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EEEE: SET THEORY AND WHOLENESS

Wayne D. BL1zARD(')

1. Introduction and abstract

The acronym EEEE abbreviates ‘everything enfolds everything else” where
the word ‘enfolds’ means ‘contains within itself”. A theory in which some
interpretation of the EEEE principle holds, is said to possess (the property
of) wholeness; that is, each part contains, within itself, the whole (more
precisely, the near-whole: every other part). We first discuss classical set
theory and wholeness. We then interpret EEEE set theoretically and inves-
tigate whole set theory. A method is described by which classical set theory
can be made to manifest a degree of wholeness, and further lines of inves-
tigation are suggested. A brief discussion of various examples of the EEEE
principle is given in the Appendix.

2. Classical set theory and wholeness

To what extent, if any, does classical set theory manifest wholeness? By
‘classical set theory” we mean the formal theory ZFC (Zermelo-Fraenkel
set theory with the axiom of choice). We find that ZFC exhibits wholeness
only in a very limited sense. However, in Section 5 we describe a procedure
that introduces a much greater degree of wholeness into ZFC.

The formal theory ZFC that exists today has evolved slowly over the last
100 years. Two points of view about the nature of sets have influenced the
evolution of ZFC: the limitation of size principle and the iterative concept
of set. The concept of ‘wholeness’ would seem to be incompatible with both
points of view. The limitation of size principle states that paradoxes arise
in set theory if ‘very large sets’ are allowed to exist and, therefore, that set
theory is safe from paradox if only ‘modest sized’ sets are permitted. The
very idea that a set contain everything else (either as elements, or in its
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transitive closure) violates limitation of size.

In the iterative concept of set, every set appears at some stage of construc-
tion for the first time, and the elements of that set must appear at some
earlier stage of construction. If a set is to contain all other sets (either as
elements, or in its transitive closure) then it will contain some constructed
at a later stage, thereby, violating the iterative concept of set. The idea that
a set constructed at o, may contain a set constructed at 3, where 8 > a,
is paradoxical only if one assumes (as the iterative concept demands) a
sequential construction of sets; that is, that some sets are constructed ‘be-
fore’, or ‘after’, other sets. Clearly, the idea of wholeness would seem to
run counter to the iterative concept of set. For a full discussion of limita-
tion of size, see Hallett [10]; for alternative views of the iterative concept
of set, see the papers by Boolos, Parsons and Wang in [4]; and for a concise
account of how these two points of view shaped the selection of axioms of
ZFC, see Maddy [12].

The cumulative hierarchy of classical sets (the class | J,cq, V., where V,
=@, V.., = @V and V) = | .., V,, if \ is a limit ordinal) is the em-
bodiment of both the iterative concept of set and the principle of limitation
of size. By the very definition of the hierarchy, if one is located at level o
€ On, and one is constructing new sets, then the only candidates (the only
sets available) for elementhood are sets constructed at levels 8 < o. A set
constructed at « cannot contain an element that is not constructed until level
¥ > a. Classical sets, therefore, contain as elements only sets that are
simpler in nature (constructed earlier in the hierarchy). In other words,
every set in the transitive closure of a set must be of lesser rank. Classical
sets do not ‘contain’ all other sets. The EEEE principle, therefore, does not
hold in the universe of ZFC sets.

In classical set theory, we equate the class of all sets V = {x | x = x}
with the cumulative hierarchy |J,e o, V... In ZEC, therefore, V = §—

If we restrict our attention only to the class On of ordinals (a subclass of
V; in fact, the “backbone’ of V), we find that every ordinal « is exactly the
set of all other ordinals that are less than «; that is, for every € On,

a={BE€EOn|B<a}.

This is certainly closer to the EEEE principle than is the case for arbitrary
sets in V. An ordinal contains exactly everything else less than itself, but
it cannot contain an ordinal greater than or equal to itself. Thus, once again,
EEEE fails for classical ordinals.
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In ZFC, the rank of a set x (the least « € On such thatx € V,_,, or x
< V,) is a measure of the possible complexity of the set; that is, it deter-
mines the maximum finite length of any descending epsilon chain within the
transitive closure, as well as the complexity of sets that may belong to the
transitive closure. Such a hierarchy of complexity is Darwinian in nature:
complexity builds from within, from earlier and simpler levels of complexi-
ty.

However, there is one sense in which one might argue that the EEEE prin-
ciple holds in the universe V of ZFC. We note that the entire universe V
is constructed from the empty set ¢, using only the powerset operation @
and the union operation | J. Classical sets in ZFC are well-founded; that is,
the axiom of foundation is an axiom of ZFC. Let x be an arbitrary but fixed
set of ZFC. Beginning with any element y of x, one can move to any
element z of y, and continue in this way. The result is a descending epsilon
chain of the form ... € z € y € x. If one moves down through the elements
of x, the elements of elements of x, ...et cetera, one reaches the empty set
¢ after some finite number of steps. Well-foundedness is exactly the prop-
erty that every descending epsilon chain is finite. No matter which epsilon
chain one chooses, one always reaches ¢ (and, therefore, the chain stops)
after a finite number of steps. What we have described here is pure set
theory (for pure mathematicians): V is constructed from the empty set ¢.
In many applications of set theory, one needs urelements (individuals,
atoms) that do not contain elements, but that can serve as elements of sets.
We discuss set theory with urelements in Section 5. In the universe V of
‘pure sets’, every element of every set sits atop a network of finite epsilon
chains, all with ¢ at their base. Within every set, at the base of every
epsilon chain, lies the empty set ¢. One could say, therefore, that ‘within
every set’ lies the porential to construct the entire universe V (V, = ¢ is the
foundation of V). Every reader will agree, however, that this is a rather
unsatisfactory attempt to ascribe properties of wholeness to ZFC. We
describe a method of ‘injecting’ wholeness into ZFC in Section 5.

When we come to investigate the properties of whole set theory, we find
that whole sets are not well-founded. We allow infinitely descending epsilon
chains, but we do not allow self-membership. At this point, non-well-foun-
dedness of whole sets should come as no surprise. It is after all precisely
the axiom of foundation that allows one to prove that the universe of ZFC
(the class V = {x | x = x}) is equal to the cumulative hierarchy of sets (the
class | J,eon Vo). (In fact, the axiom of foundation is equivalent to the asser-
tion V= J.eon V. (9] pp. 94-95).) In other words, the axiom of foundation
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allows one to prove that the concept of set is identical to the iterative con-
cept of set. Without foundation, one has only that | J,c,, V., is a subclass
of V; that is, the concept of set includes the iterative concept of set. Without
foundation, alternative (non-iterative) concepts of set are possible.

Giving up foundation (allowing infinitely descending epsilon chains, while
disallowing self-membership) is not a serious difficulty. The status of the
axiom of foundation has always been more ‘tentative’ than that of the other
axioms of ZFC. As Fraenkel, Bar-Hillel and Levy note, each one of the
other axioms of ZFC °...was taken up because of its essential role in devel-
oping set theory and mathematics in general; if any single axiom were left
out we would have to give up some important fields of set theory and
mathematics .... The case of the axiom of foundation is, however, different;
its omission will not incapacitate any field of mathematics’ ([9] p. 87). More
specifically, Jech states “This restriction on the universe of sets ...is irrel-
evant for the development of ordinal and cardinal numbers, natural and real
numbers, and in fact of all ordinary mathematics’ ([11] p. 70). Fraenkel,
Bar-Hillel and Levy adopt the very sensible position of accepting the axiom
of foundation ...not as an article of faith but as a convention for giving a
more restricted meaning to the word ‘set’, to be discarded once it turns out
that it impedes significant mathematical research’ ([9] p. 89). We may now
be at that point. Interesting set theories (and models of set theory) have been
developed in the absence of the axiom of foundation and, in some cases,
assuming a form of its negation. (See, for example, Section 5. 5, Chapter
II (in particular, footnote 1, p. 101) of [9], Quine’s set theory [9] pp. 161-
167, Barwise and Etchemendy [2] Chapter 3, Aczel [1] and Parker-Rhodes
[13]. ) A preliminary history of non-wellfounded set theory is given in
Appendix A of [1]. Historical remarks can also be found in [2] p. 58. For
our purposes at least, the axiom of foundation must be discarded if any
reasonable notion of wholeness is to be investigated.

In giving up the axiom of foundation, we must give up the cumulative
hierarchy of sets, the notion of rank and € -induction and recursion. Indeed,
we must give up the very idea of an ordered sequence of construction of
sets in which some sets appear ‘before’ and ‘after’ other sets. For wholen-
ess, all sets appear simultaneously, and every set is available for element-
hood in every other set. In giving up foundation, however, we need not give
up any of the other axioms of ZFC. The axiom of foundation and forms of
its negation are consistent with, and independent of, the other axioms of
ZFC ([9] pp. 98-102, [1] Introduction, p. 170 ff and [2] pp. 44-48). We
can, therefore, assume that we are working against a background set theory
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ZFC~ (ZFC without the axiom of foundation) in which we are free to use
foundation, to work in the absence of foundation, or to introduce anti-foun-
dation assumptions (certain non-wellfounded sets exist) without fear of
introducing inconsistency.

3. Whole set theory: a proposal

We interpret EEEE set-theoretically in the simplest and most obvious way:
every set is an element of every other set. We investigate whether it is
meaningful to ‘do’ set theory subject to such a requirement. We assume
throughout that we are working within the first-order predicate calculus with
equality against a meta-set-theoretic background like ZFC~. The symbol =
is, therefore, a logical symbol, and we assume the usual equality axioms
(91 p. 25).

Define a universe U = {x},¢, of distinct elements (x; = x; iff i = j)
labelled by elements i, j, k, ...of an arbitrary index set /. Elements of U are
called wsets (whole sets). For simplicity, we assume I = {1, 2, ..., n} for
some arbitrary but fixed positive natural number n. The number n may be
as large as required, but at least n = 3. The reason for this lower limit is
explained below. We emphasize that, in principle, the index set I need not
be a set of numbers, need not be finite, nor even countably infinite. All
results apply equally well for arbitrary sets /. For our purposes, we have
U= {x, x,, ..., x,}.

For EEEE to hold in U, we require that every wset contain every other
wset as an element; that is,

X = {xzs X3y veny xn}
X = i v i}

'xn = {xls xl; Lt ] x"_l}
and, in general,
xj = {xls Xy weny xj_p ]}“H’ . I"},

There are, therefore, exactly n distinct wsets each containing (n — 1) dis-
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tinct elements (exactly all other wsets). Since wsets and elements of wsets
are elements of U, U is the universe {x | x = x} of wsets. No other wsets
are permitted. In particular, we do not allow arbitrary subsets of U like ¢,
{x.}, {x;, X2, x;} or even U itself. The universe U = {x | x = x} is exactly
the set @,_, (U) containing all (n — 1)-element subsets of U.

For arbitrary index sets I, we would not be able to display the elements
of wsets as we did above. We would attempt to define wsets using class
term definitions like

where we use variable symbols x, y, z, ...to denote arbitrary wsets in U.
However, these are impredicative definitions: that which is being defined
(the term on the left) appears in the definition itself (the expression on the
right). Such definitions are clearly unsatisfactory.

We, therefore, define a binary membership relation € on U as follows:

X € y stands for x # y.

In words, x belongs to y just in case x is distinct from y. In U, therefore,
everything is an element of everything else. In our case, there are n - (n —
1) possible membership relationships. The relation € is the n - (n — 1)-

element subset of U X U containing all non-diagonal ordered pairs.
The definition

X € ystands for x # y

is the most straightforward way to interpret EEEE set theoretically — every-
thing contains within itself everything else. It states that ‘belonging’ is
coextensive with ‘distinctness’ (or membership is equivalent to difference).
Taking the negation of both sides, we find that non-membership is equival-
ent to identity. In other words, x is not an element of y, if and only if, x
equals y. The “if” direction is the standard (classical) statement of non-self-
membership. It is the ‘only if* direction that makes distinctness and identity
the sole criterion of membership and non-membership. Thus, wsets can be
thought of as generalized ‘ordinary sets’ (non-self-belonging) since member-
ship is totally determined by distinctness. At the same time, wsets are
‘extraordinary’ in the sense that infinitely descending epsilon chains exist.



EEEE: SET THEORY AND WHOLENESS 221

In the meta-set theory, the universe U is transitive — elements of ele-
ments of U are elements of U, or every element of U is also a subset of U.
But the relation € itself is not a transitive relation on U sincex € y A y
€ z does not, in general, imply x. € z (since x = z is possible). However,
since = is transitive, & is transitive on U; that is,

VXVWWYZ(x EYyAYE2)—>x & 2).

Since we have assumed the equality axioms of reflexivity, symmetry, tran-
sitivity and substitutivity ([9] p. 25) as part of the underlying logic of wset
theory, we also have immediately

vx (x & x)

VAIVy(Xx Eyey € x) }
IVyx #yex €y AyEXx) %)
and, for every formal statement & (x), if ® (x) holds and x & y, then & (y)
holds:

vx vy (2 (x) A x & y) > ().

In other words, all the properties of wset membership follow directly from
the properties of equality in the underlying logic.

The property of wsets expressed in the formulae (*) can be summarized
in words: distinct wsets are mutual members or co-belong. This is simply
a formal manifestation of EEEE — everything belongs to everything else,
or everything is an element of everything else.

The two predicates = and & (or, equivalently, # and €) are co-extens-
ive; that is,

vxVy(x =yex &y or
VXVy(x £Zyex €Yy).

We do not really need both predicates. In particular, we do not really need
the binary predicate €. However, we use € to get a set-theoretic ‘feel’
for the nature of wsets. Either predicate can be defined as the negation of
the other. We use both, however, to assist us in conceptualizing exactly
what EEEE means for wsets. We need € to interpret EEEE set-theoreticall-
y.
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We require that U be a ser of n distinct elements where n = 3. We must
be able to interpret the notions of ‘everything’ and ‘everything else’ in a
meaningful way. If U were a multiset (a set with repeated elements) con-
taining indistinguishable elements, then the notion of ‘else’ breaks down.
For example, if U = [x], which contains n copies of x and nothing else,
there is nothing else in U other than x itself. Elements of U/ must be distin-
guishable. We, therefore, require that U be a set of distinct elements. If U
is empty, then the concepts ‘everything’ and ‘everything else’ are vacuous.
If n = 1, say U = {x}, then the concept ‘else’ breaks down.

The classical axiom of foundation is

WO E>AXEYAXNY =)

Every non-empty classical set contains an element from which it is disjoint.
To understand why this axiom fails for wsets, is to understand why we
require n = 3. If one scans the elements x; of an wset y in search of an
element that is disjoint from y, one fails. Every element x; of y has an
element in common with y; namely, any other element x; in y. For this to
be possible, y must contain at least two elements and, therefore, U must
contain at least three elements. With n = 3, foundation fails for every wset.

In the case n = 2, where U = {x,, x,}, we have x, = {x,} and x, = {x,}.
There are infinitely descending epsilon chains; namely, ...€ x, € x, € x,
and ...€ x, € x; € x,. However, the statement of the axiom of foundation
holds: each wset is disjoint from its single element (otherwise, either x, €
X, Or X, € x,). This is unsatisfactory. In the limiting case (for n = 3 where
i # ] # k), we have typically x; = {x;, x,}. In this case, x; and x; are not
disjoint since x, belongs to both, and x; and x, are not disjoint since X;
belongs to both. Therefore, x; is not disjoint from any of its elements. We,
therefore, require n = 3.

For wsets, we have a strong anti-foundation property: every wset is non-
empty and has elements in common with all of its elements. Stating this in
the formal meta-set theoretic language, we have

VWO ZPAVIXEYy=XxNYyF# ).
This is stronger than simply the negation of the axiom of foundation —

P EFOAVXEXEY=>XNY FZ D).
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Not only does there exist a non-empty non-wellfounded wset, but every wset
is non-empty and non-wellfounded.

In classical set theory, there exists a unique set ¢ such that vx (x & ¢).
For wsets, every wset is non-empty. Further, for every wset, there is a
unique wset that does not belong to it (the wset itself):

vyalx (x € y).

This is, of course, trivial. For any y, putx = y. Then x € y. For any other
wset x ' such that x” € y, we have x’ = x = y.

For distinct wsets x # y, sincex € y A y € x holds, there is no concept
of ‘rank’. A wset y cannot come into existence ‘for the first time’ since y
itself is an element of each of its elements. All wsets exist simultaneously:
there is no ordered sequence of construction, no hierarchy of wsets. This
is in the very nature of non-wellfoundedness. Epsilon chains

~.EXxXEyYy€EZE ..

continue infinitely in both directions. The only restriction is that neighbours
in the chain must be distinct (x € y = x # y). For wsets in U = {x,, x,,
..+» X,}, the longest finite epsilon chains of distinct elements are of length
n. They are x, € x, € ... € x,, or any chain obtained fromx, € x, € ...€
X, by a permutation of the labels 1, 2, ..., n. Chains of greater length con-
tain repeated elements, but never as neighbours.

Using Mirimanoff’s definition of ‘extraordinary’ ([1], epigraph), wsets
are extraordinary in the extreme — every descending epsilon chain is in-
finite. Many authors confuse the notions of non-wellfoundedness (the exis-
tence of infinitely descending epsilon chains) and self-membership (the
existence of an x such that x € x). It is important to emphasize that the two
notions are not equivalent. Self-membership certainly implies non-well-
foundedness, but non-wellfoundedness need not imply self-membership (the
wsets being a case in point).

Since wsets are non-wellfounded, they do not have rank. To have a rank
within the iterative concept of set means that there is a stage « in On at
which every set x comes into being. Before «, the set x simply does not
exist and after , the set x occurs at every level of the hierarchy. For wsets,
on the other hand, every wset x coexists with every other wset y, and they
coexist simultaneously, always. There is no sequential time concept in wset
theory. For wsets, every epsilon chain is an infinitely ascending and descen-
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ding epsilon chain. Thus, the notion of ‘wholeness’ is expressed not only
in terms of the parts and the whole, but also in terms of the simultaneity
of the existence of the entire universe U.

Using the notation of Aczel [1] (see also Chapter 3 in [2]), we can repre-
sent the membership patterns of wsets as follows:

There is an arrow from every x; to every other x;. Here (as in [1]), x, - x;
(for i # j) represents the relationship x; € x;, but (unlike [1]) all x; = x; are
not allowed. The notation x; — x; for X; € x; may appear unnatural. Howe-
ver, it is derived from the notation of ‘epsilon trees’ in set theory in which,
quite naturally, the set in question rests at the top (the root of the tree), and
downward arrows represent upward membership:

(o, {o}}
{¢}

S - S
T - O - O

where ¢ € {9, {6}}, {8} € {6, {¢}} and ¢ € {}.

Although Aczel’s arrow diagrams are elegant and compact, they are less
perspicuous than the corresponding epsilon trees. By replacing each element
in U by the explicit set of its elements, we obtain a tree structure —

U= {x], x2, ..., xn}
{x2, x3, ..., xn} {x1, x3, ..., xn} {xl, x2, ..., xn-1}

Y
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where the nodes of the tree are wsets (elements of U) and the edges of the
tree represent equality of wsets (the name of the wset equals the explicit list
of its elements). The simplest tree structure when U = {x,, x,, x,} is

U= (x1,x2,x3)
(x1.x3) {x1,x2} e2,3) (1 x2) (x2x3) (1,3}

ANVANVANYANANRVA

Since each edge is equality of wsets, we can simplify the above tree by
labelling the edges rather than the nodes. The result is the binary tree struc-
ture

The ‘element-structure’ of these wsets (each wset contains the other two —
typically, x; = {x;, x,}) is reflected in their tree structure (the tree structure
below each node is exactly the tree structures of the other two nodes). In
the meta-set theory, the transitive closure of any element of U is U; that is,
vxTC (x) = U.

If we rewrite U = {x,, x,, x,} as {x, y, z} wherex = {y, z}, y = {x, 2}
and z = {x, y}, and look at the tree structure of the transitive closure of any
element of U (using x, for example), we obtain the epsilon tree:
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If one collects together the elements at each level of this tree structure, one
obtains a multiset with elements x, y and z. The theory of multisets is de-
scribed in [5]. Moving from top to bottom in the above tree, the successive
levels give the multisets {X}, {y! Z}, [x’ Y, Z}?.. 1L, 1» [xs Y, Z]Z, 3,3 [x: ys Z]G.
5.5 %5 Yy Zhio, 11, 115 ---- The multiplicity of an element at level n + 1 of the
tree equals the sum of the multiplicities of the other elements at level n.
This makes sense, since x & x butx € y for all y # x. Therefore, x will
occur at level n + 1 exactly the number of times all y # x occur at level
n. Since we began arbitrarily with x, there will always be one more x than
y’s or z’s (the number of y’s and z’s is always equal) followed by one less
x than y’s or z’s. Therefore, the number of x’s relative to the number of y’s
at level n = 2 is simply (= 1)*. Had we started with y instead of x, then
the number of x’s and z’s would be equal and the number of y’s would
alternate from one less to one more than the number of x’s and z’s.

Wsets can be thought of as generalizations of classical ordinals. An ordinal
is the collection of all other ordinals ‘less than itself’. There is an assump-
tion of ranking and hierarchy. For wsets, one simply drops the expression
‘less than itself” since there is no notion of ranking or hierarchy for wsets.
The result is that a wset is the collection of all other wsets.

We can use our meta-set theoretic formalism to investigate the properties
of wsets. For every wset x in U, x = U — {x}. For distinct wsets x # y,
xUy=UandxNy=U-{x,y}. Forwsetsx, | Jx = Uand N x =
{x} (that is, x is the only wset that belongs to every one of its own
elements). We also have that x € y e x = y holds. There are no empty
wsets since Vx (x # ¢), and there are no disjoint wsets since vx vy (x N
y # ¢). For all wsets x, x U {x} = U, that is, each wset is very large in
the sense that it differs from U by a single element (in its lack of self-mem-
bership). For classical sets, if x has rank ¢, then x U {x} has rank o« + 1.
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For ordinals, o U {a} = « + 1. For wsets, x U {x} is the universe U.
More colourfully, add anything to itself and the result is everything. We,
therefore, say that wsets are ‘near-universal’. If U is infinite, then every
wset is infinite with one less element than U. Wsets are ‘very large’ also
in the sense that they are ‘very far away from’ ¢. Wsets although distinct,
are also ‘very much alike’ in the sense that they differ from each other only
by single elements (each other). One might say that wsets are as much alike
as they can be without being identical. This similarity is evident in the fact
that their intersection is ‘large’ (x Ny = U — {x, y}).

It is important to emphasize that meta-set theoretic expressions like ¢, U,
{xh,xUy,xny Ux, Nx, x =y, {x,y}, ...do not denote wsets. There
are no wsets that correspond to these expressions. In our case, every wset
contains exactly (n — 1) elements, no less, no more. To develop a simple
algebra of wsets, one must allow wsets containing n, n—1, n—2, ..., 2, 1
and 0 elements. One could define, for example,

z€EU|zExVZE Y],
{z€U|z€x AzZEYy}or
2E U |z E 2.

To do this would expand the universe of wsets from ®,_,(U) to the full
powerset ®(U). Such a system would still possess ‘wholeness’ in the sense
that every non-empty wset would contain at least one element of U, and that
one element contains all other elements of U. However, in such a system,
the equivalence x € y « x # y breaks down. Wsets would not contain all
other wsets; for example, U does not contain any {x}. We do not take this
course, and we define wsets as before.

For wsets there is a symmetry of belonging: just as every element of a
wset belongs to that wset, the wset itself belongs to every one of its
elements (in fact, the only wset to do so). Such an unusual property of
mutual membership is similar to that in the Theory of Sorts (a sort is a
collection of indistinguishables) of A. F. Parker-Rhodes ([13], axiom 4. 1,
p. 57), although sorts do admit limited self-membership (elementary sorts
are their own members [13] p. 68).

4. Whole sets as process

We noted earlier that not only is every wset one step removed from the
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universe U, but every wset is also very similar to every other wset. Wsets
are as much alike as they can be without becoming identical. We may think
of the universe U not as a staric collection of wsets, but rather as a dynamic
universe in which wsets are constantly ‘becoming’ each other. T1 3 4ry,
and more as a system in a constant process of becoming.

In U, for x to become something else, it must become one of its elements,
since it consists of exactly everything else. To become one of its elements,
x simply takes the place of that element (substitutes itself for that element)
and the resulting wset is exactly the wset that is substituted for.

By ‘x becomes y’, which we denote by x = y, we mean the following
effective procedure:

1. scan the elements of x,
2. locate the element y,
3. substitute x for y.

The input to this effective procedure is the wset x and the output is the wset
y. Steps 1 and 2 will terminate because y € x. Step 3 is: delete y and add
X in its place, or even more simply, write x over y. Since x differs from y
only in this single element, the result must be the wset y.

We can also denote the process x - y by an equation (a substitution rule):

y = x [xly]

where x [x/y] is the result of substituting x for y in x.

It is interesting to note that one mathematical aspect of wholeness has
found expression in Grassmann’s early ‘algebra of becoming’ ([8] pp. 140-
142) and Prigogine’s ‘science of becoming’ ([8] pp. 208-209). The universe
described by Briggs and Peat is a ‘...universe where everything affects
everything else — an alive, multidimensional, creative reality where the
observer is the observed, the laws of nature evolve, and wholeness is a
flowing” ([8] p. 209).

We also note that Aczel’s interest in non-wellfounded set theory and anti-
foundation properties began with the modelling of concurrent processes in
computer science, and a graduate mathematics course at Stanford called
‘Sets and Processes’ ([1] Forward, Preface, p. 111). In his words, ‘The
original stimulus for my own interest in the notion of a non-wellfounded set
came from a reading of the work of Robin Milner in connection with his
development of a mathematical theory of concurrent processes. This topic
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in theoretical computer science is one of a number of such topics that are
generating exciting new ideas and intuitions that are in need of suitable
mathematical expression’ ([1] p. xix). In Chapter 8 of [1], Aczel applies his
non-wellfounded set theory to communicating systems, incorporating Mil-
ner’s ideas on concurrent processes.

5. Classical sets made whole

We now give a brief description of a procedure that introduces a degree of
wholeness into classical set theory. We begin with the theory ZF. An ur-
element is an object that can serve as an element of sets, but that has no
elements itself. In these two respects, urelements are similar to the empty
set ¢. In pure set theory, there is only one such individual — the empty set
¢ itself. In set theory with individuals, one allows any number of individu-
als, in addition to ¢ itself. There are a variety of formal techniques to
generalize ZF set theory into ZFU set theory with urelements (see, for
example, [3] pp. 7-11, [9] pp. 23-25, especially footnote 1, p. 25, [14] pp.
19-56 and [11] pp. 198-199). We are not concerned here with the formal
details. The universe V¥ (a cumulative hierarchy of sets with individuals)
of ZFU is constructed as follows: let U be a set of urelements, and define

V,=U

Ver1 = CV,) U U

Vi = Ua<r Vo, if N is a limit ordinal, and
VW =U.eom Ve

Thus, urelements appear as elements of sets at every stage « € On of the
hierarchy. An element of a set, therefore, is either an urelement, or a set
of lesser rank.

Within ZFU, one establishes the following conventions: arbitrary elements
of V are denoted by x, y, z ...; arbitrary urelements in U are denoted by
P, 4, 1, ...; and arbitrary sets (elements of V¥ — U) are denoted by a, b,
¢, ... The axiom of extensionality of ZFU, the universal closure of

Vi(x EaexEb)—»a=hb,

establishes ser equality. Nothing is said about equality of urelements. Had
the axiom read
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Vix Eyex€E€z)»y=2

then all urelements would be equal to the empty set ¢, since they contain
no elements. The axiom of foundation of ZFU is the universal closure of

aF¢>A(xE€EaNnN ~YYEaANAyE).

Thus, urelements may serve as €-minimum elements of non-empty sets.
In ZFU, the relation = (equality of sets) behaves classically, and the rela-
tion € is wellfounded. The variable symbols p, g, r, ...may appear to the
left of €, but never to the right of € (except in the case ~x € p).

We now have the theory ZFU in place with a set U of urelements. The
set U may be a finite or infinite collection of distinct urelements. We can,
therefore, extend the = predicate from sets in VW to all of V. Therefore,
= is well-defined on Uand p = g and p # g make sense in U. We define
a binary predicate E on U as follows:

p E g stands for p # q.

This makes U a universe of whole sets with respect to the membership
relation E. Every urelement belongs to every other urelement, as in Section
3. There is, therefore, a form of E-extensionality for urelements; namely,

VvirrEperEqg —»p=q.

All the results of Section 3 apply to the set U, and the predicates E and =.

We call the result of these modifications the theory ZFU*. The theory
ZFU* contains the binary predicates € and =, and a defined binary predi-
cate E (logically equivalent to #). The predicate € is well-founded (on
VY), but the predicate E is non-wellfounded (on U).

Since we want ‘pure sets’ (sets containing no urelements in their €-
transitive closure) to exhibit wholeness, we extend the predicate E such that
Vp (p E ¢) holds. The variable symbols p, g, r, ...refer only to urelements
and not to ¢.

From the point of view of €, ¢ is the empty set (vx (x € ¢)) and U is
the universe of urelements (vp (p € U)). From the point of view of E, the
universe U is empty (since vp (p E U), or strictly, p E U is not defined),
but ¢ is the ‘universe’ of urelements (since vp (p E ¢)). The predicate €
is still wellfounded (every non-empty set has an € -minimal element) where-
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as E is not (no urelement has an E-minimal element). In ZFU*, ¢ and U
play dual roles with respect to € and E. This is not surprising since U has
replaced ¢ as the foundation of the cumulative hierarchy of sets.

We claim that ZFU* exhibits wholeness. Let x be an arbitrary element
of the universe of ZFU*. If x is an urelement (if 3p (x = p) holds), then
x exhibits wholeness since it contains, as E-elements, every other urelement.
If, on the other hand, x is a set (if 3¢ (x = a) holds), then either x contains
an urelement in its € -transitive closure (3p (p € TC (x)) holds), or it is a
pure set (Vp (p € TC (x)) holds). If there is an urelement in 7C (x), then
x ‘contains within itself> all other urelements. Every descending € -chain
is finite, ending with either ¢, or some p € U. Every descending E-chain
is infinite. Every such set x ‘contains’ all of U (in its E-transitive closure,
which equals TC (x) U U). Therefore, every such x contains the foundation
(Vo = U) from which the entire universe W is constructed.

If, on the other hand, TC (x) is free of urelements, then x € V = <o,
V. where V, = ¢. In this case, every €-chain is finite and ends with ¢.
With respect to E, however, ¢ ‘contains’ all the urelements in U. There-
fore, x itself ‘contains’ the foundation from which the entire universe VW
is constructed.

We have grafted wholeness into ZFU by using a universe U of urelements
in which properties of wholeness apply. Every downward € -chain is finite,
ending with ¢ or some urelement p € U. However, below ¢ and every p
€ U, every E-chain is infinite. Every set in ZFU* contains (the foundation
of) every other set in ZFU*. Since we have incorporated the theory of
whole sets (developed in Section 3) into the theory ZFU*, it exhibits a
greater degree of wholeness than either ZFU or ZF.

6. Other set-theoretic interpretations of EEEE

In Section 3, we interpreted EEEE strictly as ‘every set contains (as an
element) every other set’. In sections 2 and 5, we loosened our interpreta-
tion of EEEE to include ‘every set contains (within its transitive closure,
the foundation of, or the potential for) every other set. In this section, we
briefly consider closely related and alternative set-theoretic interpretations
of EEEE. As such, these are proposals for possible future investigation.

When one first considers set-theoretic interpretations of EEEE, the idea of
interpreting ‘enfolds’ as ‘contains as a subset’ suggests itself. This is equiv-
alent to interpreting ‘enfolds’ as ‘contains as an element of its power-set’.



232 WAYNE D. BLIZARD

Writing this formally we have

VXVvy(x #y—->x € @y)).

Unfortunately, any reasonable notion of a subset relation € includes anti-
symmetry:

VXVY(x Sy AYEX)—=x=Y).

To require that everything ‘contain’ everything else as a subset, is to claim
that everything is equal to everything else; that is, under EEEE,

VIVy(x S yey < x).

In other words, the universe consists of a single set. This is clearly unsatis-
factory.

If, however, we read ‘else’ strictly as in Section 3, then we must use
proper subset C instead of <. In this case, x € x holds, and C is clearly
not anti-symmetric. However, the fact that EEEE requires that

VxVy (x C yey C x) hold,

means that the relation C does not correspond to any classical notion of
proper subset. However, in multiset theory, it is possible to define a subset
relation such that unequal multisets are proper subsets of each other. Meyer
and McRobbie define ‘subset’ such that [x, y],, # [x, ], but [x, ¥he C
[x, ¥].5 and [x, yl,5 C [x, y], . since every element of one multiset is also
an element of the other multiset (see [5] for details).

If one attempts to translate EEEE as ‘every set contains every other set
in the sense that the transitive closure of the second is a subset of the transi-
tive closure of the first’, one obtains

‘x contains y’ means 7C (y) € TC (x).

Since EEEE requires that this hold for all distinct sets, one is forced to the
conclusion that all sets must have the same transitive closure:

VxVy (x # y—=>TC (x) = TC (y)).
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Since this is trivially true when x = y, we have
vx vy (TC (x) = TC (¥)).

The idea here is that every set is made up of exactly the same parts, but
those parts may be arranged differently into distinct sets. For example, in
classical set theory we have the distinct sets {{¢}} and {¢, {¢}} with the
same transitive closure. More striking still, the infinite ordinal w* = {0,
1, 2, ..., w} and the finite singleton set {w} although very different, have
the same transitive closure.

Interpreting ‘enfolds’ as ‘contains as an element’, suggests that we may
also interpret ‘enfolds’ as ‘contains as an element, or as an element of an
element’, Thus, we have

‘x contains y’ means y € x U J x.

Such loosening of the interpretation can be pushed deeper and deeper into
the transitive closure of x,

‘x contains y’ meansy € x U |Jx U | x
‘x contains y’ meansy € x U Jx U [fx U [Jx

until we reach
‘x contains y’ means y € TC (x)

where y € TC (x) means y € J' x for some natural number n = 0. We
have thus generalized ‘contains as an element’ to ‘contains as an element
of some finite iterated union’.

One could, therefore, interpret EEEE set-theoretically, as

vXxVvy (x #y—-=x € TC (y)).

In other words, every set contains every orher set as an element of its
transitive closure. Every set contains every other set at some level of its
construction. In the creation of such sets, everything else is used, and
nothing is wasted. Thus, for x # y, the transitive closures TC (x) and TC
(¥) are almost equal but their ‘structure’ may be very different. The transi-
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tive closure of every such setisaclass (TC(x) = V — {x}, TC(y) = V —
{y}). Each such set sits atop a transitive closure that contains everything
else. For x # y, TC (x) and TC (y) are ‘very large’ and differ from each
other only in a single element. Although 7C (x) and TC (y) are very similar,
the sets x and y themselves may be very different (the transitive closures are
structured differently). This can all be done without contradicting the classi-
cal requirement x & TC (x). However, there is no notion of ‘rank’ since
within each set is found every other set.

Such alternative attempts at a set-theoretic characterization of wholeness,
require a much deeper understanding of the structure and properties of the
transitive closure of a set, as well as the very nature of well-foundedness.
For example, in ZFC, self-membership contradicts the axiom of foundation,
since x € x allows the € -chain

..EXEXx Ex.

Further, a set cannot belong to its transitive closure, since x € TC (x) (or,
x € |J' x for some n = 0) implies the existence of a finite € -chain x, €
X, € ...€ x, for which x, = x,, = x (that is, an € -loop). Such a finite €-
loop allows the € -chain

oo & Xy B €2 € i €K
which contradicts the axiom of foundation.

Further, for any y € TC (x), y can occur at most once along any € -chain
(since otherwise a finite € -chain with y at its end points exists). The set y
may occur, however, along different €-chains ‘within’ x (as long as it
occurs at most once in any single € -chain ‘within’ x).

In classical set theory, the requirement x & TC (x) (or, va (x & |J' x))
is much more restrictive than simply x € x. It may be possible (in ZFC",
for example) to disallow extended self-membership (to require x & |J' x for
0 < n < Nwhere N is some fixed depth), while allowing ‘deep self-memb-
ership’ in the transitive closure (that is, x € |J* x for some n > N, need
not be inconsistent). In such a scheme, ay € TC (x) could occur more than
once along a single €-chain ‘within’ x as long as the resulting finite €-
loop x, € x, € ..x, where y = x, = x,, is such that m > N. If this is the
case, theny € TC (y) satisfies the requirement above: y & |J' y for 0 <
n < N. The theory ZFC~ with these modifications could be said to possess
‘limited foundation’. This permits a step toward wholeness.
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How well does the classical transitive closure of a set characterize that set?
If TC (x) = ¢, we know that x = ¢. If TC (x) = x, we know that x is a
transitive set. If y € TC (x), then TC (y) € TC (x). If x < y, then TC (x)
S TC (y). However, the set TC (x) says nothing about how often its
elements are used in the construction of x, and nothing about the € -order
in which they are used in the construction of x. The assertion y € TC (x)
says nothing more than the rank of y is less than the rank of x, and that y
is involved somewhere in the construction of x. The converse of the logical
truth

VxVy (x =y-—>TC (x) = TC (y))

is false, as we have seen. Two very different sets (one, a very finite single-
ton set; the other, an infinite ordinal) may have the same transitive closure.
It is, therefore, fair to say that the set 7C (x) does not characterize the set
x very well. TC (x) tells us every constituent part of x down to ¢, but little
else.

Since TC (x) is a set (elements occur at most once), it cannot count the
number of times a set y € TC (x) is used in the construction of the set x
(that is, the number of different €-chains ‘within’ x containing y). A
multiset (a set with repeated elements) transitive closure could keep track
of the multiplicity of y’s in TC (x) (see [5] for details of multiset theory).
Denote such a multiset transitive closure of x by MTC (x). If y €™ MTC
(x), then m equals the number of different € -chains ‘within’ x containing
Yy (equals ‘the number of times’ 7C (y) is a subset of TC (x)). Such a multi-
set MTC (x) could be defined as a cardinal-valued function in ZFC with
domain TC (x). The root set MTC (x)* equals 7C (x) (in other words, MTC
(x) and TC (x) have exactly the same elements). MTC (x) characterizes x
better than does TC (x) since the plurality of y’s in TC (x) is taken into
account. The multiset MTC (x) is still transitive with respect to the classical

€. The multiset MTC (x) could be useful in the characterization of classical
sets.

APPENDIX : THE EEEE PRINCIPLE

The EEEE principle has a distinguished history and possesses (for many)
a deep aesthetic appeal. Most recently, the quantum physicist, David Bohm,
has espoused the notion of ‘the implicate order’ in which any element
contains enfolded within itself the totality of the universe (see, for example,
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his [6]). In Bohm’s own words, ...each separate and extended form in the
explicate order is enfolded in the whole and ..., in turn, the whole is en-
folded in this form ...The way in which the separate and extended form
enfolds the whole ...is essential to what that form is and how it acts, moves
and behaves quite generally’ ([7] p. 41). An introduction to David Bohm’s
ideas on quantum mechanics, hidden variables and the implicate order can
be found in [6], [7] and [8]. For our purpose, the central idea in Bohm’s
thought is the notion that every element contains, enfolded within itself, the
totality (every other element).

The idea enunciated in the EEEE principle is, of course, a very old one.
Poets, philosophers, mystics, theologians, cosmologists ...have stated similar
ideas since ancient times. We have, for example, Jorge Luis Borges:
“...each thing implies the universe’ and ‘...everything is an infinity of
things’. Blake wrote, “To see the world in a grain of sand ...And eternity
in an hour. * Leibniz’s monads, as infinite conjunctions of predicates, con-
tain within themselves all possible contingencies. Leonardo da Vinci wrote,
‘Every body placed in the luminous air spreads out in circles and fills the
surrounding space with infinite likenesses of itself and appears all in all and
all in every part. * St. Paul said, ‘We are members of one another. > Scho-
penhauer held that any individual is all individuals: whatever one person
does, it is as if all persons do the same thing. Stated in the first person, ‘I
am all other men’. Most striking of all, we find in Buddhism, The Flower
Garland Sutra: ‘In the heaven of Indra, there is said to be a network of
pearls, so arranged that if you look at one you see all the others reflected
in it. In the same way each object in the world is not merely itself but
involves every other object, and in fact is every other object. ’ ([8] pp. 275,
276, 279). Doubtless, the reader can supply other examples.

Since antiquity, there has been a mystical view of reality which holds that
what we observe as a vast variety of differentiated things, is in actuality,
simply the various manifestations of the same thing; that is, that there exists
anunderlying ‘oneness’ hidden beneath the observed surface of ‘manyness’.

More recently, the EEEE principle has manifested itself in two interesting
ways. It is known that a DNA molecule, taken from an organism, contains
within it all the genetic information for the entire organism. This fact makes
cloning possible — a complete organism can be manufactured, or grown,
from a single cell. The other example is the hologram (or, what has come
to be known as the holographic paradigm). Unlike a photographic negative,
a holographic plate contains the complete image in any one of its parts. If
any part of a holographic plate is removed (or, indeed, if any part of the
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plate is used), the complete image still appears ...only with diminished
intensity. In both examples, it is accurate to state that every part contains
every other part.

We note an apparent similarity between properties of whole sets (discussed
in Section 3 and 4) and those of bootstrap hadrons proposed by Geoffrey
Chew ([8] p. 203). Each hadron (a strongly interacting particle like a proton
or a neutron) is said to contain (consists of, involve) all other hadrons. In
Chew’s words, “Each hadron plays three different roles: it may be a ‘consti-
tuent’ of a ‘composite structure’, it may be ‘exchanged’ between constituents
and thus constitute part of the force holding the structure together, it may
itself be the entire composite.” (Science, Vol. 161 (August 23, 1968), 762-
765). The word ‘particles’ applied to such hadrons is misleading since
bootstrappers think of hadrons as ‘intermediate states in ongoing process
webs of energy’ ([8] p. 203).

Wholeness is also found in the new mathematics of chaotic dynamics, or
complex dynamics: the study of fractal geometry. One of the central con-
cepts of fractal geometry is the property of self-similarity (or, scaling). Self-
similarity is the characteristic property of fractals that a small portion, when
magnified, can reproduce exactly a large portion (or, in other words, the
parts are similar to the whole, only on a reduced scale). This is clearly
another example of the EEEE principle. The fact that many aspects of the
natural world have been successfully modelled using fractals, indicates that
reality itself may possess hidden properties of self-similarity.

A final example of wholeness may be found in the surprising properties
of Penrose tilings. A periodic tiling repeats a pattern of tiles over and over
again like wallpaper (there exists a smallest region that generates the whole
tiling by periodic repetition without rotation). Periodic tilings, therefore,
manifest wholeness. In 1974, Roger Penrose showed that the plane can be
tiled in infinitely many different ways (all of which are non-periodic) using
just two different types of tiles (called ‘kites” and ‘darts’ because of their
shape) that fit together only in certain allowable ways. Each such tiling has
a high degree of symmetry, but never repeats itself as do periodic tilings.
What is remarkable is that given any finite region of a Penrose tiling of the
plane, that same finite region occurs infinitely often elsewhere in the same
tiling and infinitely often in every other Penrose tiling of the plane. There-
fore, an examination of any finite region (no matter how large) of any of
these tilings can never determine which of the infinitely many tilings is
being examined. Every Penrose tiling of the plane contains any finite region
of any other Penrose tiling of the plane. This is a very nice example of the



238 WAYNE D. BLIZARD

EEEE principle in modern mathematics. If one interprets Penrose tilings
cosmologically, then infinitely many universes can be constructed from two
simple types of ‘atoms’, and any finite region of any one such universe
repeats infinitely often in any of the other universes.
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