that w* | X; OX; ~0OY: =P, =P
allowing for the case where the = [J¥; ~[JP part is missing. Every K45D-
frame is a K45-frame hence the proof above applies when the ~(JY: =[P
part is present. If there are no eventualities in w, then the seriality and
transitivity of R guarantees that there is some world w’ with wRw’ such that
w’ [ X; OX and we are done. u

Prooffor (T) and (S4) for S4, §4.2, S4R, S4F-frames: Straightforward since
R is reflexive and transitive. u

Proof for (R) for S4R-frames: Suppose X; - [P is S4R-satisfiable, we have
to show that X; =P; =P or X; ~0OP; =P: O-0OP is also S4R-satis-
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fiable.

Suppose M = (W, R, V) is an S4R-model and w, € W and w, F X;
—OP. If M is a single nondegenerate cluster then there exists some w, €
Wwith w,Rw, and w, | - P. Since R is reflexive, transitive and symmetric,
w, E 7 P=[0-0P. Hence w, | X; O OP. Otherwise, if M is of type
2 then either w, is the simple (reflexive) cluster C, or it is in the last (reflex-
ive, transitive and symmetric) nondegenerate cluster C..

If w, is the simple (reflexive) cluster C, and w, | —Pthenw, | X; 7 P;
[P by reflexivity of R and we are done.

If w, is the simple (reflexive) cluster C, and w, = P, or if w, is in C,,
then there exists some w, € C, with w,Rw, and w, | —P. Now if w, B
U —~0P then w, F © OP and hence all members of C, would satisfy P
since R is reflexive, transitive and symmetric over C,. In particular, w,
P giving a contradiction. Hence w, | X; O -~0OP. m

Proof for (84.2) for §4.2-frames: Suppose (W, R, V) is an §4.2 model with
some w, € W such that w, F U; ~0OP. If w, | O-~0OP then we are
done, otherwise w, [ [P, which is the same as w, | © JA. Every
§4.2-model is convergent and transitive so there must be a last cluster, and
furthermore, every world w” of this last cluster must make CJP true. Since
w” is in the last cluster we must have w,Rw” for every world w; with w,Rw,
That is, every such w; satisfies © (0P and hence w, | 0 ©OP; ©[JPm

Proof for (§4.2) for S4F-frames : Every S4F-frame is an $4.2-frame. ®

Note that, in general, the denominators of the transitional rules do not
inherit all the formulae of the numerator. Thus, the transitional rules involve
a loss of semantic information about the contents of the parent node.

4.2 Completeness of the cut-free systems

Theorem 2 (completeness) If X is a finite set of formulae and X is CL-consis-
tent then there is an L-model for X on a finite L-frame where L € {54, K45,
K45D, S4R}.

A formula —[JP is called an eventuality since it entails that eventually =P
must hold. A set w is said to fulfill an eventuality ~(JP when - P € w.
A sequence w, < w; <...<w, of sets is said to fulfill an eventuality =P
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when 2P € w, for some w; in the sequence.

Proof for CS4 : The construction of the model graph is due to Rautenberg
[Rau83] where < denotes the immediate successor relation. By Lemma 1
(page 83) we can construct some CS4-saturated X* = w, with X € w, S
Xzs,- If no =P oceurs in w, then ({w,}, {(w,, w,)}) is the desired model
graph since it is an S4-frame and (i)-(iii) are satisfied. Otherwise, let Q,,
Q,....Q,, be all the formulae such that ~0JQ, € w, and = Q, & w,.

Let w* = {P | OP € w,}. Since Ow’ < w,, we know that Ow’ ;
2 0JQ, is CS4-consistent by (6); hence so is each X, = 0Ow’; nQ, fori =
1,....m by (§4).

For each X; we can find some CS4-saturated v, 2 X;, with v, S X, by
Lemma 1. Put w, < v, i = 1,...,m and call v, the Q-successor of w,. These
are the immediate successors of w,. Now repeat the construction with each
v; thus obtaining the nodes of level 2 and so on.

In general, the above construction of (W, <) runs ad infinitum. However,
since w € Wimplies w S X, a sequence w, < w, <... in (W, <) either
terminates, or a node repeats. If in the latter case n > m are minimal with
W, = w, we stop the construction and identify w, and w,, in (W, <) thus
obtaining a circle instead of an infinite path. One readily confirms that (W,
R) is a model graph for X where R is the reflexive and transitive closure of
<. Note that the clusters in (W, R) form a finite tree of finite nondegenerate
clusters giving a finite model [Rau83].

Now (W, R) is an S4-model graph for X so by Lemma 2 (page 84), there
exists an S4-model (W, R, V) which is an S4-model for X where V : p
{we W|pew =

Proof for L = K45 and L = K45D: See [Shv89)] for the original noncon-
structive proofs based on a technique due to Mints. A constructive proof
is given below based on Rautenberg’s proofs.

Suppose X is CK45-consistent and create a CK45-saturated superset w, ©
Xexss Of X according to the recipe given by the proof of Lemma 1. If no
— 0P occurs in w, then ({w,}, @) is the desired model graph since (i)-(iii)
are satisfied.

Otherwise let Y = {Q,, Q,,..., Q,} be all the formulae such that -0
€ wyand letw’ = {P | OP € w,}. Since X is CK45-consistent and CIw’
S w, then w’; Ow’; = 0Y; Q. is also CK45-consistent by (0) and (45)
foreachi = 1,... k.

By choosing one such set and applying all the static rules to this set we
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can form a CK45-saturated set w, S Xg.,s and put w, < w,. We call w, a
Q;-successor of w, and denote this sequence by § = w, < w,.

Now we can apply the same reasoning to obtain a successor for w,. Con-
tinue construction of one such sequence § = w, < w, <... always choosing
a successor w,,, that fulfills an eventuality which is unfulfilled by the cur-
rent S, and when this is impossible, choosing a successor that is new to the
sequence. Since Xc, is finite, we must sooner or later come to a node w,,
such that the sequence § = w, < w, <...< w,, already contains all the suc-
cessors of w,,. That is, it is not possible to choose a new successor. Choose
the successor w, of w,, that appears earliest in § and put w,, < w, giving §
=W, <w, <<w, << w, < w,. There are two cases to consider depen-
ding on whether x = Q or x # 0.

Case 1 :1f x = 0, put R as the reflexive, transitive and symmetric closure
of < over W = {w,, w,,..., w,}. This gives a frame (W, R) which is a
nondegenerate cluster of type 1.

Case 2 :1f x # 0, put W = {w,, w,, w,_,,..., w,}, discarding w,, w,,...,
W,,, and let R’ be the reflexive, transitive and symmetric closure of < over
W\{w,}. Thatis, R = {w, w) | w, € W, w, € W, i = x,j = x}. Now
put R = R U {(w,, w,)} and let R be the transitive closure of R*’. The
frame (W, R) is now of type 2.

Property (i) is satisfied by (W, R) by construction. We show that (ii) and
(iii) are satisfied as follows.

Proof of (ii): The (45) rule carries all eventualities from the numerator to
the denominator, including the one it fulfills. Therefore, for all w, € W we
have ~"[JP € w, implies "0JP € w,,. But we stopped the construction at
w,, because no new successors for w,, could be found. Hence there is a P-
successor for each eventuality =P of w,. Since we have a cycle, and
eventualities cannot disappear, these are all the eventualities that appear in
the cycle. Furthermore, we chose w, to be the successor of w,, that was
earliest in the sequence §. Hence all of the eventualities of w,, are fulfilled

by the sequence w, R...R w,. All the eventualities of w, are also in w,,
hence (ii) holds.

Proof of (iii): The (45) rule carries all formulae of the form (P from its
numerator to its denominator. Hence (1P € w and w < v implies that P
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€ vand [JP € v. But we know that w, <...< w,, <w, forms a cycle, hence
(iii) holds as well. B

Proof for L = K45D : If the (45D) rule is ever used with no eventualities
present then this can only happen when w, contains no eventualities [Shv89].
For if w, contained an eventuality then so would all successors. So if w,
contains no eventualities and no formulae of the form O P then ({w,}, {(w,,
w,)}) is the desired model graph. This gives a frame of type 1.
Otherwise, let ¥ = {Q,,..., Q,} be all the formulae such that =[JQ, €
w, and let P,,..., P, be all the formulae such that OOP, € w,. If Y is not
empty then create a successor w, for w, using (45D) for some Q. Other-
wise, create a successor w, using (45D) for some P, Continue creating
successors in this exclusive-or manner using (45D), always choosing a
successor new to the sequence until no new successors are possible. Choose
W, as the successor nearest to w, giving a cycle w, <...< w, <...< w,, < W,
and discard w;, w,,... w,, as in the previous proof if necessary. As in the
previous proof, x = 0 gives a frame of type 1 and x # 0 gives a frame of
type 2. Properties (i)-(iii) can be proved in a similar manner. L]

Proof for §4R: Suppose X is CS4R-consistent, then no CS4R-tableau for X
closes. Create a CS4R-saturated w, with X S w, S Xg, as usual. If w,
contains no eventualities then ({w,}, {(w,, w,)}) is the desired model graph.

Otherwise let E, = {~0P € w, | =P & w,} = {—~0OP,, ~0OP,, ...,
0P} be the eventualities of w, not fulfilled by w, Note that for any
CS4R-saturated w with "[JP € w, we have either =P € wor O~0OP
€ wby (R). In particular, we have [J =P € w, for each member of E,.

Letw = {Q | OQ € w,}. Then Ow’ ; =P, is CS4R-consistent by (6)
and (§4) for each i = 1...k. Create a CS4R-saturated successor w, for any
—0P € E, and put § = w, < w,. Since w, contains =P it must be dif-
ferent from w,. Furthermore, O—~0OP, € w, so that O~OP, € w, and
—0P; € w, by (54) and (T) respectively for each i = 1...k.

Since CS4 < CS4R we can now create an S4-model-graph rooted at w,
which is a finite tree of finite nondegenerate clusters. Consider any final
cluster C of this §4-model-graph, discarding all other nodes, except w,. If
W, is duplicated in C then discard w, else put § = w, < C. Let R be the
reflexive and transitive closure of < over § or C as the case may be.

Any eventuality 0P € w, is either fulfilled by w, itself because =P
€ w,, or it is carried into C by (54) because 0 ~JP € w, by (R). But
if "[JP € w, € C then the final cluster C fulfills =P within C, Pro-
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perties (i)-(iii) then hold and hence (W, R, V) is a model graph for X where
Vip={w€&€ W|p€E w}.
]

4.3 Completeness for Tableau Systems Containing Analytic Cut

The tableau systems for S4F and $4.2 require the analytic cut rule (5fc) of
Smullyan for completeness. Adding analytic cut to the systems for K45 and
K45D simplifies the completeness proofs and gives a more direct satisfiabil-
ity test, as shown below.

A set X is subformula-complete if P € SfiX) implies that either P € X
or 7P € X. A crucial consequence of adding analytic cut is the following
lemma.

Lemma 3 If X is closed with respect to {(0), (—), (\), (sfc)} or with respect
to {(0), (7), (N), (sfcT), (T)} then X is subformula-complete.

Proof: Obvious. ®

Also note that if w < vthen v S w where w = w U —w U {0}; that is,
the analytic cut rule can introduce new formulae of the form =P into v only
if P € S§fiw). This is crucial for the completeness proofs.

Theorem 3 (completeness) If X is a finite set of formulae and X is CL¥-
consistent then there is an L-model for X on a finite L-frame where L €
{K45, K45D, 54.2, S4F}.

Prooffor K45: Suppose X is CK45%-consistent and create a CK45+-saturated
superset w, with X © w, S X, as usual, If no =[JP occurs in w, then
({wo}, ) is the desired model graph since (i)-(iii) are satisfied.

Otherwise, let Q;, Q,,..., Q,, be all the formulae such that =[1Q, € W,
and create a Q-successor v; for each Q, using the (45) rule. This gives all
the nodes of level 1, so put w, < v, for each i = 1...m, and stop!

Consider any two nodes v, and v, with i # j. Using the facts that each
node is subformula-complete and there are no building up rules, we show
that (a) L1P € v, implies OP € w, implies P € v;and JP € v; and (b)
= 0P € v, implies "OP € w, implies there exists a v, such that =P €
V;. Properties (iii) follows from (a) and property (ii) follows from (b).
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Proof of (a): Suppose P € v, Then OOP € Sfiw,) and so JP € w, or
0P € w, since w, is subformula-complete. If =[JP € w, then ~IP
€ v, by (45), contradicting the CK45-consistency of v. Hence OP € W.
Note that this holds only because the (45) rule carries — [P into its denomi-
nator along with = [Y.

Proof of (b): Suppose P € v, Then OP € §fiw,) and so OP € w,
or ~L1P € w, since w, is subformula-complete. If 1P € w, then OP €
v; by (45), contradicting the CK457-consistency of v. Hence (P € w,.
The crux of the proof is that (45) preserves all formulae of the form CIP.

Hence we can put v, R v; R v, for all v, and v, giving a reflexive, transitive
and symmetric nondegenerate cluster. If we also put w, R v, forall i =
1...m, then we obtain a K45-frame of type 2. If some v, = w, then we
obtain a K45-frame of type 1. In either case, (i)-(iii) are satisfied giving a
model graph and hence a K45-model for X. =

Proof for K45D: Similar to previous proof except that we create one single
successor v using (45D) if w, contains (J-formulae but contains no even-
tualities. It is easy to show =P € v implies 7" [0P € w, which in turn
implies that v also contains no eventualities. It is also easy to show that (1P
€ vimplies JP € w, implies P € v so we can let W = {w,, v} and let
R = {(wy, v), W, W)}. .

Proof for §4.2: Suppose X is CS4.2-consistent, then no CS4. 2+-tableau for
X closes. Construct some CS4.2%-saturated set w, containing X as usual.

Let P;, P,..., P, be the formula such that ~OJP, € w, and =P, & w,.
These are the unfulfilled eventualities of w,. Create a tree of successors
using the (54) rule as for §4, giving a finite tree of finite nondegenerate
clusters. The tree is not an §4.2-model graph since it does not have a last
cluster. We show that all the final clusters can be merged into one last
cluster.

Every final cluster fulfills all its own eventualtities by construction so we
need not worry about property (ii). Suppose C, and C, are two arbitrarily
chosen final clusters and suppose that some node ¢, € C, contains (OP. We
show that there exists some node ¢, € C, with OP € ¢,. If this holds then
we can form C = C, U C, U...U C,, where each C, is a final cluster and
let wRw’Rw for all w, w* € C giving a last cluster.
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Fact 1: If w < vand —~[JQ is marked in w then it is also marked in v. That
is, any marked formula ~0Q € w is the result of (7) on O~0Q € w.
Since (§4) preserves [1-formulae, we must have {1~0Q, ~JQ} S v
where = [JQ is also marked.()

Fact 2: If w < vand OP € v then OP € SAw).

Proof of Fact 2: The only way for [J-formulae from outside Sfiw) to appear
in v is via the (§4.2) rule. This rule is driven by formulae of the form
-0OP.

So suppose that some [JP € v is lifted by (§4.2) to give O-~0OP €
vor 00O -0OP € v. The (54.2) rule is not applicable to its own creations
so [P itself was not the result of a building up operation. Hence ~JP
€ wand LIP € §fiw), so either OP € wor -OP € w. As usual, the
former implies that OP € v giving a contradiction, so we must have =[P
€ w. Now by Fact 1 we know that =P is non-starred in w, hence by
(54.2) we have either 0-0OP € wor O-0O-0OP € w.

Fact 3: If w < vand ~[OP € v then OP € Sfiw). The proof is similar
to the previous proof,

Fact 4 : By applying Facts 2 and 3 repeatedly we can show that any descen-
dant v of w, must satisfy v S w,.

So suppose LIP € ¢, € C,. Then by Fact 4 we must have OP € Sfw,),
and hence either OOP € w,or ~0OP € w,. If OP € w, then we are done
because all the final cluster nodes are descendants of w, and hence will
contain [JP. Otherwise, "[0P € w,. If "[JP is non-starred then by (§4.2)
we must have J-0OP € wyor OO 0P € w,. If it is starred then we
must have (1P € w,.

If L1=0P € w,then O-0OP € ¢, and hence ~0OP € ¢, by (7). But
this contradicts the supposition that JP € c;; hence 1P & w,. This
means that =[JP € w, cannot be starred and then by (§4.2) that
U-0-0P € w,

Therefore {L1~0-0OP, -0 ~0OP} < ¢ for all worlds ¢, € C,. Since

(") This aspect complicates the completeness proofs for multisets because we then have to
check that this hold for this particular occurrence of = [1Q.
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C, fulfills all its own eventualities there must be some node ¢, € C, that
fulfills ~0J—~0P; thatis "~ OP € c, and hence OP € c,. But then OP
€ ¢ for all ¢; € C, since C, is a final cluster, and we are done. w

Proof for §4F: The proof is an amalgamation of the proofs for CK45%,
CS4R and CS54.2% since the right denominator of the (S4F) rule is similar
to the (45) rule and CS4F7 also contains (§4.2). The first cluster is created
using an argument similar to the CK45t proof and the second cluster is
created as in the CS4R proof. There is no complication about last clusters;
refer to Figure 5.

Suppose X is CS4Ff-consistent. Create a CS4Ff-saturated w, with X €
W, € Xiop as usual. If no P occurs in w, then we are done since
({wo}, {(wo, w,)}) is the desired model graph. Otherwise, let w' = {P | OP
€ wy} and let Y = {P | "OP € w,}. As in the proof for CS4.2%, we
know that 0P € w implies 0-~0OP € wor O-0O-0OP € w by
(54.2) where 7[0~[JP is a starred formula. By (f) and (S4F) we know
that for each =P € w,:

(@) Ow'; =P, nY is CS4F%-consistent or
() w,; O-0OPis CS4Ft-consistent.

LetE, = {~0P, € w, | O-0OP, € w,and - P, & w,}. We restrict our
attention to these eventualities because these are the unfulfilled and non-
invariant eventualities of w,. That is, these are the eventualities for which
(b) fails so they must be fulfilled by the first cluster. Now do Step 1.
Step 1: If E, = {—~0OP € w, | O-0P & w,and -P & w,} is empty
then go to Step 2. Otherwise, let w = {P | OOP € w,} and let ¥ = {P |
“UP € wy}. By (6) and (S4F) for each formula P in Y the set Ow ;
2 0Y; —Pis also CS4Ft-consistent via option (a) above. Create a CS4F1-
saturated successor w; for each member of E, giving the nodes w;, w,,...,
w, of level 1 where m is the number of formulae in E,; this is shown in
Figure 5. Let C, = {w,, w;, w,,..., w,} be the members of the first cluster.
If all eventualities in w, are fulfilled then put C, = & and go to Step 3, else
do Step 2.

Step 2: LetZ = {~0OP € w, | O-0P € w,and ~P & w,} and let w’
= {P | OP € wy}. Since (§4) € CS4FF the set Ow’; = [JP must be
CS4F-consistent by () and (S4) for each ~[JP € Z. That is, we can
create a successor v, for w, using (§4) instead of (S4F). Since P € v, we
know that v, # w,. By repeatedly using (§4) and mimicking the complete-
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ness proof of CS4 we can create an S4-model-graph F rooted at v, where
F is a finite tree of finite nondegenerate clusters. Let C, be any final cluster
of F, this is shown in Figure 5. Note that if "[JP € Zthen "OP € w
for all w € C, since 0 —OP € w, and the (54) rule preserves [1-for-
mulae. Furthermore, C, fulfills all its eventualities within C, by the fact that
it is a final cluster of an S4-model-graph. In particular, it fulfills all the
eventualities in Z. Now go to Step 3.

Step 3: Put R = (C; X C) U (C, x C)) U (C, X C,) giving an S4F-
frame. We have to show that this frame satisfies properties (i), (i) and (iii).
We show these as follows. Property (i) is satisfied by construction.

Proof of Property (iii): Property (iii) is satisfied for most worlds by con-
struction because both the (S4F) and (S4) rules preserve (J-formulae and
because (7) is present. The only exceptions are the nodes w,, w,,..., w, of
C, constructed in Step 1. For these nodes we show that OP € w, implies
0P € w,, from which (iii) follows.

Now, suppose [JP € w,, for some 1 < i < m. If P is not a result of
a building up operation in w, then (JP € Sfiw,) and hence either (JP €
w, or 7P € w, since w, is subformula-complete. If = [0P € w, then
— 0P € w,since the (S4F) rule carries all the eventualities of its numerator
into its (right hand) denominator. But then w, contains both 0P and = [JP
contradicting its CS4Ff-consistency. Hence (1P € w,. This part of the
proof does not go through for CS4.2%; hence the footnote.

If LIP is built up in w, then 0P must be of the form OP = O-~0OQ or
0P = J-0O-0OQ for some non-starred "[(1Q € w,. Exactly as for
CS54.2t we can prove that either 01 —"0JQ € w,or O[O0 -0Q € w,. As

usual L1P € w, implies OP € w, regardless of the form of CJP; hence P
€ w,

Proof of Property (ii). First, all the eventualities in C, must be fulfilled by
members belonging to C, itself by its construction. So we can restrict atten-
tion to members of C,. These are w, itself and the sets w,, w,,..., w,, created
in Step 1.

Consider the eventualities in the nodes w,, w,,..., w,, of C, constructed in
Step 1. We first prove that if (0P € w, then ~(JP € w, allowing us to
restrict attention to the eventualities in w,.

Suppose [P € w, is not built up. Then P € SfAw,) and hence either
UP € w, or "00P € w, since w, is subformula-complete. If P € w,
then [JP € w; since (S4F) preserves [J-formulae. Contradiction, hence
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0P € w,

If =[0P is built up then it must be starred and of the form ~OP =
—O0-0Q for some non-starred ~(JQ € w, with JQ € Sfiw,). Hence
~UQ € w,or OJQ € w,. The latter implies JQ € w,, giving a contra-
diction; hence ~JQ € w,. Furthermore, =[1Q is non-starred in w, by
Fact 1; hence by (§4.2) either 0 ~0Q € w,or OO0 -0Q € w,. The
former implies that 0P = O-0OQ € w;, giving a contradiction; hence
0P = -~0O-0Q € w,by (D).

Therefore we can restrict attention to w,. Then either 0~ OP € w, or
O-0OP & w, for each evenwality ~OP € w, If “OP € w, and
O-~OP & w, then either =P & w, and there exists a w; € C, such that
- P € w; by Step 1, or 7P € w,. So all such eventualities of w, are ful-
filled. Otherwise, if “0JP € w, and 00~ OP € w, then we must have
O -0P € v, forall v; € C, and hence ~0P € v, by (7). But we already
know that C, fulfills all its own eventualities and hence C, must contain
some Vv such that P € v, u

C,: formed in Step 1 by using (S4F)
and (sfcT).

Vi, Va, Vy,...V,, @ discarded nodes.

Vi

Vi

vlﬂ

C,: formed in Step 2 by using (54).
v:*?

Figure 5: Countermodel construction of S4F model graph.

5. Decision Procedures

Each CL gives a nondeterministic procedure to decide whether or not some
given (finite) formula A is a theorem of logic L. To test whether a formula



96 RAJEEV GORE

A is L-valid, we simply have to run a CL-tableau construction for X =
{—4]}. Since Xg, is finite, there are only a finite number of such CL-tab-
leaux. If one of them is closed then, by soundness, { A} has no L-models,
and hence A4 is L-valid. If none of these CL-tableaux closes then, by com-
pleteness, we can construct a finite L-model (W, R, V) which satisfies -4,
hence 4 is not L-valid. We already know that the axiomatically formulated
logic L is characterised by L-frames. That is, we know that a formula A is
L-valid iff +, A. Therefore, each CL is a highly nondeterministic decision
procedure for theoremhood in L.

Furthermore, since each completeness proof is constructive, each proof
gives a deterministic procedure to test whether an arbitrary (finite) set of
formulae X is L-satisfiable. However, it is known that the satisfiability
problem is PSPACE-complete for propositional $4 and NP-complete for
propositional S5 [HM85]. A similar argument shows that the satisfiability
problem for K45, K45D, $4R and S4F are also NP-complete whilst the
satisfiability problem for $4.2 is PSPACE-complete.

6. Eliminating Thinning and Contraction

In all of our modal tableau systems, the only explicit structural rule is the
rule of thinning (§). The thinning (or weakening) rule introduces a form of
nondeterminism where we have to guess which formula to throw away. That
is, we have to guess which formulae are really essential to the proof. The
(6) rule can be eliminated from all our systems by building the effects of
(6) into the transitional rules. For example, in CK45 we change (45) from

Oox; ~Ody: ~0OP Y, ~0OP
(45) to
X, OOx; >0¥% =0O0F; -P y; ~p, ~0OP
where Y’ = {Q | 0Q € ju{0Q | OQ € u{~0OQ | ~OQ € 1}
and simultaneously change the basic axiomatic tableau rule from (0) to (0°)
as shown below

o B2P o) SBioP
0 0

This technique is used by Fitting [Fit83] and also works for all the other
modal calculi we have presented.
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Some of the tableau rules we have given are not standard; for example,
the (7) rule is usually given as:
X: LIP
(T)

X, P

where [P is not carried from the numerator into the denominator [Rau83].
It is well known that the rule of contraction, which is implicit in the set
formulation, then becomes essential for completeness. It is also well known
that although contraction becomes essential, it is required only for OJ-for-
mulae in most normal modal logics, and on both (J-formulae and ¢ -for-
mulae in some symmetric normal modal logics [Fit88]. We have deliberately
built contraction into our rules to highlight this fact. We believe that if we
interpret “;” as multiset union, and rework our formulation using multisets
instead of sets, then all the proofs will still go through with appropriate
modifications. That is, the rule of contraction appears to be eliminable from
our systems as long as the static rules build in contraction as given by our
rules. Unfortunately, the proofs become very messy.

Therefore these systems are amenable to the Prolog implementation techni-
que of Fitting [Fit88].

7. Deducibility and Strong Completeness

The notion of deducibility, I' -, A, which we use is stronger than the usual
one in modal logic where the weaker notion of theoremhood, , 4, is
standard. The semantic notion of characterisation by a class of frames must
be strengthened to mirror this change. A modal logic L is strongly charac-
terised by a class of frames C if for every set of formulae T" and every
formula A4,

T+, Aiff vV, if (W, R) € Cand (W, R, V) £ T then (W, R, V) = A.

It is known that the weak characterisation results of modal logics can be
strengthened to strong characterisation results if the modal logic L is canoni-
cal and the class of frames C contains the canonical frame for L [McD82,
MST91]; see Hughes and Cresswell [HC84] for the meanings of canonicity
and canonical frame. The logics we study are known to be strongly charac-
terised by the class of frames shown in Figure 2 because these logics and
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the corresponding L-frames satisfy these two conditions.

We can extend our tableau systems to decide whether T' deduces A, that
is, if I' —, A. The trick is to start a tableau for I' U {—A4} and then to
simply add all members of " to each new tableau node as it is created. The
set I' now has “global” status, the proofs of soundness and completeness
still go through, and the completeness proofs remain constructive. We are
now searching for a countermodel for 4 where every world satisfies I'. If
we find a closed tableau then we know that no such countermodel is possible
and hence, by soundness, that any L-model validating I' must validate A;
that is, I' -, A. If we find no closed tableau then, by completeness, we can
construct an L-model validating I" and containing a world w, which falsifies
A. HenceT' H; A.

An easier way to achieve the same effect is to utilise the fact that all of
our transitional rules preserve (1-formulae. That is, for L € {K45, K45D}
we run a normal tableau for I'; (OI'; =4 to decide whether I' —, A. For
L € {54, S4R, §4.2, $4F} we run a normal tableau for (IT'; —A. In each
case, the members of I' will be added to each node automatically by CL.

Let ' denote the conjunction of all formulae in I". Then, the fact that our
tableau rules extend to handle (strong) deducibility indicates that a form of
the deduction theorem goes through because: I' -, 4 iff =, (Adr A f)
= Afor L € {K45, K45D} andT ~, A iff -, = OT Afor L € {54,
S4R, §4.2, S4F}.

A caveat is in order because our tableaux procedures terminate only
because we deal with finite sets. Consequently, we cannot handle first order
nonmonotonic modal theories where the infinite set I' contains all ground
instances of the formulae in the (real) first order theory I'".

8. Sequent Systems

For each tableau rule there is an analogous sequent rule associating the
tableau set X with the sequent L — A by putting X = (£ U —A) and
turning the tableau rule upside down. For example, the sequent analogue
of the tableau rule (45) is

U — A, 04, 4
Or — 0Oa, 04

(- O: K45)

Thus, each tableau system CL has an analogous sequent system SL.
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These sequent systems then give a Gentzen characterisation of theorem-

hood +, via the equivalence: -, A iff the sequent — A is provable in SL.
In order to handle (strong) deducibility Fitting [Fit83] introduces the nota-
tionT' |— L — A where L —> 4 takes the role mentioned above and T'
|— £ — A takes the role of T' -, £ = A. Note that the sequent arrow
changes to classical implication in this transformation and £ denotes the
conjunction of all formulae in £. We can obtain I' -, A by putting E to be
empty.

Some sort of distinction must be made between I' and T because the
former are like “global assumptions” while the latter are like “local as-
sumptions” [Fit83]. If we work with transitive logics then we can use the
same trick as in our tableau method by asking whether the sequent ', (JT',
L — A is provable, allowing us to drop the distinction between I' and I.
This trick will not work for non-transitive logics because the tableau/sequent
rules no longer remain sound with the intended semantics.

9. Related Work

The cut-free tableau systems CK45 and CK45D are the tableau versions of
Schwarz’s sequent systems for K45 and K45D [Shv89). The systems CK45+
and CK45D are based on the work of Rautenberg [Rau83]. The advantage
of CK45t and CK457 is that the associated deterministic satisfiability test
is purely local. That is, we need only a two level graph representation, and
there is no need to check for repeated nodes.

Apparently Serebriannikov has also obtained a sequent system for 4.2
but I have been unable to trace this work, let alone determine if this system
is cut-free. I know of no other systems for S4F or §4.2 although the idea
of the (§4.2) rule is due to Rautenberg [Rau83].

Zeman [Zem73] gives a tableau system for S4R which he calls S4.4 but
Zeman’s system is not cut-free, requiring analytic cut. Zeman also gives a
sequent system for S4R which is an amalgamation of his sequent systems
for §4 and §5. Note however that Zeman explicitly uses an S5 system and
his system for S5 is not cut-free whereas we simply add one extra static rule
to CS4 to obtain CS4R.

Fitting [Fit83] gives strongly complete analytic tableau systems for many
modal logics including §4 but does not give (strongly complete) systems for
the logics we have considered. Incidentally, Rautenberg’s technique also
gives a strong analytic tableau system (containing an analytic cut rule) for
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S3.

Catach [Cat88] has implemented an automatic theorem prover in Prolog
for many modal logics. His method is essentially the “method of semantic
diagrams” of Hughes and Cresswell [HC68] where the reachability relation
is represented explicitly and the various constraints like reflexivity and
transitivity are also enforced explicitly. We have deliberately avoided this
method because it does not yield a proof theory for the logic in question.
However, such “explicit” methods can be used to implement the determinis-
tic decision procedures obtained from our completeness proofs.

10. Further Work

Segerberg [Seg71] shows that S4F can also be axiomatised as §4.3 plus the
axiom schema ¢ (OOP A ¢ 0O0Q A —Q) = P where §4.3 itself is S4 plus
the axiom schema CJ(OJP = Q) v O(OJQ = P). Elsewhere we have given
cut-free tableau systems for §4. 3 and other Diodorean modal logics [Gor92].
We believe that a much more elegant system for S4F is possible based on
the system for §4.3.

Note that some of the completeness proofs (and hence the corresponding
L-satisfiability tests) can be made more efficient; that is, a more careful
choice of successor using global considerations may lead to a smaller coun-
ter-model. Our counter-model constructions for CS4R and CS4F¥ are para-
sitic on the basic CS4 counter-model construction because, in both cases,
we have to wait until “eventually this process cycles”. Are there more direct
counter-model constructions for CS4Ft like the ones for CK45%? Does
adding analytic cut to CS4R help?

The (weak) interpolation theorem for modal logics states that if —, 4 =
B then there exists some formula C such that —, A= C; and -, C = B;
and vars(C) < vars(A) N vars(B) where vars(F) means the set of proposi-
tional variables that appear in formula F.

Rautenberg [Rau83] gives a very general (weak) interpolation theorem for
a wide range of logics with tableau rules of a specific form. Our tableau
rules for CK45, CK45D, CS4, CS4.2% fall into the scope of his theorem
giving proofs that the (weak) interpolation theorem holds for these logics.
We conjecture that the interpolation theorem does not hold for S4F because
of its intimate relationship to the Diodorean modal logic S4.3 which is
known not to have interpolation. It is known that there are connections
between the interpolation theorem and circumscription via Beth definability.
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This may shed light on the connections between modal nonmonotonic logics
and circumscription.

11. Conclusions

We have given (semi)analytic tableau systems for the propositional (mono-
tonic) modal logics K45, K45D, S4R, S4F and §4.2. Each system provides
a nondeterministic decision procedure for theoremhood ~, A and each
completeness proof gives a deterministic L-satisfiability test. Each tableau
system has a sequent analogue giving a Gentzen cut-elimination theorem for
§4R from the fact that CS4R is cut-free. These systems extend trivially to
handle (strong) deducibility, I' -, A, as long as (strong) deducibility allows
necessitation on members of the theory I'. This is usually forbidden in
modal logic but is essential for nonmonotonic modal logics.

Recent results indicate that the nonmonotonic modal logics based upon
K45, K45D, S4R, S4F and $4.2 elegantly generalise various nonmodal
nonmonotonic formalisms like autoepistemic logics and default logics.
Indeed, the currently known algorithms for computing the nonmonotonic
consequences of a theory I' depend on decision procedures for (strong)
deducibility in the underlying monotonic modal logic. Therefore our systems
are important for automating nonmonotonic deduction in both modal and
nonmodal formulations. The limitation is that I' must be finite, but when
this holds, our tableau calculi are directly implementable in Prolog.
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