INCOMPLETENESS OF A FREE ARITHMETIC

Ermanno BENCIVENGA

For every natural number #, let n be the corresponding numeral s ...
8(0). The rules of the theory FQ are Modus Ponens and

F A(0/x)
= vx(4 D A(s(x)/x)

(R1)
- vxA

The axiom-schemata of FQ are (A0)-(All) in [1], plus

AI2) ¢ =iVi<i)Dixx = 0
A3 t<idD@E=0V..VIt=i-1)
(Ald) t <iVi=iVi<t

The consistency of FQ is a simple consequence of the following

Lemma 1. Let FQn be the subtheory of FQ which results from eliminating
all the axioms of the form (A12), where n < i. FQOn is consistent,

The proof of Lemma 1 proceeds as in [1], with the following addition
to the definition of the model M:

ALY = [<myn>:m <n)

For the sake of illustration, consider an instance of (A12). Suppose that
Vi(3x(x = 1)) = F. Then Wj(f) & D, and hence = n + 1. It is easy
to see that W,(i) = i for all i such that it is not the case that n < i, and
hence that, for all such i, Wy(i) < W;(f). Therefore, Vit = i) =
Vit < i) = F.

Let an n-place arithmetical function f be representable in FQ iff there
is a formula A of the language of FQ, containing exactly n+1 variables
X, -y X,, ¥ free and such that, whenever f(i, ..., i,) = J, b A /X ...
i,/ xt/y) =t = j.
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Lemma 2. All recursive functions are representable in FQ.

Proof. Given the results in [2], we can limit ourselves to proving that all
Recursive functions are representable in FQ. There are six parts to this
proof.

Part I: All identity functions are representable in FQ. Trivial.

Part I1: Addition is representable in FQ, by the formula x + y = z. For
suppose that / + j = k. We prove by induction on j that b, i + j =
k. If j = O then h, i+ j = k by (AB). If j = s(m) then k = s(n) and
i + m = n. By the induction hypothesis t, i + m = n, and hence by
the logic of identity 4y, s(i + m) = k. But by (A9) k, s(i + m) = i
+ J. Thus ki + j = k, and by the logic of identity i + j = 1 =
t = k.

Part HT: Multiplication is representable in FQ, by the formula x - y =
z. Proof analogous to Part II.

Part IV: The characteristic function of identity f_ is representable in FQ,
by the formula (x = y & z = 1) V (x # y & z = 0). First, let f_(J, j)
= 1. Then i = j, and hence i = j& 1 = 1. Second, let f_(i, j} = 0.
Then i # j, and we prove by induction on i (assuming, without loss of
generality, that i < j) that . i # j. If i = O then, for some m, j =
s(m). By (Al2), Hp 3x(x = m); hence, by (A6), b § # 0. If i = s(m)
for some m then j = s(n) for some n, and m # n. By the induction
hypothesis t, m # n, and hence by (A7) ki # j. Then i # j &
0 =0

Part V: Let A represent the m-ary function fin FQ, and let B, ..., B,
represent the n-ary functions g, ..., g,, respectively. Let # be obtained
by composition from f, g,, ..., g,.- Then C = 3y,... I,.(B,(,/y) & ... &
B, 0.,./y) & A(y,/x,..y,./x,)) represents h. (Through all this part, we
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assume that x,, ..., x,, ,, ..., ¥,, are pairwise distinct.) For suppose that
h(i,,

seuy 1:;) = ﬂgl(ill sesy f"), na %Y gm(il’ ansy in)) = j! and 1et gl(il! et Iﬂ) =
ky, ..., gy, .y i) = k,. Then

e Bi(iy/x,.. 0, /x,t/y) = t = K

o Bully/X,dn/X,t/y) =

K,
Fro AKXy .. K, /X,1/Y)

t =j

I~

Consequently

o B /X, 0/ %K, /9)

Frg Bolin /X0, /0, K,,/9)
Fo Alk,/ X, K, /X, 5/Y)

Thus

o (By(K,/Y) & ... & B, (k,/y)i,/x,..1,/x,) & A(k,/x,..K,/%,§/y)

But
Fro Ix(x = k)
and hence

D) to W Y(BIO01/Y) & .. & B,(10,/Y) & AQ/X\. /X))
(,/x,...i,/x,3/¥)

On the other hand, suppose that

3y,...,(B,(0,/y) &

& Bm())m/y) & A(y]/xi'“ym/xm))
(,/x,...1,/x,t/y)
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To utilize the free logic equivalent of Existential Instantiation, we assume

B\(4,/x,...i,/x,a,/y)
x(x = a)

B, (i,/x,..i,/x,a,/y)
Ix(x = a,)
Ala,/x,..a,/x,1/y)

From these assumptions and earlier stated theorems of FQ,
t=j
clearly follows, and hence, since none of a,, ..., @, occur in ¢ = j,

(2) '_FQ a.yl‘"a.ym(-Bl(.yl/y) & s & Bm(ym/y) & A(yl/xl"'ym/xm)
(/%X /9) D t = .

The desired result follows easily from the conjunction of (1) and (2).

Part VI: Let A represent the n+1 regular function f, and let g be obtain-
ed by minimization on f. Then B = A(0/y) & vw(w < x,,, D
~A(w/x,,,0/y)) represents g. For suppose that g(i,, ..., i,) = pX,, S,
iy X,41) = j. Then fU,, ..., i,, ) = 0and, for all k < j, fi,, ..., i,, k)
# 0. Since A represents f,

o ~AG/X,..4,/x,0/x,,,0/y)

b ~AG/X,..0,/x,j—1/x,,,0/y)
b AG/X,..0,/%,§/x,,,0/y)

Then, by (Al13),

(3) tp (A(0/Y) & YW(W < x,,, D ~A(W/X,,,0/))
Gxdiixdn,.,)

Now assume

@) (A0/y) & Yw(w < t DO ~AW/x,,,0/Y))(,/x,..0,/x,t/x,.,)
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Since
Frp 3X(x = J)

(4) entails ~j < f. On the other hand, by (Al12) ¢ < j entails 3x(x =
f), and hence (3) and (4) entail ~¢ < j. Therefore, by (Al4), (4) entails
t = j, and in conclusion

(5) Hro (AO/y) & ¥Yw(w < D ~AW/X,. 0/¥NG/X,...
iL/xt/x,,) Dt =j

The desired result follows easily from the conjunction of (3) and (5).

If n is the gddel number of A, let A* be n. Let the function diag be
as in [2], p. 172. Since diag is recursive, it is represented in FQ by a for-
mula B containing exactly two variables free.

Lemma 3. For every formula C, containing exactly the variable y free, there
is a sentence G such that

Ho G = C(G*)

Proof: Let F be 3y(B & C). Let n be the gddel number of F Let G =
ix(x = n & F). In view of (Al2), G is provably equivalent to 3p(B(n/x)
& C). Let k be the godel number of G. Then diag(n) = kand k = G* So

Fro Bn/xt/y) =t = k
o G =3 = k& C)
and in view of (Al2)
o G = C(k/y) [that is, iy G = C(G*/y)]

Let a set u of natural numbers be definable in a theory T if there is
a formula A4 of the language of 7, containing exactly the variable x free,
and such that, for any number &, = A(k/x) if k € u, and . ~A(k/x)
otherwise.

Lemma 4. If T is a consistent extension of FQ, then the set of godel
numbers of theorems of T is not definable in T,
Proof is as in [2], p. 174.
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Theorem 2 (Gédel’s first incompleteness theorem). There is no consis-
tent, complete, axiomatizable extension of FQ.
Proof is as in [2], p. 179.
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