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Introduction

A theory T is called inconsistent if it contains contradictory
theorems, i.e. theorems such that one of them is the negation of the
other; otherwise T is called consistent. T is called trivial when the
class of its theorems coincides with the class of all formulas (or closed
formulas) of its language ; otherwise, T is called nontrivial. A logic is
said to be paraconsistent if it can be the underlying logic of inconsis-
tent but nontrivial theories. A theory based on a paraconsistent logic
is called paraconsistent.

In previous works (for example [5], [8] and [9]), I formulated
paraconsistent set theories, based on first-order paraconsistent logics.
In these systems of set theory Russell’s set, {x: x £x}, does exist, and
as a consequence of this fact they are inconsistent, though apparently
nontrivial. Moreover, I proved that if my systems are nontrivial, then
the corresponding classical set theories, which served as partial
motivations for my systems, are consistent. Naturally, a more signifi-
cant result would be to prove the converse of this theorem, since the
classical systems are more intuitive and at first sight more secure than
the paraconsistent set theories. (!)

In the present paper, I demonstrate that if the classical systems of
set theory correlated with my systems are consistent then the latter
are nontrivial. So, certain inconsistent but apparently non-trivial
systems of set theory are as trustworthy as the standard set theories,
and conversely.

It is interesting to observe that my paraconsistent set theories are in
a precise sense stronger than the corresponding classical theories.

(1) The first formulations of my systems were trivial (for details, see [2] and [3]).
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1. The systems NF;

The basic language of all systems to be treated here has the
following primitive symbols: 1) Connectives: > (implication), &
(and), V (or) and "] (negation); the symbol of equivalence, =, is
introduced as usual. 2) Individual variables: a denumerably infinite
collection of variables. 3) The quantifiers: V (for all) and 3 (there
exists). 4) Two binary predicate symbols: = (identity) and € (mem-
bership). 5) Parentheses. We define the concepts of formula, of bound
variable, of closed formula, etc. as usual.

Now 1 proceed to define the hierarchy NF;, 0<i<w, of set
theories. I shall begin with NF,. The postulates of N, i.e. its axiom
schemes and primitive rules of inference, are the following:

I) Propositional postulates, where A, B and C are formulas and A, is
an abbreviation for TJ(A & TT1A):

I,) A>(Bo2A) L) (A>B) o(A>(B>0C) (A >Q)
L) -AA—BDE L) (A&B)>A 1) (A&B)-B
Iy A>SBS(A&B) I) AS(AVB) Iy BS(AVB)

I;) (A>C) o((B>C) (A VB) Q)

li) B® ©((A ©B) o((A >71B) o71A))

l11) (A°& B°) o((A oB)° & (A & B)° & (A V B))
1) AVTIA Is) 1A oA

HI( Postulates for the predicate calculus, where A(x) is a formula, x is
a variable, etc., subjected to the usual restrictions:

A oB(x)
A > VxB(x)
Ax) oB
IxA(x) oB
II5) VX(A(x))° o(VxA(x))° Ilg) Yx(A(x)), D (IXA(X))°
I1;) If A and B are congruent formulas in the sense of [14], p. 153, or
one is obtained from the other by the suppression of vacuous
quantifications, then A =C is an axiom.

I1,) VYxA(x) DA(y) I1,)

II3) A(y) o IxA(x) I1,)
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III) Postulates for identity (x and y are distinct variables, etc.):

I, x=x HI,) x =y 2(AX)=A(y))

IV) Specific postulates :

I1V,) Extensionality: VX(xEy=x€z) Dy=1z,
where X, y and z are variables and x is dinstinct from y and z.
IV,) Separation: Iy Vx(x €y = F(x)),
where x and y are distinct variables, y does not occur free in
F(x), and this formula is stratified (cf. [19] and [20]) or is of the
form x &x (i.e. “I(x €X)).

Adding to the postulates I; to III, the new axiom scheme
“1(A & "1A), we obtain the classical first-order predicate calculus
with identity. The system NF of Quine (see [19]) is obtained by
adjoining to this calculus extensionality (postulate 1V,) and separa-
tion, the latter postulate subject to the sole restriction that F(x) must
be stratified. I shall denote Quine’s system by NF,.

In order to introduce the set theories NF;, 1 <i<w, I need some
definitions. Given the formula A, A! constitutes an abbrevitation for
A°°° where the symbol ° appears i times. A constitutes an
abbreviation for A’ & A> & ... & A'. So, by definition, A' is the same
as A°.

Then NF;, | <i<w, is formulated as follows: its postulates are
those of NF,, but replacing Iy4, I, Il5 and Il respectively by

I{) B? o((A oB) o((A >71B) o 71A))

I;;) (A? & BY) 5((A oB)? & (A & B)? & (A VB)®)
112 Yx(AX)Y o(vxA(x)D

1) Vx(Ax))P o (IxAx)D.

We have:

Theorem 1. - Let us denote by “TYA the formula ~1A & AY. Then
19 has all properties of classical negation (i.e. >, &, vV, ", V, Jand
= satisfy all postulates of the underlying logic of NFy.)

Proof. - See [7] and [8].
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Theorem 2. — Suppose that A is a theorem of NF,. If we replace in A
all occurrences of ~] by ~1¥, obtaining the formula A, then A is
provable in NF;, 1 <i<w.

Proof. — Consequence of Theorem 1 and the form of the postulates of
NFi, 1<i<w.

Theorem 3. — NF;, 1 <i<w, contains NF,.
Proof. — Consequence of the preceding results.
Theorem 4. - If NF;, 1 <i<w, is nontrivial, then NF, is consistent.

Proof. — Let us suppose that NF;, 1 <n < w, is not trivial and that NF,
is inconsistent. Let A,, A,,..., Ay, where A, is B& ~IB, be a
derivation of an inconsistency in NF,. So, employing the notations of
Theorems 1and 2, A,, A,,..., A, would be a derivation of B & 1B in
NFj. But in this system (C& “1PC) oD is a valid scheme, and
therefore NF; would be trivial.

Theorem 5. - In the hierarchy NF,, NF,, NF,,..., we have: for j <k,
NFj is stronger than NF.

Proof. - Immediate, taking into account the axiomatizations of NF i
and NF,.

Theorem 6. — If NF, is nontrivial, then all NF;, 1<i<w, are also
nontrivial.

Proof. — Corollary to Theorem 5.

Theorem 7. - NF;, 1 <i<w, is inconsistent.

Proof. - In fact, Russell’s set does exist in NF;, 1 <i<w. That is, we
have in this system: 3y Vx(x €y =x &x). Denoting by R the set

{x:x &#x}, we easily prove that RER& R&R.(}) (In NF;, | <i<w,
UR is the universal set (cf. [4]).)
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Now 1 proceed to show that if NF, is consistent, then NF, is
nontrivial. Therefore, by Theorem 6, the consistency of NF, entails
the nontriviality of any NF;, | <i<w.

Lemma 1. — The postulates I, to I3 constitute an axiomatization of
the propositional calculus called C; (cf. [7]). If the scheme
“1(A & "1A), where A is not an atomic formula, is added to C,, we
obtain a propositional logic which may be axiomatized as follows:

I¥) A>(B>oA) I3¥) (A>B) o((A>(B>0)o(A0)

1) % %) ((A>B)>A) oA

%) (A&B)>SA %) (A&B)>B

) Ao(Bo>(A&B) If) AoS(AVB)

%) B o(A VB) I%y) (A 5C) 5((B 5C) o((A VB) 5C))

I*)) (1A oB) o((T1A ©71B) oA), where B is not atomic.
Proof. — Immediate, taking into account results of [16] and [17].

Lemma 2. - Let NF% be the system resulting from NF; when
postulates I, to I;; are replaced by I% to I%,. Then, in NF% postulates
II5 and Il¢ are provable.

Proof. — In effect, A° is provable when A is not atomic.

Lemma 3. — NF, is weaker than NF%.

Proof. — Immediate.

Lemma 4. — The consistency of NF, implies the nontriviality of NF¥%.

Proof. — Let f be the function whose domain is the collection of
formulas of NF% and whose range is the collection of formulas of NF,
defined as follows:

1. fx=y)=x=y
2. f(xey) = xey
3. f(xey) =xey
4. f(x 2¢y) = x€V & ye€V, where V is the universal set
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5. f(A oB) = f(A) of(B)
6. f(A & B) = f(A) & f(B)
7. f(A VB) = f(A) Vf(B)
8. f(VxA) = Vxf(A)
9. f(IxA) = 3xf(A)

Then, using lemmas 1 to 3, it is not difficult to see that f(A) is a
theorem of NF, whenever A is an axiom of NF%. Since the rules of
inference of NF4 are valid in NF,, given any theorem A of NF*%, f(A)
is also a theorem of NF,. (For example, representing, as above,
Russell's set by R, fIRER&R&R) = f(RER) & f(R&R) =
VeV& (VeV&VeV) =VeV, which is a theorem of NF,.)

Therfore, supposing that NF, is consistent, NF* cannot be trivial
(for instance, # =@ is not a theorem of NF%, since (0 €0) = ¢ 0 is
not provable in NF}).

Theorem 8. — If NF is consistent, then NF, is nontrivial.

Proof. — The consistency of NF, implies the nontriviality of NF,
because the latter system is weaker than NF¥%.

Theorem 9. - If NF, is consistent, then all inconsistent systems NF i
1 <i<w, are nontrivial.

Proof. — The set theories NF;, 1 <i<w, are weaker than NF*%.

Remarks. - 1) Changing a little the proof of Theorem 8, it is possible
to prove the following proposition: Let us suppose that NF, is
consistent ; then the system obtained from NF;, l <i<w, by adjoining
axioms guaranteeing the existence of the sets of all non-k-circular
sets, k = 1,2,..., is not trivial (for example, the set of all non-3-circular
sets is the following set: {x: T13y,3y,dy;(x€y, & vy, €y, &
Y2 €Y3 & ¥3 €x)}). 2) The relations {<x;,..., X,>:1<Xq,..., Xo> &X,},
Moy Xy iR gpeces XalE%ds sy {<Xiyeey  Xp>:1>Xq,...,
Xn> &X,} are called Russell’s relations. Given the consistency of
NF,, if we add to NF;, 1 <i<w, new postulates guaranteeing the
existence of all Russell's relations, the resulting system if also
nontrivial. 3) Since the system NF,, investigated for instance in [5]
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and [8], is weaker than NF,, it is nontrivial in case that NF, is
consistent. (%)

2. The systems ZF;

Starting with ZF (Zermelo-Fraenkel system (cf. [13], pp. 274-275)),
it is natural to introduce a hierarchy ZF;, 0 <i<w, similar to the
hierarchy NF;, 0 <i<w. Instead of ZF, one could employ any other
classical system of set theory or of type theory as the first system of
the hierarchy (cf. [11] and [12]).

Among the several versions of ZF, it is better for my purposes to
use that of Church (see [6]), in which there exists the universal set,
and which I shall denote here by ZF,,.

I shall begin with the description of ZF;, whose underlying language
is the same as that of NF;. The logical postulates of ZF, are I, to III,
above. We define in ZF, the notions of inclusion, empty set, ordered
pair, relation, function, transistive set, connected set, well-founded
set, ordinal and finite ordinal as in [6], but employing strong negation,
IV, instead of the primitive negation ~]. The notations wf(x) and
finord(x) mean, respectively, that x is well-founded and that x is a
finite ordinal.

The specific postulates of ZF; are the following (see [6]):

1) Extensionality: VX(x€y=x€z) oy=z

2) Pair set: JuVx(x€Eu=(x=y Vx=2z)

3) Sumset: JuVx(x€u=3Iy(yEz & xEy)

4) Product set: yEz > uVx(x€u=Vy(y €z > xEy))

5) Infinity: JuVx(x €u = finord(x))

6) Choice: Every well-founded set is equivalent to an ordinal.

7) Complement: JuVx(x Eu=x&y)

8) Russell’s set: JuVx(x Eu=x&x)

9) Separation: wf(v) > JuVx(x€u=(x €v & F(x))), with the com-
mon restrictions.

(2) Introducing in NF, sets which may be called ‘strong Quine individuals’, i.e. sets x
such that x = {x} & (x €x)", it is possible to show that R is distinct from {x: x=x}.
As a corollary, neither R= {x: x = x} nor R+ {x: x = x} is provable in NF,, if NF,is
nontrivial (and the same is true in connection with the theories NF;, 1<i<w, and ZF,,
1 <i=<uw, the latter studied in section 2).
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10) Replacement:  ((YxVy(A(x,y) o (Vz(A(x,z2) > y=2z)&
VxVy(A(x,y) © (Vz(A(z,y) o . x=2) & Vy(yev=3IxAKX,y) &
wf(v))) o JuVx(x €u= 3yA(x,y)), with obvious restrictions.

11) Power set: wf(v) o> JuVx(x€u=x cv).

Theorem 10. - In ZF, we have: UR=V, where R= {x:x &x} and
V= {x:x=x}.

Proof. — See [4].
Theorem 11. - ZF; contains Church’s system ZF,.

Proof. — Analogous to the proof that NF; contains NF,.

Theorem 12 - If ordinary ZF, described in [13], pp. 274-275, is
consistent, then so is ZF,,.

Proof. — See [6], pp. 305-307.
The propositions below may be proved without difficulty, precisely
as the corresponding ones of section 1;

Theorem 3. - If ordinary ZF is consistent, then ZF, is nontrivial.

Theorem 14. - Let as suppose that ZF;, 1 <i<w, is obtained from
ZF, as NF;, 1 <i<w, from NF;. ZF is consistent if, and only if, ZF;,
I <i<w, is nontrivial. The consistency of ZF entails the nontriviality
of ZF,,.

Remarks 1 and 2 of the preceding section apply, mutatis mutandis,
to the set theories ZF;, 0 <i<w,

3. The paraconsistent programme.

In this part of my paper I make some remarks on the paraconsistent
programme. The main concern to paraconsistent set theory is not to
make possible the existence, and thereby the investigation, of some
sets which cause trouble in naive set theory, such as Russell’s set,
Russell’s relations and the set of all non-k-ciicular sets (k= 1,2,...).
On the contrary, the most important characteristic of paraconsistent
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set theories is that they allow us to handle the extensions of ‘incon-
sistent’ predicates which may exist in the real world or are inherent in
some universes of discourse in the fields of science and philosophy.
According to several dialecticians, for example, there exist real
contradictions in the world, and we need paraconsistent logic to
handle them (cf. [10] and [18]). Analogously, contradictions must be
taken into account in some psychoanalytic theories: the so-called
analytic discourse is envisaged as inconsistent or the ‘metatheory’ of
this discourse is considered as getting necessarily involved in contra-
dictions (cf. [1] and [15]). In philosophy, some reconstructions of
Meinong’s theory of objects do also require a paraconsistent logic (see
[21]). Of course, paraconsistent logic by itself can not prove that such
theoretical constructions are legitimate and that some domains of
knowledge are in fact involved in unsurmountable contradictions. The
contribution of paraconsistent logic is more modest, though of great
importance : it shows that inconsistencies can not always be conside-
red as apparent difficulties, eliminable in principle as fallacies or
errors, by an appeal to logic alone. In other words, if contradictions
can always be overcome without undesirable residues, then it is
impossible to establish this fact relying solely on logical grounds.

What I am trying to say is that the paraconsistent programme
should not be judged solely by the mathematico-formal features of the
paraconsistent set theories (for example, if they allow one to demons-
trate the existence of infinitely many ‘pathological’ sets, if Russell’s
set does exist and, supposed its existence, if it is identical or not to the
universal set), but above all by their aptness to cope with concrete
problems. That is, problems originated from the vicissitudes of
inquiry, in the domains of science and of philosophy, such as those
mentioned above.

Another important comment to be made is the following: since
several systems of paraconsistent set theory are stronger than classi-
cal set theory, everything that can be done with the help of the latter,
can ipso facto be done by means of the former. Thus, the best choice
of a logic for coping with a given domain of knowledge is not to be
made by purely logical norms, but depends on considerations of
various categories: pragmatic, philosophical, etc. In this way, para-
consistent set theories contribute for the better understanding of the
true nature of logic.
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It seems also worth while to observe that one may construct
paraconsistent set theories without Russell’s set and any other
well-known sets which caused troubles in naive set theory.
Notwithstanding this circunstance, they are strong and interesting,
especially as a formalization of some fuzzy concepts. However, this
topic is out of the scope of the present paper.

Summarizing, the paraconsistent programme, at least in its connec-
tion with set theory, has two kinds of motivation: one mathematico-
formal, related to “abstract’ problems, and another ‘concrete’, linked
to actual scientific and philosophic issues. Perhaps the second kind of
motivation is more fruitful than the first, as a source of relevant
paraconsistent insights.
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Caixa Postal 1170
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