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OF MONADIC DEONTIC LOGIC

Sergio GALVAN

The problem of the derivability in specific deontic calculuses of deon-
tic formulae from sets of alethic formulae has been confronted in recent
years by various authors (cf. F. von Kutschera [1973] and [1977], E.
Morscher [1974] and [1984], P. Kaliba [1981] and [1983], R. Stuhlmann-
Laeisz [1983]). These authors have not only sought to define the concept
of deontic formula (') as opposed to that of alethic formula within a
rigorous framework of language; they have also obtained numerous
underivability results. The fundamental result in this sense was achieved
by von Kutschera, who [1977] demonstrated by means of a model-
theoretical technique specifically elaborated for the purpose that it is not
possible to derive in a specific deontic calculus (*) deontic propositions
(which are not logically true) from any consistent set of alethic formulae.
This finding was subsequently extended by Kaliba [1981] to calculuses
where, as well as deontic operators, there also appear other intensional

(") Given a propositional language where the deontic operator 0 occurs as a primitive
symbol (and the other deontic operators are defined by means of it), a formula « is said
to be “deontic” iff it takes one of the following forms: «=08 (and g is any formula of
the language), «= — g and g is a deontic formula, «= 8 0 y (where o designates any of
the usual propositional connectives of degree 2) and both 8 and y are deontic formulae.
The term “alethic” is used for formulae where there is no occurrence of 0.

() For the general definition of (pure) deontic calculus, see L. ;\qvist [1984], pp. 665-675
and B.F. Chellas [1980], pp. 190-194. Various methods of designation are used in modal and
deontic calculuses. For the sake of clarity, 1 have preferred to use the method (also used
by Chellas) of employing the calculus abbreviation to refer to the set of axioms that
characterize it. Thus, for example, the modal system S5 is designated by the abbreviation
KTS5, which expresses the fact that it results from the minimal normal modal system
(characterized by the rule of necessitation N) plus the axioms T: Ca > e and 5: ¢a — ¢a.
Since deontic calculuses derive from the deontic interpretation of their corresponding modal
systems (syntactically, [ is replaced by 0), it is convenient to use 0* A to designate the deontic
axiom deriving from its respective modal axiom A, and 0*C to designate the deontic calculus
deriving from the modal calculus C. Thus, for example, the deontic calculus 0* KD4S5 is given
by the shared component of all the normal deontic systems (characterized by the rule of
0-necessitation 0° N) plus the axioms 0°D: 0x— Pa, 0°4: 0 — 00« and 0°5: Pa — 0Pw.
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operators as primitive terms (mixed calculuses). This made it possible to
extend the thesis of underivability to include the case of consistent sets
of modal alethic formulae (*). However, Kaliba’s generalized conclusion
of underivability depends closely on the fact that the mixed system that
he considered did not contain any principle whereby a connection could
be established between deontic modalities and alethic modalities (bridge-
principle). This, in particular, excludes the possibility of immediately ex-
tending Kaliba’s result to the realm of the alethic systems of deontic logic
(%), where, as is widely known, there are various principles that establish
a connection between alethic modalities and deontic modalities. Never-
theless, the intention of this essay is to demonstrate, first of all, that the
general result of underivability holds for certain extensions of the mixed
system used by Kaliba (cf. Theorems 2 and 4) that also include the bridge-
principle 00J0 (). Secondly, it will be shown that the independence
result, suitably weakened, can be extended to even more powerful systems.
In particular, proof will be provided of the underivability — in specific
mixed systems that are also inclusive of the bridge-principle 0¢ (%) — of
deontic formulae of obligation from any consistent set of alethic (and
modal) formulae (cf. Theorems 1 and 3). Finally, proof will be given of
the independence of an even more restricted class of formulae of obliga-
tion (axiologically important obligations) within the framework of the
powerful alethic system of deontic logic KT5Q (cf. Theorem 5).

() Given that in the language of mixed calculuses there occur various intensional
operators (in particular, 0 and [1), with regard to the set of alethic formulae it makes sense
to make the further distinction between non-modal alethic formulae and modal alethic for-
mulae. Unlike the latter, the former contain no occurrence of . Henceforth, by alethic
formulae will be meant both modal and non-modal alethic formulae. .

(") For the general definition of the alethic systems of deontic logic, see L. Aqvist [1984],
pp. 675-688. In accordance with the conventions established in note 2, also the alethic systems
of deontic logic are designated here by abbreviations indicative of their respective axioms.
Thus, for example, the alethic system that, in the pages cited above Aqvist refers to by means
of SSQ+, corresponds here to the system KT5Q, in so far as it is obtained by adding to
KTS5 (i.c. to S5) the further axiom Q: ©Q (which governs the prohairetic propositional con-
stant @ characteristic of the language of all the alethic systems of deontic logic).

(¥) The 0000 principle is 0o — (10

(®) The 0¢ principle is 0 > Ca.
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1. Mixed system K—0¢

It is an easily verifiable fact that, in systems of deontic logic where the
bridge-principle 0< holds, deontic formulae can be derived from suitable
sets M of alethic formulae. If, for example, in M there occurs the for-
mula Oe, then the deontic formula P« can, trivially, be derived from M.

The intention of this first section is to examine whether this derivabili-
ty relation holds in general for deontic formulae or whether, on the con-
trary, it is limited to a specific class of such formulae. We shall find that,
within the mixed system under scrutiny, the bridge-principle does not per-
mit the derivation of deontic formulae of obligation from sets of alethic
formulae. This outcome seems to be of particular interest from the point
of view of logical discussion of Hume’s thesis: the derivability by 00 of
permissions is not to be treated on the same level as the derivability by
00 of obligations. In fact, unlike obligation, permission derived from an
appropriate set M of alethic formulae by means of the 0¢ principle (ac-
cording to which, possibility is only a necessary condition for
obligatoriness) is not such by virtue of the “non-badness” of its content
but for the simple reason that its content is necessitated. In other words,
since this is a matter of a permission determined by a state of necessity,
. its derivability from a set of alethic formulae cannot constitute a real viola-
tion of Hume’s thesis. Of course, there are bridge-principles that enable
the derivation of deontic formulae of obligation as well. And the follow-
ing sections will have the task of examining whether these forms of deriva-
tion are, by contrast, a real violation of Hume’s thesis.

Let, therefore, the reference system for the analysis conducted in this
section be the mixed system KT5—0+-KD4—0¢ (in brief, K—0¢). Since
this is a mixed system (and not an alethic system of deontic logic), the
language of K—0¢ will comprise (J and 0 as primitive symbols (and 0
is not defined in terms of [ and prohairetic propositional constant Q).
The formulae of the K—0¢ language may all be inductively constructed
as follows: p,g,r... are formulae; if « is a formula, then also - o, [J & and
0 « are formulae; if & and 8 are formulae, then also e A B, V8 and a—8
are formulae. The axioms and the rules of K—0¢ are those of KT5 and
0+ KD4 plus the axiom 00: 0a—Ca.

A model for K-0¢ (or K—0¢-model) is constituted by the ordered
quadruple <W, R, §, I>, where W and I are defined in the usual man-
ner, and R and S are distinct relations, both defined on W, so that: (i)
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R is reflexive and euclidean (i.e. reflexive, symmetrical and transitive), (ii)
S is serial and transitive, (iii) R and S jointly satisfy the intersection con-
dition Yuav(uSv et uRv). It should be noted that, while R performs the
function of accessibility relation, S performs that of deontic alter-
nativeness; hence, the truth of the necessitated formulae is defined with
reference to R, while the truth of the formulae of obligation is defined
with reference to S. For the same reason, the intersection condition meets
the requirement that, given a world u, the intersection between its deon-
tic alternatives and the set of worlds accessible from it should be
non-empty.

It can be proved that K—-0¢ is sound and complete with respect to the
concept of model presented here. The soundness of K—0¢ follows im-
mediately from the formal properties imposed on R and S. In fact, K—0¢
is given by KT5 plus 0-KD4 plus 0.

Thus the reflexivity and euclidicity of R ensure the validity of the KT5
axioms; the seriality and the transitivity of S ensure the validity of the
0 KD4 axioms; the intersection condition ensures the validity of 0. One
consequence of the soundness of K—0¢ should be noted immediately:
the principle [J0: Ca — 0a is not a K—0¢ theorem. In fact, a K—0¢-
model based on a frame where there exists a world u related by S to v,
and v, and by R only to v, (as well as to itself) and such that « is true
at v and at v, but not at v, satisfies at ¥ [J &« but not Oa.

The completeness of K—0< raises more serious problems. This is ob-
tained by the method of canonical models, which requires that proof be
given that the Rg_,, and Sg_,, relations of the canonical model for
K—0¢ are reflexive and euclidean (the former) and serial and transitive
(the latter), and that both satisfy the intersection condition. Now, since
K—0¢ contains KT5, the reflexivity and euclidicity of Ry _y, is ensured
by the completeness of the KT5 system with respect to the reflexive and
euclidean models. Likewise, since K—0¢ also contains 0+ KD4, the seriality
and transitivity of Sg_,, is ensured by the completeness of 0*KD4 with
respect to the serial and transitive models. All that remains, therefore, is
to demonstrate that both relations satisfy the intersection condition, and
this is achieved by extension of the technique in use for demonstration
of the completeness of S4.2.

Let < Wy _g0, Rx_g0» Sx_po> be the frame of the canonical model for
K—00. This is therefore a matter of demonstrating that (vu € W _o0)
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(3z € Wy_go) (1 Sg_g02 ef u Rg_y2). For this purpose, it is sufficient
to show that, given a generic element u of Wy_,,, the set Z of all the
« formulae whose respective obligations or necessitations belong to w,
ie suchthat Z = [a:0a € uvel Ja € u is K—0<C-consistent. In such
a case, in fact, by Lindenbaum’s lemma there exists a K—0¢-maximal ex-
tension of Z and therefore by the definition of Wy_,,, (32 € Wy_o0)
(Vo) 0 € uvel Do € u = « € z). But, then, by the usual laws of
predicate calculus (3z € Wy_y,) (Va(0x € 4 = o € 2) et Va([a €
u = a € 2)) holds; hence by definition of S;_,, and Ry ,, and
generalization one also obtains (Vvu € Wy_o.) 3z € Wi o) (U Sx_02
et u Rg_¢,7). Now, let Z be non K—0<0-consistent. Thus, because of the
finiteness of the derivability relation, there exists a finite sub-set of Z,
from which the contradiction is derivable in K—0¢. Let this be F(Z). At
this point, three cases arise: F(Z) is constituted only by formulae whose
obligation exists in u, only by formulae whose necessitation exists in u,
by formulae of one or the other kind. It can be shown that all three cases
are impossible. In the first case, one would have — using 0 (F(Z)) to in-
dicate the set of formulae which results by 0-necessitation of the formulae
belonging to F(Z) — 0(F(Z)) tx_4o 0 L. On the other hand, all the for-
mulae of 0(F(Z)) belong to #; hence, given the K—0<0-closure of u, 01
would also belong to u. But this is impossible, since = 0 L holds in K—0¢
and, therefore, given the K—0¢-consistency of u, 0 L cannot belong to
u. The second case is structurally identical with the first. Thus there re-
mains only the third case to consider. Let 8, be the conjunction of the
formulae # € F(Z) such that 08 € u and § the conjunction of the for-
mulae 8 € F(Z) such that [18 € w. Given these definitions and the defini-
tion of F(Z), one obtains therefore, by the propositional part of K—0¢,
By Fx-00 T Bp and, by 0-necessitation, 0¢ and def. of O, o8, Hi_go
= 7 8. On the other hand, to u belong all the obligations of the
members of the 8, conjunction, and from these, in K—0¢, 08, is alsc
derivable. By the K—00-closure, this means that -8, € u, and by
the K—00-consistency of u that L8, & u. However, this result con-
tradicts the fact that to « belong all the necessitations of the members
of 8 and, therefore, by the modal part of K—0¢ and K—0¢-closure of
u, also LB. To sum up, the impossibility of these three cases implies
the rejection of the hypothesis and therefore the K—0 ¢-consistency of Z.

The elements of the K—0¢ system that have been set out provide an
adequate basis for approaching the problem of the derivability or other-
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wise in K—-090 of obligations from a KT5-consistent set of alethic for-
mulae. The negative answer is obtained by the following theorem.

Theorem 1: Let M be a KT5-consistent set of alethic formulae. Let a be
an obligation, that is, a deontic formula taking the form 08, where 8 is
any formula € L(K-00), satisfying the unprovability condition _,,
08. Then M t4_,. 08.

Proof:

Given the soundness of the system, it is necessary to show that there
exists a model for K—00 <W,RSJI> and a u € W such that
<WRSI> =,Mand <W,R, S, I> #, 08. Now, we know from the
completeness of KT5 that there exists a model for KT5 < W",R” 1" >
and a world i € W” such that <W”,R”,I"> &, M. Moreover,
because of the unprovability condition, there exists a model for K—0¢
<W',R’,8',I'> and a world j € W’ such that <W',R’,S',I' > &
08, ie. <W',R’',S',I'> =; P~ 8. This is therefore a matter of con-
structing the required model on the basis of these two given items.

Construction of < W,R,S,I>

Since the <W”,R”,I"” > model is given, let a relation $” be defined
on W” such that it satisfies the conditions of seriality, transitivity and
intersection, as well as the further condition of deontic inaccessibility of
i, consisting of the fact that the world i € W” is not a deontic alternative
to any other world € W”. Clearly, <W”,R”,S”,I” is a model for K—0$
such that (ve alethic) (vu€ W"”) (<W",R",8",I"> E, a &
<W”,R",I"> &=, a)* In fact, the sentence holds because of the coin-
cidence of the alethic component of the two models. This is, moreover,
a model for K—0¢, since all the required formal properties are satisfied
by construction. In particular, the satisfaction of the deontic inaccessibility
condition of i does not raise difficulties, insofar as the models of 0: KD4
can contain worlds that are not deontic alternatives to any other world
and, for the purposes of the simultaneous satisfaction of the intersection
condition, it is possible to presuppose that, by R, i is related to worlds
that are different from /.

At this point, it is possible to proceed with the construction of
<W,R,S,I>. Let xy,z be worlds € W”, rst € W’ and uyw € W and
let us assume:
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(i) W= W' U W” (where the two sets W’ and W” are presupposed
as being disjunct) .

(i) R=R UR” ie xRve xR"vand rRv & rR'v

(iii) a)rSv @ rS'v; b) . x = i = (xSv & jS’ v vel iS"V)); b) 2. x #
i = (xSv & xS”v)

V) I=I'UI" ie I(p, x) = I" (p,x) and I(p,r) = I’ (p,r) for every
propositional letter p.

Lemma I: <W,R,S,I> is a model for K—0¢

Clearly, W is by construction a set of worlds, an [ is a definite function
for p and for all u € W. Hence we may restrict ourselves to proving the
required formal properties for R and S. Ad R: this is a matter of proving
that R is reflexive and euclidean and that it satisfies the condition of in-
tersection. As regards the former of these two requirements, R is by con-
struction a reflexive and euclidean relation defined on W, since W =
W’ U W”, W’ and W" are presupposed as being disjunct, R’ and R”
are, in turn, reflexive and euclidean. As regards the condition of intersec-
tion, proof will be provided jointly with S. Ad §: proof must be given
of the seriality of S, its transitivity and the condition of intersection —
ie. a) Vuaw(uSv); b) vuvvww(uSv et vSw = uSw); c) vuav(uSv et uRv).

Ad a) three cases should be distinguished: 1. Case: u = r. Hence, the
seriality of S follows from the seriality of §* and df. of S (clause (iii) a)).
2. Case: u = xand x # i. Hence the seriality of S follows from the seriality
of §” and df. of S (clause (iii) b) 2.). 3. Case: u = x and x = i. Hence,
the seriality of S follows from the seriality of S’ or seriality of $” and
df. of S (clause (iii) b) 1.).

Ad b) here, too, three cases should be distinguished: 1. Case: u = r.
Let uSv et vSw be for generic v and w. Hence by df. of S (clause (iii) a))
uS'v is the case and v represents an element of W’. But then by def. of
S (same clause), v§’w is also the case, and thus — by transitivity of S’
— uS’w, and therefore, once again by def. of S (same clause), uSw. 2.
Case: u = x and x # i Let uSv et vSw be for generic v and w. Hence
by def. of S (clause (iii) b) 2.) #S” v is the case and v is a generic element
of W”. Moreover, because of the condition of deontic inaccessibility of
i v # i. Therefore, by def. of S (same clause) vS” w also holds, thus —
by transitivity of S” — uS” w, and therefore, once again by def. of S (same
clause), uSw. 3. Case: u = x and x = i Let uSv et vSw be for generic
v and w. By df. of § (clause (iii) b) 1.) one has, therefore, two sub-cases:
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JS'voriS”v and v represents an element of W' or of W, respectively.
In the former sub-case, one obtains by df. of S (clause (iii) a)) vS’w; in
the latter, by df. of S (clause (iii) b) 2.) vS”w. In both sub-cases there
therefore follows the same result uSw, either by transitivity of S’ and df.
of § (clause (iii) b) 1.) or by transitivity of S” and df. of S (same clause).

Ad <) the condition of intersection is ensured by the fact that R and
S have been constructed by maintenance or extension of the previous rela-
tions. Therefore, by virtue of the fact that R’ together with S’ and R”
together with S” satisfy the intersection condition, the same condition
is also satisfied by R together with S.

< W,R,5,I> is thus a model for K—0¢. The theorem may therefore be
taken to be concluded if <W,R,S,/> =, M and < W,R,5,I> ¢, 08 can
be obtained. For this purpose, the following two lemmas may be employed.

Lemma 2: (Ve alethic) (KWRSI> E,a & <W"R"I"> =_a)
By * we already know that if e« is alethic <W"R"J"> £, a &
<W",R",8",I"> &, a. Therefore it is enough to prove that for alethic
a <WRSI> E,ae <W"R"W"I"> =, a The proof is by induc-
tion on the complexity of «. Let stand for <W,R,S,J> and ” for
<W"R",8"I">.

Basis: @« =p: M =, p & I(px) = I (def. E) & I"(p,x) = 1 (clause
(iv)) @ & ” =, p (def. =).

Step: the propositional cases are obtained in the usual manner by in-
ductive hypothesis; @ = Uy: f =, Oy & YvxRv = 3¢ =, ) (df. E)
& YY(xR"v = af = v) (clause (ii)) @ Yy(xR"y = M " a, v) (df. y and
inductive hypothesis) & af 7 =, Oy (df. =).

Lemma 3: V(< WRS,I> =, a & <W',R’,S']'> =, a. Let 4f and

" stand for respectively for <W,R,S,/> and for <W',R'.S’ I>.

Basis: e = p:ar =,p & Ifpr) = 1 (df. &) & I'(pr) = I (clause
(iv)) @ ar’ =, p (df. ).

Step: the propositional cases obtained in the usual manner by induc-
tive hypothesis are omitted; a & [y: o =, Oy © Vv(rRy = af & ¥)
df. =) @ YV(rR’v = af =, v) (clause (ii)) & Vs(rR's = a{’ =, ¥) (df.
s and inductive hypothesis) & a( " =, Oy (df. £); @ = 0y: =, Oy
© Vy(rSv = af &, v) (def. E) & vvrS’'v = af =, v) (clause (iii) a))
© Vs(rS's = M’ =, y) (df. 5 and inductive hypothesis) & 3’ = 0y
(df. =).
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At this point, the theorem is obtained in a few operations. From lem-
ma 2 and from <W",R",I"> &, M follows, first of all, <W,R,5,/> &,
M. Moreover, also <W,R,S,I> £, 08 obtains. In fact, from Lemma 3
and from <W'R’.S'.I'> &=, P g follows <W,RSI> =, P-4,
which means that there exists at least some deontic alternative by S of
J where — @ is true. On the other hand, the deontic alternatives by S of
J are also deontic alternatives by S of 7 (clause (iii) b) 1.), and thus there
exists at least some deontic alternative by S of i where — 8 is true. But
this means <WR,S,/> =, P- 8 and therefore <W,RSI> K, 08.

[

2. Mixed systems K—5 and K—-5—-0¢

Inspection of the crucial steps of the proof show that Theorem 1 holds
for mixed systems obtained by weakening either the alethic or the deon-
tic part of the system. However, it no longer holds for systems where the
deontic part contains the axiom 0+5. This is due to the fact that 0-5
implies the euclidicity of the S relation, for which reason the method of
construction for the new <W,R,S,/> model fails. Indeed, the euclidicity
of § implies that if iSr et iSx is the case, then so is rSx. Hence, in the
completed model, the deontic alternatives of / belonging to W’ are no
longer the same (i.e. they have different contents) with respect to those
of jinthe <W’,R’,S’,I' > model. This, however, finds syntactic explana-
tion in the fact that 0*5 together with 0¢ provides syntactic counter-
examples to the theorem. Let, for example, M = {{Ja}. Then by 00, M +—
Pe is the case, and from this it follows by 0-5 also M — 0P«

What might the significance of axiom 0-5 be for the problem of Hume’s
thesis? First of all, it should be pointed out that there is apparently a
valid distinction to be made between the philosophical significance of the
principle and its importance from the point of view of Hume’s thesis. In
general, it is recognized that axiom 0+5 is, together with 0-4 a principle
endowed with manifest significance and plausibility as regards the
characterization of an unconditional concept of normativeness. On the
other hand, the derivability through 0+5 of the obligations set out above
does not appear to constitute a philosophically serious violation of Hume’s
thesis, insofar as the obligations in question have permissions as their con-
tent. And these, although derivable from M, do not in turn display the
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feature of counter-examples that would be of philosophical importance
for the law. As has already been said, Pe is derivable from M by means
of the 0¢ principle, according to which possibility is a necessary but not
sufficient condition for obligatoriness.

But, then, just as it cannot be said that such permissions constitute
a real violation of Hume’s law, so the obligations derived from them by
05 cannot constitute significant counter-examples to the law. Let us, at
this point, call an obligation derivable from some M in a mixed system
by means of 0-5 and 0¢ an obligation induced by a permission forced
by the necessitations derivable from M (for the sake of brevity — an obliga-
tion induced by a forced permission). What, in conclusion, is there of
importance for Hume’s thesis if 0+ 5 is also added to K—0¢ as an axiom ?
In view of the fact that, in KT5—0+-KD45—0¢ obligations induced by
forced permissions are derivable from suitable M but that they are not
of philosophical importance for the issue that concerns us here, it is im-
portant that in such a system it should not be possible to derive obliga-
tions not induced by forced permissions. That this is in fact the case is
a corollary of Theorem 1 and of Theorem 2 below relative to the mixed
system KTS—0-KD45 (in short K-35).

The language of the mixed system K—5 matches that of K—0¢, while
its axioms match those of KT5 and 0-KD45. Of course, the axiom 0¢
is lacking. A model for K-35 (or K—5-model) is constituted by the ordered
quadruple < W,R,S,I>, where W and I are defined in the usual manner
and R and S are distinct relations both defined on W, such that: (i) R
is reflexive and euclidean (that is, reflexive, symmetrical and transitive);
(i) S is serial, transitive and euclidean. Clearly, K—5 is sound and com-
plete with respect to the concept of logical consequence based on the no-
tion of model put forward here. The proofs follow from those for KT5
and 0-KD45, respectively.

If we draw on the concepts of alethic formula and deontic formula set
out in note 1, we may derive the following extension of Kaliba’s
theorem (7):

Theorem 2: Let M be a KT5-consistent set of alethic formulae. Let a be
a deontic formula satisfying the unprovability condition vy_so. Then M
Hy_s Q.

(") See P. Kaliba [1981]. The technique employed for the proof of Theorem 2. is also an
extension of Kaliba’s technique.
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Proof:

Analogously to the above independence proof, here proof must be pro-
vided that there exists a model for K—5 < W,R,S,/> and a world u €
W such that < W,R,S,/> =, M and < W,R,S,I> H, a. Now, from the
KT5-consistency of M it follows because of the completeness of KT5 that
there exists a model < W"”,R”,I”" > and a world i € W” such that
<W",R",I"> =; M. Moreover, on the basis of the condition of un-
provability of « in K-35, there exists a model < W',R’,S’,I’> and a
world j € W’ such that <W',R’,S',I’ > ¥ a. What is required now,
therefore, is the construction, on the basis of the given models, of the
<W,R,S,I> model and to show, by means of a number of lemmas, that
this model verifies M but not « in a certain world.

Construction of < W,R,5,1>

Let <W",R",S8",I" > be the model that is obtained by defining on
W” arelation S” that satisfies all the formal properties (except the con-
dition of intersection) possessed by S” in the homonymous model
<W",R",8”,I" > introduced at the beginning of the demonstration of
Theorem 1, and, moreover, which is euclidean. Clearly, <W",R”,S",I" >
is by construction a model for K-5. Moreover, insofar as
<W",R",§$",I"> and <W",R”,I" > are coincident in their alethic
parts, it is the case that (Ve alethic) (vu € W") (<W",R",8",1" > &,
ae <W"R",I"> =, a) * <W,RS,I> is obtained at this point on
the basis of < W”,R”,8",1" > and < W',R’,S’,I' > employing the four
defining clauses (i)-(iv) that made it possible to construct the homonymous
model of the previous theorem, the only variation being that (iii) b) 1.
is now the new defining clause x = i = (xSv & jS’v) (replacingx = i =
(xSv & jS'v vel iS" v)).

Lemma 1. <W,R,S,I> is a model for K—-5

Proof here differs from that provided for Lemma 1 of Theorem 1 only
by virtue of certain variations required by the new clause (iii) b) 1. and
by the euclidicity of S. The reader is therefore referred to the demonstra-
tion of this lemma on previous pages (of which, clearly, the part dealing
with the condition of intersection is not relevant), and treatment here will
be limited to examination of the variations between the two lemmas.

Firstly, it is immediately apparent that the proof of the seriality and
the transitivity of S is obtained by employing the new clause (iii) b) 1.,
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in terms of which x = i = (xSv & j§’v). In particular the 3. Case of
ad a) becomes: # = x and x = -i. Thus the seriality of S follows from
the seriality of §* and df. of S (clause (iii) b) 1.); and the 3. Case of ad
b) becomes: u = x and x = i. Let uSv et vSw be for generic v and w,
Thus, by definition of § (clause (iii) b) 1.) jS’v is the case and v is an
element of W’. But then, by df. of S (clause (iii) a)) vS’w, is also the
case, and thus — by transitivity of S” — jS’w, and therefore, once again
by df. of S (clause (iii) b) 1.), uSw.

Secondly, it is necessary to prove ex novo that S is euclidean — that
is, Vuvvww(uSv et uSw = vSw). For this purpose, the usual three cases
need to be distinguished: 1. Case: u = r. Let uSv et uSw be for generic
v and w. Then, by def. of S (clause (iii) a)) uS’v et uS’w holds. But, by
euclidicity of S’, vS’w also follows and hence, once again by df. of S
(same clause), vSw. 2. Case: u = x and x # i. Let uSv et uSw be for
generic v and w. Then, by df. of S (clause (iii) b) 2.) uS”v et uS” w holds
and therefore, by euclidicity of S”, also vS” w. On the other hand, because
of the condition of deontic inaccessibility of i, v # i, and thus one final-
ly obtains, by df. of S (clause (iii) b) 2.), vSw (¥). 3. Case: u = x and
X = I. Let uSv et uSw be for generic v and w. By df. of S (clause (iii)
b) 1.) jS’v and jS’w are obtained. But then, by euclidicity of S’, vS’'w
is obtained and therefore, by df. of S (clause (iii) a)) also vSw.

Lemma 2: Va(<W,RS,I> =, a & <W',R',S',I'> E, a)

The proof is by induction on the complexity of a. Let*Mand #{’ stand,
respectively, for <W,R,S,/> and for <W',R’,S',I' >.

Basis: @« = p:aMfe=, pe Ipr) = 1 (df. =) e I'(pr) = 1 (clause
(iv)) ear’ =, p @df. =).

(%) To be noted is the fundamental importance of the condition of deontic inaccessibili-
ty of i. This not only makes it possible to obtain the transitivity of S (see the 2. Case of
ad b) in the proof of the 1. lemma relative to the previous theorem — to be used integrally
for the purposes of the proof being developed here) and thus to extend Kaliba’s [1981] result
to the K-35 system {which, compared with the deontic 85 system under consideration here
also contains the axiom 0—4); it is also essential in order to obtain the euclidicity of S.
As far as transitivity is concerned : let i be by hypothesis deontically accessible, starting,
let us suppose, from x. Then xSi is the case. If, at this point, iSr is also the case, because
of the transitivity of S, it should also be possible to obtain xSr, but this is impossible given
that xSv & xS” v. Likewise, as regards the euclidicity of §: let us suppose in fact that xSi
and xSy is the case. Then one should also obtain iSy, but this is impossible given that iSy <
JS'v.
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Step: the propositional cases are obtained in the usual manner by in-
ductive hypothesis; = [0g: a1 =, (I & vv(rRv =a{=, 0) (df. £) =
YVW(rR'v = af =, 8) (clause (ii)) & Vs(/R's = af’ =, ) (df. s and in-
ductive hypothesis) e ar’ =, Of (df. E); a= 08: 4 =, 08 <
Yv(rSy = af =, 8) (df. =) & vv(rS'v = af =, 8) (clause (iii) a)) &
vs(rS's = a{’ =, ) (df. s and inductive hypothesis) & M’ =, 08 (df.
).

Lemma 3: (Va deontic) (KW RSI> =, a0 & <W',R',S',I' > E, a)
The proof is as usual by induction on the complexity of «. Let M and
M’ stand, respectively, for <W,R,S,/> and for <W',R’,S',I' >,
Basis: @ = 08 (for any 8): M =, 08 & Vv(iSv = 4f =, ) (df. £) &
vYv(jS'v = af =, B) (clause (iii) b) 1.) & vr(jS'r =’ =, ) (df. r and
Lemma 2) &M’ =; 08 (df. =).
Step: The step comprises only propositional cases obtained in the usual
manner by inductive hypotheses.

Lemma 4: (Ve alethic) (KWRSI> =, a & < W',R",§",1"> &=, «a)

The proof is by induction on the complexity of a. Let #and M” stand,
respectively, for <W,R,5,/> and <W",R",S8",I" >.

Basis: e = p: M=, p o I(px) = 1 (df. £) & I"(px) = I (clause
(iv)) & A" =, p @df. =)

Step: the propositional cases are obtained in the usual manner by in-
ductive hypothesis; a=[8: ¢ =, (B & VYv(xRv = af =, 8) (df.
E) & Vw(xR"v = af =, B) (clause (ii)) & Vy(xR”y = af " B) (df. y
and inductive hypothesis) @ ar 7 =, OB.

The conclusion of the theorem is obtained from the fact that since it
is the case that by hypothesis <W",R”,I"” > =, M, then it holds by *
<W",R”,8",1" > &=, M and therefore by Lemma 4 < W,R,S,/> &=, M.
And since it is the case that by hypothesis <W’,R’,S",I' > ¥ a, by

Lemma 3 <W,RS,I> H «.
n

Let us now consider the mixed system KT5—0-KD45—0¢ (in short
K—5-09) and adapt to it the definition given above of obligation induc-
ed by a forced permission. Let the condition of unprovability of obliga-
tion 08 in K—5—0¢ be presupposed and assume that: 08 is an abligation
induced in K—~5—-0¢ by a permission forced by M =, M Fk_s—00 08
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et M ty_o, 08 et M t_5 08. Then theorems 1 and 2 give the following
corollary:

Corollary 1: Let a KT5-consistent set M of alethic formulae be taken as
given. Then the obligations that can be derived from M in K—5-0¢ and
that satisfy the condition of unprovability in K—5—0¢ are only obliga-
tions induced by forced permissions.

Proof':

Let us suppose that the obligation 08 derivable from M in K—5-00
is not an obligation induced by a forced permission. This means that 08
is obtained without employment of 00 together with 0-5. The possible
cases are therefore three in number : 08 is obtained without 0¢ and without
0°5; 08 is obtained with 0¢ and without 0°5; 08 is obtained with
0-5 and without 00. Now the first and the second of these cases contrast
with Theorem 1, according to which, by virtue of the theorem’s hypotheses,
in K—0¢ no obligation is derivable from M. The third case is excluded
by Theorem 2, on the basis of which, according to its hypotheses, in K—5

no deontic formula and hence no obligation is derivable from M.
[

3. Mixed systems K+00, K+5 and K+5+00

The above theorems preserve their validity even if the axiomatic basis
of the respective systems is extended to include a further axiom 00J0:
0a — [0a. I shall use K+0¢ and K+5 to refer respectively to the
KT5-0-KD4—-0]0—-00 and KT5-0°'KD45-00J0 systems. This is
therefore a matter of proving that the methods used to obtain Theorem
1 and Theorem 2 are still applicable after the addition of 0(J0. For this
purpose, firstly, two new definitions of model will be provided for K+0¢
and K+5 respectively. It will then be shown how it is possible to con-
struct the two models (i.e. one for K+0¢ and one for K+5) functional
to the respective independence proofs.

A model for K+0¢ (or K+0¢-model) is a model for K—0¢ where R
and S jointly satisfy the condition of mixed euclidicity: Yuvvvw (uRv
et uSw = vSw). K+09¢ is sound and complete with respect to the notion
of K+0¢-model. The soundness follows from the soundness of K—00
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with respect to the K—0¢-models and from the fact that, given mixed
euclidicity, the models for K+0¢ satisfy the axiom 00J0. Let in fact
<WRSI> &, 0« be assumed. For all w, therefore, it holds that uSw =
<WRSI> &, « On the other hand, by virtue of mixed euclidicity,
uSw is implied by vRu et vSw and, by virtue of the symmetry of R also
by uRv et vSw. By chain rule and subsequent generalization on w and
v one finally obtains ¥v(uRv = vw(vSw = <WRSI> =, @), ie.
<W.RS§I> =, O0a. As far as completeness is concerned, it is suffi-
cient to show that the relations Ry, ,, and S, ,, of the canonical model
satisfy the property of mixed euclidicity, on the basis of the fact that they
already satisfy the other properties required for the completeness of K—0¢
with respect to K—00-models. Let us assume uRy .V et uSy, 4. Pro-
of is therefore required that vSy, o, w. Given the symmetry of Ry .00, the
first hypothesis is first of all equivalent to vRy,,.u. From this it therefore
follows by df. of R,y and instantiation (J0a € v = 0« € u. Let us
suppose at this point that 0 € v. This means by the K +00-closure also
that L10« € v and therefore 0a € u. However, by developing the second
hypothesis one obtains by df. of S, and instantiation 0o € 4 = « €
w. By applying chain rule one therefore obtains & € w. Finally, by
discharging the assumption introduced during the demonstration and by
generalization on e, one obtains Va(la € v = « € w), ie. VS, W

In similar fashion it is possible to introduce the concept of model for
K+S5 and demonstrate the soundness and completeness of K+5 with
respect to such a notion of model. In fact, a model for K+5 (or
K +5-model) is a model for K—5 where R and S jointly satisfy the condi-
tion of mixed euclidicity, and it is for this reason that the proofs of sound-
ness and completeness of K+00 can also be transferred to the case of
K+5.

We may now proceed with the extension of theorems 1 and 2.

Theorem 3: Let M be a KT5-consistent set of alethic formulae. Let « be
an obligation, that is, a deontic formula of the form 08, where 8 is any
Jormula € L(K+00) that satisfies the condition of unprovability v,
08. Then M ., 08.

Proof
Treatment will be given only of the new aspects of the proof, since the
rest is structurally identical with that of Theorem 1. Apart from the fact
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that the models on which proof is based — <W’,R’,S’,I'> and
<W",R",8",I" > (this latter as an extension of < W”,R”,I” >) — are
now K+0¢-models (and it is not required, in particular, that the condi-
tion of deontic inaccessibility of /i should be satisfied by S” in
<W",R”,8”,I”>), the main variation lies in the construction of
< W,R,S5,I> and the proof that this is a K+00-model. The defining clauses
(i), (i1), (iii) a) and (iv) of < W,R,S,I> are the same as those that applied
to Theorem 1; but clauses (iii) b) 1. and (iii) b) 2. have been replaced by
a single new clause (iii) b): xSv & xS”v vel jS’v, on the basis of which
the deontic alternatives of the € W” elements (which include /) are the
original ones plus all the deontic alternatives of j. This variation, of course,
requires that < W,R,S,/> should be shown to be a K+0¢-model, and for
this purpose it is sufficient to show that: a) S is transitive, and b) S together
with R satisfies the condition of mixed euclidicity. In fact, the proof of
seriality and of the condition of intersection differs very little from the
one employed for Theorem 1.

Ad a) treatment will be given only of the second case: 2. Case: u =
x. Let uSv et vSw be for generic v and w. Then, by df. of S (clause (iii)
b)), one obtains two sub-cases: jS’v ve/ uS” v and v represent respective-
ly an element of W’ or of W”. Let us take the first sub-case. By df. of
S (clause (iii) a)) one obtains from the general hypothesis vS’w and
therefore, by transitivity of S’, jS’w. But then, by df. of S (clause (iii)
b)) one also obtains uSw. In the second subcase, however, one obtains
— still from the general hypothesis and by def. of S (clause (iii) b)) vS” w
vel jS'w. Let now vS”w be assumed. As a result of the transitivity of
S”, one thus obtains uS” w and therefore, by df. of S (clause (iii) b)) uSw.
If instead one assumes jS’'w, uSw is obtained immediately by df. of S
(same clause). In both sub-cases, one may therefore conclude uSw.

Ad b) two cases should be distinguished. 1. Case: u = r. Let uRv et
uSw. By df. of R (clause (ii)) and df. of S (clause (iii) a)) one obtains
uR’v et uS’w. But then, by the mixed euclidicity of S’ one also obtains
vS’w. On the other hand, v represents an element € W’; hence, on the
basis of the def. of § (clause (iii) a)) one also obtains vSw. 2. Case: u
= Xx. Let uRv et uSw be assumed. By df. of R (clause (ii)) one then ob-
tains #R ”v, where v represents an element of W”, and, by df. of S (clause
(iii) b)) uS” w vel jS'w. Now let uS” w be assumed. S” satisfies the con-
dition of mixed euclidicity, thus one obtains vS” w and therefore, by df.
of S ((clause iii) b)), also vSw. If instead one assumes jS’w, vSw is then
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immediately obtained solely by df. of S (clause (iii) b)). In both subcases
one therefore concludes vSw. : u

Theorem 4: Let M be a KT5-consistent set of alethic formulae. Let o be

a deontic formula satisfying the condition of unprovability ¥, s a. Then
M l";lu-s o.

Proof:

Compared with the proof of Theorem 2, there are two variations. Firstly,
the construction of < W,R,S,I> is carried out directly on the basis of
<W",R",I"> and <W'R’,S',I'’> (which, in this case, is a
K +5-model) without the mediation of the <W”,R”,S8”,1” > model.
Secondly, clauses (iii) b) 1. and (iii) b) 2. are both replaced by a single
clause (jii) b): xSv & jS’v. Thus there are no structural differences bet-
ween the general articulation of this proof and that of Theorem 2. Apart
from the non-essential modifications required by the new clause and the
reformulation of Lemma 4 in terms of < W,R,8,/> and < W",R",I" >,
all that remains to be dealt with is the proof that < W,R,S,/> is a
K+5-model. For this purpose proof will be given of a) the seriality of
S, b) the transitivity of §, c) the euclidicity of S, d) the mixed euclidicity
of R and S.

Ad a) I shall consider only the case where ¥ = x. On the basis of the
seriality of S’ one obtains 3v(jS’v). But then, by the def. of S (clause
(iii) b)) one also obtains 3Iv(xSv).

Ad b) I shall consider only the case where ¥ = x. Let uSv et vSw be.
By df. of S (clause (iii) b)) one thus obtains jS’v. Moreover, v represents
an element of W', Therefore, vS’w follows from vSw by df. of S (clause
(iii) a)). Consequently, one obtains jS’w by transitivity of §*, and therefore,
still by df. of S (clause (iii) b)), uSw.

Ad c) 1 shall consider only the case where u = x. Let uSv et uSw be.
By df. of S (clause (iii) b)) one obtains jS’v and v represents an element
of W'. Likewise, jS’w is also the case and w represents an element of
W’. But then, by the euclidicity of S’, one also obtains vS’w and therefore
by df. of § (clause (iii) a)) vSw.

Ad d) here, too, I shall only consider the case where ¥ = x. Let uRv
ef uSw be. By df. of R (clause (ii)) one obtains uR”v, and v therefore
represents an element of W”. On the other hand, by df. of S (clause (iii)
b)) jS’w also holds, where w represents an element of W'. By df. of S
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(same clause) xSw therefore holds for any element x of W”. In particular,
therefore, vSw holds. ]

Just as theorems 3 and 4 are a generalization of theorems 1 and 2 so
too is it possible to generalize Corollary 1. Let the mixed system
KT5-0-KD45-000-09 (in short K+5+0¢) be taken as given. Now,
by adapting the definition of obligation induced by a forced permission
to the new system one has, as a consequence of theorems 3 and 4,

Corollary 2: Let a KT5-consistent set M of alethic formulae be taken as
given. Then the obligations that can be derived in K+5+0¢ from M and
that satisfy the condition of unprovability in K+5+0¢C are only obliga-
tions induced by forced permissions.

4. Mixed system K— 10 and alethic system of deontic logic KT5Q

Whereas 0< only permits the immediate derivation of permissions from
suitable sets of alethic formulae, the principle [J0 immediately generates
obligations as well. Hence, in all the systems in which [(J0 holds (in par-
ticular, in all the alethic systems of deontic logic where not only 0¢ but
also (J0 holds), there is a systematic violation of Hume’s thesis, insofar
as, in these systems, deontic formulae which also take the form of obliga-
tion are derivable from specific sets of alethic formulae. However, this
raises the question, as has been noted by many critics of the principle
in question, whether [J0 provides those guarantees of plausibility that
are given by other bridge-principles, e.g. 00. In effect, one is quite justified
in arguing that there is a substantial difference of meaning between 0¢
and (J0. Indeed, it should be remembered that [J0 is a consequence of
a very broad interpretation of the concept of obligation (including, that
is, the extreme case where the content of the obligation is necessitated),
which in the context of the alethic systems of deontic logic, can only be
avoided at the expense of a considerable complication of the definition,
in alethic terms, of the obligation. Thus the [J0-principle cannot be assign-
ed any importance of content. The obligations that derive from it are
vacuous, so to speak. That is to say, they are trivial obligations unrepresen-
tative of any axiological content. In other words, for a state of affairs
to be obligatory in the proper sense of the term, it is not enough that
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it should be true in all good worlds (since this, in fact, may be the case
of states of affairs that, insofar as they are necessary, are true in all worlds
and therefore, trivially, also in good worlds); there is the further require-
ment that they should represent something that is axiologically positive.
The status of the 0¢ principle is different. This establishes the connexion
between obligatoriness and possibility; a connexion with deep roots in
the concept of duty, one which alethic systems of deontic logic have sought
to give semantic form to. The possibility of 8 is indeed a necessary condi-
tion for 08. Naturally, 0¢ implies the existence of forced permissions —
that is to say, permissions not determined by axiological reasons. However,
the existence of forced permissions is not as problematic as the existence
of necessitated obligations.

Having granted this, it is therefore reasonable to argue that the
derivability, by [J0, of the obligations in question does not constitute a
significant violation of Hume’s thesis. It is, therefore, an equally reasonable
undertaking to ascertain whether there also exist genuinely significant
counter-examples to the thesis in the context of alethic systems of deon-
tic logic. In this section we shall examine the problem in terms of the system
KT5Q. Firstly, proof will be given of the equivalence, under a specific
function of translation, between the mixed system K— [0 (for the def.
of K—[J0, see below) and KT5Q. Secondly, we shall advance the pro-
posal that obligations which are not trivial and not induced by forced
permissions are to be regarded as axiologically important obligations.
Finally, given this definition, the conclusive result of the underivability
of axiologically important obligations for KT5Q will be achieved.

4.1 Taken as given shall be the mixed system KT5—0KD-010- [0 (in
short K—[10) obtainable from KT5—0+KD-00(10 by adding the further
axiom [J0: [Ja —0a. Let the alethic system of deontic logic KT5Q
be also taken as given, as well as the following definition of the transla-
tion function from L(K-[J0) into L(KT5Q): ¢ (») = p, ¢4 (- a) =
=1¢ (), 4 (@0B) = 4 («) 0 ¢ (8) (where o stands for any connective of
degree 2), ¢ (Ua) = ¢ O(a), ¢ (0a) = CI(Q — ¢ (@)). It can thus be
shown that, under this translation, KT5Q and K— (10 are equivalent, i.e. ;
L X Fygoe= ¢(X) Fis ¢ (a) and 2. ¢ (X) Firse ¢ (@) = X
Fk-moe (Where ¢ (X) designates the set of all the ¢ -translations of the
€ X formulae). The first part of the equivalence is obtained in the usual
syntactic manner, by employing the derivability in KT5Q of the transla-
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tions of all the axioms of K— 0. In order to obtain the second part,
it is instead necessary to prove the soundness and completeness of K— [0
with respect to the following definition of model. <W,R,S,I> is a model
for K— [J0 (or K- [J0-model) iff W and I are defined in the usual man-
ner; R and § are distinct relations both defined on W, such that: (i) R
is reflexive and euclidean (i.e. it is an equivalence relation), (ii) S is serial,
(iii) R and S jointly satisfy the following condition of quasi-equivalence:
Yv(3x(xSv) = Yu(uRv < uSv)), according to which if v is a deontic alter-
native to some world, then it is a deontic alternative to all worlds of which
it is an alethic alternative and vice versa.

The soundness of K— [J0 with respect to the K— [J0-models follows
from the formal properties of R and S. This is achieved in immediate
fashion because of the properties of reflexivity and euclidicity of R and
the seriality of S, which respectively ensure the satisfiability of axioms
T, 5 and 0-D. The condition of quasi-equivalence then guarantees the
satisfiability of 0[J0 and (J0. In fact, from the condition of quasi-
equivalence there follow a) the mixed euclidicity of R and S, b) the con-
dition of inclusion for R and S: vuvv(uSv = uRv).

Ad a) let uSw be assumed. Because of the condition of quasi-equivalence
this implies uRw. Let the further hypothesis uRv now be assumed. By
the euclidicity of R one therefore obtains vRw, and this implies, once again
because of the condition of quasi-equivalence, vSw.

Ad b) let uSv be assumed. Thus, by virtue of the condition of quasi-
equivalence, one also obtains #Rv. The argument, let it be noted, is not
conclusive if one starts from the assumption #Rv and if one seeks to ob-
tain uSv.

The completeness of K—[J0 is obtained by proving that Ry;_-, and
Sk_ o satisfy the condition of quasi-equivalence, i.e. by df. of Ry_, and
Sk-mo: Y[xVa(la € x = ¢« € v) = VuVae((Ja € u = « € V) &
Va(la € u = a €v))]. On the basis of the K— [J0-closure of the elements
belonging to the set of the canonical model, one obtains, first of all, by
(J0 and strengthening antecedents, IxvVa(0a € x = a € v) = (Va(la €
u=oa€v)=ve(lUa € u = a € v)). It is therefore necessary to pro-
ve the “if” part of the consequent. By virtue of inclusion in K—[10 of
KTS5 and the completeness of KT5 with respect to the models where R
is an equivalence relation, it is the case that *: uRy_,v ef XxRg_,v =
URg o%, e Ve(llae € u= a€ v)et Va(e € x= a«a € v) =
Ve(Ha € u = a € x). Now, let Ve(llae € u = a € x) and 00« €
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u be assumed. One therefore obtains 0w € x and, by also assuming
Va(0a € x = a € v), one also obtains & € v. On the other hand, because
of the K—[J0-closure of u, the hypothesis (J0« € u may be replaced,
on the basis of 0[]0, by 0« € u. By discharging the final hypothesis and
by generalization, one therefore reaches as a first conclusion that from
V(e € u = o € x) and Va(@a € x = « € v) there follows
Va(0a € u = « € v). At this point, by * the first hypothesis may be replac-
ed by Va(Oa € u = « € v) together with Ve((Ja € x = a € v). On the
other hand, because of the closure of x under [0, Vo(0a € x = a € V)
implies Va([la € x = a € v), in such a way that Ve(0a E u = « € v) is
obtainable only on the basis of Va(0a € x = « € v) and Ve((a E u =
« € v). Therefore, by assuming that 3xvVa(0a € x = « € v) one obtains
Ve(La€u = a €v) = Va(0a € u = a € v) and therefore, by generaliza-
tion, Ive(lae€Ex = a €v) = Vu(Ve((la€Eu = a €v) = Va(laEu =
a € v)).

We may now pass to proof of 2. ¢ (X) Fypsq 4 (@) = X ¢ @ 2.
may first of all be transformed into ¢ (X) I+ s 4 (@) = X 14 o @
Let, therefore, X I-y_r, a. It must be shown that ¢ (X) I-gys0 ¢ (e).
In other words, it is necessary to transform the K- [J0-model
<W'R’,§',I'> such that <W'R’,§',I'> &, X and
<W'"'R',§8',I'> ¥, a(for x€ W) in a KT5Q-model < W,R,bI> such
that <WR,bI> =, 4(X) and <W,RbI> ¥, 4 (a) (for u € W). The
proof begins with the construction of < W,R,bI> on the basis of
<W',R’,§',I' >, it continues with proof that < W,R,bI> is a KT5Q-
model and concludes with two lemmas.

< W,R,b,I> is defined by means of the following clauses: (i) W = W,
()R =R, (i) I=1,(@1v) b = [v: (xS'v)], ie. vE D & Ix(xS'V).
Clearly, <W,R,b,I> is a model for KT5Q. In fact, it is a b-model where
R is reflexive, euclidean and b-serial. By (ii), the reflexivity and euclidici-
ty of R are immediate. We shall therefore only consider b-seriality:
vuav(uRv et v € b). Note that, given the coincidence between W and W'
in the following proofs the variables all vary over the same domain. By
the seriality of §’, av(uS'v) is the case. Let, therefore, uS’v be for generic
u. Thus, because of the condition of quasi-equivalence, one obtains uR'v
ef Ax(xS'v) and, because of clauses (ii) and (iv), uRv et v € b. Therefore
Vuiv(uRv et v € b).
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Lemma I: uS’v < uRvetveED

The “only if”” part is obtained as above. As regards the “if”’ part let
uRv et v € b be assumed. Thus, by clauses (ii) and (iv) one also obtains
uR'v et 3x(xS’v). Because of the condition of quasi-equivalence one also
reaches the conclusion uS’v.

Lemma 2: V(< W',R',8',.I'> =, a & <WRbI> =, ¢(a))

The proof proceeds by induction on the complexity of a. Its only ele-
ment of interest is the step where a=08. Using #{’ and 2{ to indicate,
respectively, <W’',R’,5’,I' > and < W,R,b,I> one therefore obtains M’
F,.0B e vwuS'v=sM =0 Wfl F) o VWuRvetvED =M’ =,
B) (Lemma 1) & VWuRv et vE b = af =, ¢ (8)) (inductive hypotheses)
@V uRvet M =, Q= Al =,4B) df. =) & M=, Q4 B)
(df. = and elementary steps) & M =, ¢ (08) (df. d).

At this point, 2. is an immediate consequence of Lemma 2.

4.2 The equivalence under ¢ of KT5Q and K— [0 obtained in 4.1 enables
us to translate the results of derivability in KT5Q into corresponding results
in K—[10. This means, in particular, that for all alethic M, if M + 5,
4 (o) then also M +y_r; ¢ (a); thus any results of underivability ob-
tainable for K—[]0 can also be extended to KT5Q. The question whether,
in KT5Q, axiologically significant obligations are derivable from suitable
alethic M may therefore be answered by setting the same problem for
K- [J0 and then seeking to provide an answer for the problem thus defin-
ed. But what is meant by the term “axiologically important obligation” ?
First of all, in order for an obligation to be axiologically important it
should not be trivial. But, then, what is the meaning in rigorous terms
of the expression “non trivial obligation” ? Following the summary treat-
ment given above, it might be proposed that an obligation derivable from
some M in K—[J0 is non-trivial if and only if it is derivable from M in
K- [0 without employing [J0. That is, if and only if it is derivable in
KT5-0-KD-0010. On the other hand, in K— (10, the axioms 0-4, 05
e 00(), are also provable by employment of just (J0 and they are

&) Ad0o: O -ar0-a (00), Pa + O« (contraposition), 0 - Pe (0° D), 0 - Cax
(chain rule). Ad 0-4: this derives immediately from 00J0 and (0. Ad 0°5: this derives
immediately from (10 and from the principle POP (Pa — P«) derivable in its turn from
0C10. In fact, 0 7 o + [10 — @ (00J0), 00 = & +— O[]0 — & (introduction of ¢), 010 = &
+ [0 - « (contraposition of 5), ¥0 - & + 00 = & (chain rule), ¥0 "« — 0 ~ & (by T),
Poa + [P« (contraposition).
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legitimable on the basis of their content and not for purely technical
reasons as in the case of []0. It does not therefore suit our purposes to
stipulate that non-trivial obligations are only those derivable in
KT5-0-KD-0010 because this would also exclude those that can be
derived by means of 0+4, 0:5 or 00. However, there exists a way of
getting round the excessively damaging effect of this restriction. It is suf-
ficient to extend the relation of derivability from KT5—-0-KD—-0C0 to
KT5—-0-KD45—-0010-00 (ie. to K+5+00), thereby arriving at the
following definition (where it is presupposed that 08 is unprovable in
K- [J0): 08 is a non-trivial obligation derivable in K— (0 from M =,
M +y.s.00 08. Now, non-triviality is certainly a necessary condition for
axiological importance. However, it is not a sufficient one, since obliga-
tions induced by forced permissions are not determined by axiological
considerations. Therefore, these latter are also to be excluded from the
class of axiologically important obligations. If we take up again the defini-
tion of obligation induced by a forced permission set out in 2. and ex-
tended in 3., this leads us to the following conclusive definition (where
it is still presupposed that 08 is unprovable in K— (J0): 08 is an axiological-
ly important obligation derivable in K—[J0 from M =, M 5., 08
et (M +—y.,00 08 vel M .5 0B).

4.3 With the defining clarifications of 4.2, we now have all the elements
at our disposal to obtain the following conclusive result for KT5Q:

Theorem 5: Let a KT5-consistent set M of alethic formulae be taken as
given. There therefore does not exist any obligation derivable from M in
KT5Q, that satisfies the condition of unprovability in KT5Q and that is
axiologically important.

The proof follows from the def. of axiologically important obligation,
equivalence under the translation function (} between K— (10 and KT5Q,
and Corollary 2. [ |
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