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Abstract

The use of first-order logic in data bases raises problems about
representing relations that are not defined everywhere. The solution
to this problem is to use a 3-valued logic with the truth value
‘‘undefined’’. This paper is concerned with the naturalness of such a
logic, its power and its connection with classical logic.

Introduction

Many problems which arise in knowledge representation with
classical 2-valued logic come from the absence of the notion of
presupposition. As Keenan (1972) has shown, at the least, a 3-valued
logic must be introduced to deal with presuppositions in natural
languages. We present here a 3-valued extension of classical logic
which, from our point of view, is convenient and natural. After an
informal introduction to the basis of our system, we study in detail the
Boolean algebra which underlines it; this algebra is an extension of
the one developed by D.A. Bochvar as described in Rescher (1969).
Then we define precisely the whole system with its quantifiers. It
turns out that every deduction can be transformed into a deduction in
classical 2-valued logic. This is a very interesting result. We conclude
by describing very briefly the question-answering (QA) system which
originated this paper and was implemented by J.F. Pique (1978). This
system, which deals with natural language, was influenced deeply by
the work described in A. Colmerauer (1979) and in R. Pasero (1980).
Readers who are interested by the treatment of presupposition in
linguistics may consult L. Karttunen (1963) and R. Zuber (1972).

* réimpression de l'article paru dans «Advances in Data Base theory, vol. l»,
Phenum Press 80, avec 'aimable autorisation des éditeurs.
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Presupposition and 3-Valued Logic

Natural Language and Presupposition

Any assertion in natural language carries a certain number of
presuppositions: if we assert

(1) toc saw mary

without knowing anything about toc, anyone will conclude that toc is
a being capable of seeing and that mary was in his field of vision. But
if we say

(2) toc did not see mary

in this case we conclude that toc is a being capable of seeing and that
mary was not in his field of vision. Thus it appears that an assertion in
natural language links two types of properties. A property which
cannot be denied, which we shall call a presupposition, and which can
be seen as the semantic field of the assertion, and a description
property which is asserted as true or false (in the case of a negation).
To represent such a behavior we shall introduce the presupposition
operator ““if’”” with the fundamental properties:

(3) if(p,q) = true > and(p,q) = true
(4) not(if(p,q) = true < if(p,not(q)) = true

where p is a presupposition and q a description property. We notice
that the operator “'if”’ enables us to introduce quite naturally the
domains used in question answering systems for limiting the scope of
negative questions: to the questions

(5) who does not distribute the product U1?
(6) who distributes the product U1?

we are only interested in the answers for which certain properties
(domains) are true (for example bolt 49, table 66... will not be
considered as valid answers). The domains of the relationship *‘x
distributes the product y’* are respectively the persons for x and the
products for y. These domains appear in fact as presuppositions on
the arguments of the relationship. If we represent this by something
like:
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(7) distribute (x,y) = if (and(person(x), product (y)),
isdistributorof (x,y))

we can see that using (3) and (4), the questions

(8) x ? not(distribute (x,Ul) = true
(9 x ? distribute (x,U1) = true

will give respectively the correct answers to the questions (5) and (6).

What happens when a presupposition is not true ? If we find out for
example that toc is a second name for the object bolt 49, the assertion
(1) cannot be true, but its negation (2) seems hardly any more
acceptable. This is still clearer if we consider the property ‘‘work
with’’; the assertion:

(10) john works with himself
is not true, but its negation
(11) john does not work with himself

is not true either. It appears then that two values of truth are not
sufficient to account for the properties of natural language. We shall
therefore introduce the truth value ‘‘undefined’” to represent the idea
of “‘absurd” or ‘‘meaningless’’. Thus the presupposition operator
**if”” is such that:

(12) p=+true = if(p,q) = undefined.

If we consider that the relation ‘‘x works with y’’ presupposes that
x and y are persons and that x is different from y, from (12) we deduce
immediately that (10) and (11) are undefined. If we ask questions like

(13) who works with john?
(14) who does not work with john?
with
x works with y = if (and (person (x), differentfrom (x,y)),

isworkmate (x,y))

we shall never obtain abnormal answers such as (10) or (11). One
notices that a QA system provided simply with domains does not
enable us to avoid such anomalies. From the above we define the
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connector ‘‘if"” and extend the connector ‘‘not’’ thus:

if (p,q) =
undefined if p is not true
q otherwise
not (p) =
undefined if and only if p is undefined.

If we remember that ‘‘undefined’” stands for ‘‘meaningless’, it
seems quite natural to say that the conjunction or the disjunction of a
proposition with something meaningless yields a sentence which can
neither be true nor false as for example:

john sells or eats cars
So we extend ‘‘and’” and “‘or’’ to three values by stating:

and (p.q) = or(p.,q) =
undefined as soon as one of the propositions is undefined

One can notice that these extensions preserve De Morgan laws.

Quantifiers and Presupposition

Sentences in natural language contain articles. The latter may be
considered as quantifiers joining a statement around a common noun
introduced by the article, to a statement built around the verb of the
sentence (Colmerauer (1979)). We shall represent them by quantifiers
with three arguments: the first is the quantified variable, the second,
the statement around the common noun, the third the statement
around the verb. Let us consider the assertion:

(15) each salesman distributes Ul
which we shall represent by

each(x,pl,p2)
pl = salesman (x)
p2 = distribute (x,U1).

What shall we say about this assertion if there is no salesman? If we
say that it is true, then to the question

(16) which products does each salesman distribute ?
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we shall obtain the aswer Ul (in fact all the products) since (15) is
true, which is unacceptable. If we say it is false, then the assertion

(17) a salesman does not distribute Ul

ought to be true since it is the negation of (15). As it is obviously not
true, it appears that the assertion (15) is undefined in this case. So the
article “‘each’ in (15). introduces the presupposition that an entity
satisfies the property ‘‘to be a salesman’’. The presupposition is even
stronger because:

(18) each bolt distributes Ul

will also be undefined because, even if entities satisfying the state-
ment pl exist, the statement p2 will not be defined for any of these.
Moreover, one cannot impose that p2 is defined for all entities
satisfying p1, since the sentence

(19) each person works with john

would be undefined because, for the person john, the property
“‘works with” is undefined. So it appears that ‘‘each(x,pl,p2)”
presupposes that there exists at least one entity for which pl is true
and p2 is defined. The value of a proposition ‘‘each(x,p1,p2)"" will
then be

- undefined if there exists no entity such that pl is true and p2 is
defined

— false if there exists an entity such that pl is true and p2 is false,

— true if there exists an entity such that pl and p2 are true and, for all
entities, pl true implies p2 true or undefined.

We notice that to a question like
(2) who disributes each product?,
represented by,
(21) x? each(y, product(y), distribute (x,y)) = true,

we can only obtain the answer ‘‘nil’” if the products and persons likely

to distribute them actually exist. If not, the question will be undefined

and we can reply ‘‘there is a false presupposition in your question’’.
N.B. In a question like (20) where the question deals with an
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argument of the proposition, and not with its truth value, the role of
“‘each’ can be used to introduce a multiple question (see Pique [ 1978]
for a discussion on this subject). In order to remain clear we shall
restrict ourselves to sentences outside these cases, which does not
alter in any way the validity of our system.

The quantifier “*a(x,pl,p2)”” will enable us in the same way to
express assertions like

(22) *‘a caris blue”
pl = car(x)
p2 = isblue(x)

we shall define the value of ‘‘a(x,pl,p2)’’ as

— undefined if there exists no entity such that pl is true and p2 is
defined,

— true if there exists an entity such that pl and p2 are true,

— false if there exists an entity such that p1 is true and p2 is false and,
for each entity, when pl is true p2 is false or undefined.

The value of the proposition “‘no(x,p1,p2)"" is deduced immediately
by observing that it is the negation of ‘“‘a(x,pl,p2)’:

no(x,pl,p2) = not(a(x,p1,p2)).
One can notice moreover that
each(x,pl,p2) = no(x,pl,not(p2)).

Let us now see if it is possible, with some extensions, to express the
natural quantifiers “‘a”’, ‘“‘each’’, “‘no’’ by the quantifiers “‘exist’’ and
“all’” of classical logic. If we look at the definition of the value of the
proposition ‘‘each(x,p1,p2)”” for example, one can note that this
definition can be formulated solely in relation to the value of
“if(pl,p2)”’, instead of those of pl and p2 separately (for example
“‘each(x,pl,p2)”’ will be undefined when ““if(p1,p2)’’ is undefined for
any x). This leads us to generalize the quantifier ‘‘all(x,p)”’ to three
values as follows:

all (x,p) will be
— undefined iff for all x, p is undefined,
— false iff there exists x such that p is false,
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— true iff whatever x is, p is true or undefined, and
there exists x such that p is true.
We have, therefore:

each(x,pl,p2) = all(x,if(p1,p2)),
no(x,pl,p2) = all(x,if(pl, not(p2))).

We shall also generalize the existential quantifier by:

exist(x,p) will be

— undefined iff for all x, p is undefined,

- true iff there exists x such that p is true,

— false iff whatever x is, p is false or undefined, and
there exists x such that p is false.

This leads us to the relationship,
a(x,pl,p2) = exist(x,if(pl,p2)).
Note that the relations of classical logic are maintained:

not (exist (x,p)) = all(x, not(p)), and
not(all(x,p)) = exist(x, not(p)),

but that the quantifiers “‘exist” and ‘‘all’” cannot be seen as a
generalization of “‘and’’ and *‘or’’. Various types of quantifiers have
been defined and studied in A. Mostowski [1957].

The Adequate 3-Valued Boolean Algebra

Before formalizing a complete logical system with quantification,
we will first define and study the 3-valued algebra which we have
introduced informally.

Basic Functions
Let us take the three truth-values:

I to represent ‘‘true’’
0 to represent ‘‘false”
o to represent ‘‘undefined’’ or ‘‘meaningless™



216 A. COLMERAUER and J.F. PIQUE

The classical boolean functions are extended to three values by
considering that it is sufficient that one operand is undefined to
produce an undefined result:

not[1] =0, not[0] = 1, not[w] = w,
and[p,q] = min {p,q} with o <0<],
or[p,q] = max {p.,q} with0 <1< .

It follows that the usual equalities still hold:

not [not [p]] = p,
not [and [p,q]] = or[not[p],not[q]],
not [or [p,q]] = and [not [p], rot [q]].

To deal with presuppositions we introduce

iflp.ql =
qifp=1
wifp+1.

The behavior of this function with regard to negation is characteristic :

not [if(p.al] = if1p. not[q]].

It is convenient to be able to go back to a two-valued logic. The two
simplest functions allowing this to be done are:

triue [p] = defined[p] =
lifp=1 lifp+uw
0if p=+1I 0ifp=w
Completeness

It is interesting to show that it is possible to express any n-ary
3-valued Boolean function by the means of composition of our
previous defined functions and constants: not, true, defined, and, or,
if, 1, 0, w.

First we prove that it is possible to express the functions:

case [w,p,q.,r] = p
case [0,p,q.r] = q
case [l ,p,q.r] = r.
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We have:

case [k,p,q,r] =

or |pick [undef [K],p], or [pick [false [k].q],
pick [true [Kk],r]]]

with ;
pick[l,p] = undefk] = false [k] =
pif1=1 lifk=w lifk=0
Lif 1 +1 0ifk *w 0ifk =0

We can now represent these three functions by:

pick [1,p] = if[or [not [1], defined [p]], and [1,true [p]],
undef k] = not [defined [K]],
false [k] = true[not [K]].

To express any n-ary function f[p4,...,ps], we note that in the
special case where n = 01t is reduced to ], 0, or w and that in the other
cases it is possible to decrease n as much as one wants by decompo-
sing the function according to the scheme:

f[p‘h 5 ',pnl =
case [pnaf[pls .. -!pn—b (D], f[p]s ey Pn—1,0],
f[pla L] '!pn—la ]]]'

A stronger result can be obtained by considering the equalities:

I = not [0]

0 = true [if [not [p], p]]

® = if[not [p]. if [p,p]]

or [p,q] = not [and [not [p], not [q]]]

and[p,q] = if [defined [p], if [defined [q], true [if[p.ql]]

true [p] = defined [if [p,p]]

defined [p] = not [true [if[not [true [not [p]]], not [true[p]]].

This result is:
Any n-ary 3-valued Boolean function (n>0) can be expressed

using only functions from the set {if, not, true} or using only
functions from the set {if, not, defined}
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Moreover the sets {if, not, true} and {if, not, defined} are minimal,
which means that they contain no strict subset which allows one to
express every function. To prove this last point let f be a unary
function. It has the properties:

f[w] = w if fis constructed only from {if, not}
f[1] =1 if fis constructed only from {if, true, defined}
f[0] +w if fis constructed only from {if, true, defined}.

The function

f[p] =
0Oifp=w
wifp + o

has none of the three properties and so it cannot be constructed only
from one of the three last sets and a fortiori not from a strict subset of
{if, not, true } or {if, not, defined}.

We conclude by noting that if we had taken as primitive the
function :

undef[p] =
lifp=w
Oifp~+ow

the equalities

defined [p] = not [undef]p]]
not [p] = if[undef[if [undef[p], undef|p]]], undefTif[p,p]]]

would have allowed us to reduce the minimal subset {if, not, defined}

to {if, undef?}

Definition of our Logical System

We now have all the elements to define, in a very precise way, the
logic with quantification introduced at the beginning of the chapter.
As usual, we distinguish two aspects: syntax, which deals with the
way formulae look, and semantics, which deals with what they mean.
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Syntax

Let F be a set of functional symbols, R a set of relational symbols
and V an infinite enumerable set of variables. F, and R, represent
respectively the set of n-ary functional and n-ary relational symbols.
We define two types of formulae: terms, which are related to
individuals, and propositions, which are related to truth-values.

Definition 1

The set T of terms is the smallest set of words over the alphabet
VUF U{(,),comma}, which are of one of the 3 forms:

(I) x withx€EV

(2) fo with fo EF[)

(3) fu(ty,...,ty) with ty,...,t, €T and f, €F,.
Definition 2

The set P of propositions is the smallest set of words over the
alphabet VUF UR U {1, 0, Q, not, true, defined, and, or, if, exist, all,
(,), comma}, which are of one of the 13 forms:

1 1
@ 0
3 Q

4 1, withry €R,
5) rt,.--t) with r,€R;, and t,....,t,€T

(6) not(p) with p€EP

(7) true(p) with peEP

(8) defined (p) with p<P

(9 and(p,q) with p,qEP

(10) or(p,q) with p,qEP

(11) if(p,q) with p,qEP

(12) exist(x,p) with x€V,peP
(13) all(x,p) with Xx€V,p€EP.
Semantics

The meaning of a formula will be the values it takes in different
interpretations of the variables, the functional symbols and the
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relational symbols.
To define an interpretation we need:
— the set of truth-values: {/,0,w}
— a nonempty set D: the domain of interpretation.

Definition 3

An interpretation 1 is a mapping from V UF UR to a set constructed
from {w,0,1} and D, which is such that:

IxeD if xeV

If,eD if f,€F,

If, is a mapping from D" to D if f, €F,
Ipb€0,1 if ryER,

Ir, is a mapping from D" to {0,1} if r, ER,.

It should be noted that the truth value w is not really used here, which
means that relational symbols are interpreted as classical 2-valued
relations. We will come back to this subject later. As done by Lyndon
[1964] in his nice little book, Notes on Logic, we introduce the notion
of interpretations which differs from one another just on one variable.
This helps to define the meaning of quantification:

Definition 4

The set S[I,x] is the set of all interpretations that agree with I on
V UF UR except possibly on x.

For every formula f we can now define its value ¢;[f] in a given
interpretation I.

Definition 5

The value ¢;[t] €D of a term t in an interpretation 1 is defined
recursively on the 3 possible forms of t:

(1 ¢u[x] = Ix
(2) dulfe] = Ify
3 orlfalts,. ... t)] = [Mal[di[tad, .. ., De[tal].

Definition 6

The value ¢ [p] €{w,0,1} of a proposition p in an interpretation 1 is
defined recursively on the 13 possible forms of p:
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¢e[1] =1
¢ [0] =0
¢ [Q] = w
¢r[ro] = Irp

¢r[not(p)] = not [¢1[p]]

di[true(p)] = true [¢1[p]]

¢ [defined (p)]] = defined [¢y[p]]

¢1[and (p.q)] = and [¢:1[p]. ¢i[al]

$rlor(p,q)] = or [¢:[pl. ¢1ldl]

G [if (p, @] = [P [p], Pelql]

¢r[exist(x,p)] =

I if there exists J ES[I,x] with ¢;[p] = /

0 if there does not exist ] €S[I,x] with ¢;[p] = I but there
exists K =S [I,x] with ¢k [p] =0

o if for all J €S[I,x] we have ¢;[p] = w

¢’l [a" (x’p)] =

1 if there does not exist J=S[I,x] with ¢y[p] = 0 but there
exists K €S[1,x] with ¢k [p] = /1

0 if there exists J €S[I,x] with ¢y[p] = 0

w if for all JES[L,x] we have ¢;[p] = w.

[

Or[rn(ts, . t)] = [Ira][@r[ta], . . . i [ta] ]
[
[

Of course, not, true, defined, and, or, if are defined by

not[l] =0 true [p] = defined [p] =
not[0] =1 lifp=1 lifp+ow
not[w] = w 0ifp +1 Oifp=w

and [p,q] = min {p,q} withw<0<]
or[p,q] = max{p,q} witho<I<w

flp.al =
qifp=1
wifp +1.

Two remarks are necessary before ending this section.

It is obvious that the value of a proposition, in general, depends on
the interpretation of free-occurring variables, but not on the interpre-
tation of bound-occurring variables.

(The notion of free and bounded occurrences of variables is assumed
to be familiar to the reader.)
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We interpret relational symbols by 2-valued relations instead of

3-valued relations for the following reasons:

— for the sake of simplicity and to be able, later on, to switch back
smoothly to 2-valued logic,

— because it is not a restriction: any 3-valued relation r can be
expressed by two 2-valued relations r' and r’ using the fact that if

r' [ty ... ta] = defined [r[tq, ..., t,]]
Pt ty] = true [rty, ..., t,]]

then

Pt e ata] = [ [t ooty Pt - oo ta] ]

Some Equivalences

It is natural to introduce the following equivalence relation between
propositions:

p=q iff in every interpretation I

$e[p] = ¢rlal

It must be noted that this equivalence relation has the same property
as equality with respect to substitution, that is:

if in a proposition p one replaces a subproposition q by a
proposition equivalent to g, one obtains a new proposition
equivalent to p.

The following equivalence rules concern the three unary connec-
tors: “‘not’’, “‘true”” and ‘‘defined’’. They are directly deducible from
the definition of ¢;. The notations are those of the syntactic definition
of a proposition.

not(1)=0
not(0)y=1
not (Q)=Q

not (not (p)) =p

not (and (p,q)) =or (not (p), not(q))
not (or (p,q)) =and (not(p), not(q))
not (if (p,q)) =if (p, not (q))
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not (exit (x,p)) =all (x, not (p))
not (all (x,p)) =exist (x, not (p))

true(l)=1
true (0) =0
true (2)=0

true (rp) =1,

true (ry (ty, .. ., t)) =ra(ty. ..., ty)

true (not (true (p))) =not (true (p))

true (true (p)) =true(p)

true (defined (p)) = defined (p)

true (and (p,q)) =and (true (p), true (q))

true (or (p,q)) =and (and (defined (p), defined(q)), or(true(p),

true(q)))

true (if (p,q)) =and (true (p), true (q))
true (exist (x,p)) =exist (X, true (p))
true (all (x,p)) =and (exist (x, true (p)),
not (exist (x, true (not (p)))))

defined(1)=1

defined (0) = 1

defined (2) =0

defined (ry) =1

defined (r, (t;,....t,) =1

defined (not (p)) =defined (p)

defined (true (p)) =1

defined (defined (p)) =1

defined (and (p,q)) = and (defined (p), defined (q))
defined (or (p,q)) =and (defined (p), defined (q))
defined (if (p,q)) =and (true (p), defined (q))
defined (exist (x,p)) =exist (x, defined (p))
defined (all (x,p)) =exist (x, defined (p)).

Back to Two Truth-Values

Let us look at the syntactic definition of the set P of propositions
described in the section DEFINITION OF QUR LOGICAL SYS-
TEM, Syntax. Consider the subset P’ of propositions obtained by



224 A. COLMERAUER and J. F. PIQUE

suppressing the forms (3), (7), (8) and (11). There are therefore only 9
forms left:

n 1

2) 0

(4) Io with I'o ERU

(5)  ralty, ...ty with ,€R, and ¢ty ... t,€T

(6) not(p) with p<EP’

(9 and(p,q) with p,qeP’

(10) or(p.q) with p,qEP’

(12) exist(x.p) with x€V and peP’
(13) all(x,p) with x€V and peP.

We see now that the value of a proposition p €P’ is never ‘‘undefi-
ned”’. This results on the one hand, from the fact that the relational
symbols are interpreted as 2-valued relations and on the other hand,
from the absence of the proposition “*Q’" and the connector “‘if’".
Thus the definition of ¢; is simplified into:

(la)  @u[1] =1
(2a)  ¢i[0] =0
(4a)  ¢i[ro] = Iro
(5a)  drfra(ty, ..., t)] = [Irg] [r[te],. . ., i [ta]]
(6a)  ¢r[not[p]] =
L'if ¢i[p] =0
0if ¢ilpl =1
(9a)  ¢i[and(p,q)] = min{;[p], Pp:1[q]} with 0 <]
10a)  ¢i[or(p,q)] = max {¢:[p], ¢1[q]} with 0 <1
(12a) ¢y [exist(x,p)] =
I if there exists J =S[1,x] with ¢y[p] = /
0 if for all IES[I,x] we have ¢;[p] = 0
(13a)  ¢rfall(x,p)] =
1 if for all J =S[1,x] we have ¢;[p] = /
0 if there exists J €S [I,x] with ¢;[p] = 0.

It is pleasant to see then that things are settled back to classical
two-valued first order logic, the signs ~1, A, V, 3, ¥ being respectively
“not™, “*and™, *‘or’’, “‘exist’’, and *‘all’’. We will now consider three
interesting mappings from P to P'.
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Definition 7

The mappings T, F, D from Pto P' are defined recursively on the 13
possible forms of a proposition:

(01a) T[] =1

(02a) T[0] =0

(03a) T[Q] =0

(0d4a) Try] = 1y

(05?1) T[rn(tlx'-'atn)] = rn([1,-"5tn)

(06a) T[not(p)] = F[p]

(07a) T|[true(p)] = T|p]|

(08a) T[defined(p)] = D[p]

(09a) T[and(p,q)] = and(T[p|, T[q])

(10a) T[or(p,g)] = and(and(D[p], D[q]), or (T[p], T[q]))
(11a) T[if(p,q)] = and (T[p], T|[q])

(12a) TJexist(x,p)] = exist(x,T[p])

(13a) TJall(x,p)] = and(exist(x,T[p]), not(exist (x,F[p])))
(01b) F[1] =0

(02b) F[0] =1

(03b) F[R]=0

(04b) F[ro] = not(ry)

(05b) Flr,(ty,....,4)] = not(r, (ty,. .., 1))

(06b) F[not(p)] = T|p]

(07b) F(true(p)] = not(T [p])

(08b) F{defined(p)] = not(D[p])

(09b) Fland (p,q)] = and (and (D[p], D[a]), or(F[p], F[q]))
(10b) Flor(p.q)] = and (F[p], F[q])

(11b) F[if(p,q)] = and(T[p], F[q])
(12b) Flexist(x,p)] = and (exist(x,F[p]), not(exist(x,T[p]))
(13b) FJall(x,p)] = exist(x,F[p])

(0lc) D[1] = 1
(02¢c) D[O] = 1
(03c) D[Q] =0

(0d4c) Dirg] =1

(OSC) D[rn(tl""’tn)] =1
(06c) Dinot(p)] = D[p]
(07¢) Dftrue(p)] =1
(08c) D[defined (p)] =
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(09¢c) Dland(p,q)] = and(D[p], D[q])
(10c) D[or(p,q)] = and(D[p], D[q])
(Ilc) DJif(p,q)] = and (T [p], D[q])
(12¢) D[exist(x,p)] = exist(x,D[p]).
(13¢c) DiJall(x,p)] = exist(x,D[p]).

We notice that if “T[]", “F[]”, “D[], ‘‘="" are respectively
replaced by “‘true()’’, ‘‘true(not())”’, ‘‘defined’’, ‘‘="" these defini-
tions are transformed in equivalences directly deducible from those
described in the section PROPERTIES OF OUR LOGICAL SYS-
TEM, Some Equivalence. It follows that:

T[p] =true(p)
F[p] =true (not (p))
D[p] =defined (p)

and of course T[p], F[p] and D[p], contrariwise to p, are necessarily
propositions of classical 2-valued logic.

Consider now a set of propositions p. . .., pn. Let W be the set of all
the interpretations in which each p; has the value ‘‘true’’, that is, /.
We may consider that W represents a partially known “*world™". It is
interesting to be able to deduce all the statements q which have the
value ‘‘true’” in this “‘world”’. We write them {p,,...,p.} E=q. More
precisely, we have the following

Definition 8
The deduction relation = is defined by:

{P1,...pPatE=q iff for every interpretation I
$ilp] =1,... and ¢i[pa] =/
imply ¢1[q] = 1.

Definition 8 is the classical definition of semantic deduction. We
have:

{pla"',pn}i:q lff
{true(py), . . ..true(p,)} =true (q) iff

This proves that every deduction in our 3-valued logic can be reduced
easily to a deduction in classical 2-valued first order logic.



ABOUT NATURAL LOGIC

Let us take an example. Consider the assertions

P, : A is a table

P, : B is a person

P; : nobody is laughing
P, : A is not laughing
Ps : B is not laughing.

We suppose that only persons can laugh. So we take:

X is a table <> table (x)
X is a person < person (x)
x is laughing < if (person (x), laugh (x)).

We obtain:

P; = table (A)

P, = person(B)
P; = all (x, not (if (person (x), laugh (x)))
P, = not (if (person (A), laugh (A))
Ps = not (if (person (B), laugh (B)).
And so:

T[P,] = table(A)

T[P,] = person(B)

T[P;] = 3x(person(x) A~ llaugh (x)) A
¥y ( Iperson(y) V llaugh(y))

T[P4] = person(A) A “1laugh (A)

T Ps] = person(B) A "laugh (B).

We want to prove that:
{Py, P;, P3} =Ps.
That is,
T[P], T[P,], T[P:] =T[Ps].
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We can do a proof by inconsistency (that is, deny the conclusion and

show that a contradiction arises):

{T[Pi], T[P:], T[P;], "1T[Ps]} =0
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We transform the propositions into clauses:

(1) table(A)

(2) person(B)

(3a) person(K)

(3b)  Tlaugh (K)

(3c) “Iperson(x) V "llaugh (x)
(5) " Iperson(B) Vlaugh (B)

The proof by resolution gives:

(2) and (3¢) = (6) ~llaugh(B)
(6) and (5) = (7) “1person(B)
(7) and (2) = [

By the same technique it would not have been possible to prove:
{P1, Py, P3} =Py

This is reasonable since it is hard to assert that a table is not laughing,
at least in data bases.

An Example Application

In this section we illustrate the application of our system to
querying a data base. The example used represents a specific inter-
pretation (closed world assumption as in Reiter [ 1978] and describes in
a 2-valued system the relationships existing between teachers, stu-
dents, language courses and residence. The true facts are represented
explicitly, the false ones implicitly. The queries are made in natural
language and translated by a metamorphosis grammar (Colmerauer
[1978]) into a formula p of the 3-valued system. As we have a finite
world and only one interpretation, we can evalutate p to obtain the
answer by following recursively the definition of ¢;[p]. The value of a
formula can also be obtained from the evaluation of several formulas:
the value of p can be deduced from the values of the three formulas
“true(p)’’, “‘true(not(p))’’, ‘‘not(defined (p))”’ (which are respecti-
vely true if and only if ¢;[p] = I, ¢i[p] = 0, ¢1[p] = w). We notice
that, for each value of p, one and only one of the three formulas can be
true. For example we can deduce the value of p from the value of the
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first and the second one. This is interesting because, as stated in the
section Back to Two Truth-Values, values of the formulas *‘true (p)”
and “‘true (not(p))”’, are respectively equal to those of the formulas
p'y = T[p] and p’, = F[p] of the 2-valued logic. Thus we can restrict
ourselves to the simpler and more classical evaluations of ¢1[p'y] and
¢1[p’s] of 2-valued logic.

We obtain the formulas p'; and p’, with the mapping defined also in
the section Back to Two Truth-Values. Moreover, if the value of
p'y = T[pl turns out to be true, it is unnecessary to evaluate F[p].
Thus in most cases only one evaluation is needed since queries are
true propositions in general.

The entire system is written in PROLOG (Roussel [1975]), a very
high level programming language based on first order logic, and runs
with virtual memory on a MOTOROLA 6800 micro computer with
two floppy disks. In the trace below, the querying session is in bold
capitals, English translation in italic and commentary in this font.

computer: FECOUTE

I listen
The system waits for a query to be entered.
user: OU HABITE YAN?
Where does Yan live ?
computer: NICE
This is the answer, Nice.
computer: JECOUTE
I listen
user: OU N'HABITE PAS YAN?
Where doesn’t Yan live ?
computer: AIX
ARLES
NIMES
The answers are solely those for which the relations-
hip “*live’” has a meaning (the only residences known
from the system are Aix, Arles, Nice, Nimes).
FECOUTE
user: EST-CE QUE CHAQUE ETUDIANT DE GREC HA-
BITE A NIMES?
Does each student of Greek live in Nimes?
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computer:

user:

computer:

user:

computer:

computer:
user:

computer:

computer:
user:

A. COLMERAUER and J. F. PIQUE

NON

no
The system is not successful in the evaluation of the
transposed formula T [p], but is in F[p]: it concludes
that some student of Greek doesn’t live in Nimes.

JECOUTE

QUELS SONT LES ETUDIANTS DE GREC QUI

N'HABITENT PAS NIMES?

Who are the students of Greek who do not live in Nimes?

LUC

LEON

JECOUTE

QUELS SONT LES ETUDIANTS D’ALLEMAND QUI

HABITENT A AIX?

Who are the students of German who live in Aix?

VOTRE QUESTION N’A PAS DE SENS: IL DOIT Y

AVOIR UNE PRESUPPOSITION FAUSSE.

Your question is meaningless: these must be a false

presupposition.
The system evaluates to false both T[p] and F|[p]
since there are no students of German in the data
base; thus p has the value ‘‘undefined’’. We would
have obtained the same answer to the query ‘‘does a
student of German live in Aix?"".

JECOUTE.:

EST-CE QU'UN ETUDIANT APPREND L’ALLE-

MAND?

Does a student learn German?

NON

no
As the presupposition is now only related to student
existence, we obtain a defined answer.

JECOUTE:

BONSOIR

Good evening.
The end of the session.
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Summary

We have shown how presuppositions introduce problems in data
base systems. To handle these problems in a clean manner, we
defined a complete three valued logic. We then proved that it is
possible to transpose any deduction in the three-valued logical system
into a deduction in classical first-order logic. This made it possible for
us to use techniques, devised for first order logic, for deduction based
on a three-valued logic. Finally, a natural language question-answe-
ring system was implemented in the language PROLOG using the
techniques described in this chapter.
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