PARADOX-TOLERANT LOGIC (*)

R. E. JENNINGS and D. K. JOHNSTON

Introduction

In the modern era there have been those who have regarded
classical logic as the crock at rainbow’s end; and there have those
who have preferred a briefer description along the same vascellar
lines. It is this dispute as to contents which accounts for the differing
degrees of gladness with which these opponents receive the notion
that PL should be traded for a mess of sensible if less elemental
pottage. And inevitably there have been those who have confessed to
finding the proferred pottage a trifle lumpy. One of those most
recently to retch in print has been D. Lewis (in [8]). Since the
philosophical motivation for the logic we study here is intermediate
between the one which Lewis cannot digest and the one that he will
not swallow, that discussion provides a suitable preparation for our
own. The main idea, that of N. Belnap [1], which Lewis considers is
one which had gained for relevant logic a welcome measure of
even-tempered consideration. This is the notion that distinct sources
might assign the same sentence differing truth-values, and when this is
$0, the requirement that implication must preserve truth may be taken
to rule out classical inferential procedures and rule in those licensed
by various relevant systems. Lewis’s negative point on this score is
that in the case Belnap envisages, we will more sensibly try to ke
the conflicting information separate, that is, unconjoined, and so he
opts for some such approach as that suggested by Jaskowski in [5] or
Schotch and Jennings in [11] and elsewhere. The preferred approach
is one which, in the words of [6], chooses inferentially pudent
conjunction over inferentially prudent implication. As for the relevant
systems, they are best reserved for those situations in which the
conjunction of contradictions is unavoidable, as when the contradic-
tion arises through an equivocal use of language. This essayed
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rehabilitation of relevant logic is of no intrinsic interest to us here save
in one respect. That is that both Belnap’s and Lewis’s proposed uses
of relevant logic arise in circumstances of doxastic irregularity. In
Belnap’s case it is unavoidable conflict of data; in Lewis’s, inadver-
tent equivocation. This feature of untowardness has marked the
motivating examples of Jennings and Schotch, notably, conflicting
beliefs and irresolvable conflicts of obligation. In the approach taken
by Routley and Priest et al. the need for non-classical implication
arises from ineluctable inconsistency in some mathematical and
physical theories which in the end, we might just decide to accept.
This approach, which Lewis labels ‘the radical answer’, he dismisses
without argument.

The reason why we should reject this proposal is simple. No
truth does have, and no truth could have, a true negation.
Nothing is, and nothing could be, literally both true and false.
This we know for certain, and a priori, and without any exception
for especially perplexing subject matters. The radical case for
relevance should be dismissed just because the hypothesis it
requires us to entertain is inconsistent.

That may seem dogmatic. And it is:....

We do not intend specifically to answer this little emesis (to press
the metaphor); however, we hope that it will be plain enough that the
radical answer deserves better than the superficial consideration with
which Lewis dismisses it. The issues raised are, in any case, more
directly addressed in Jennings [6] and Routley and Meyer [10]. It is,
however, relevant to remark that Lewis’s rejection of a view counte-
nances inconsistent worlds seems more the reaction of a possible
worlds realist than the reaction of a classicalist. For loyalty to the
classicalist banner dictates only the insistence that at inconsistent
worlds, if we may be permitted to call these objects ‘worlds’, every
sentence of the chosen language be true. It is this notion that these
objects cannot really be worlds, but rather must be merely model
theoretic devices that seems to give rise to Lewis’s illiberality, as well
as to B. J. Copeland’s claims (in [3]) that the radical treatment is
philosophically unilluminating. The two kinds of objection are simply
answered. In the first place, the people who have so glutinously
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adhered to the view that possible worlds have a useful role to play in
philosophy have never been able to say what they are, so whether the
Routley-Priest objects can count as worlds in their sense must remain
a moot point. In the second place, even if they do count as worlds, we
ought not to expect their introduction to be any more illuminating in
this context than their introduction has been in any other. It surely has
to be admitted by now that the explanatory record of worlds in
informal philosophy is pretty spotty. At the same time, non-standard
worlds have played a useful role in formal studies, even those
undertaken by dyed-in-the-wool-and-born-again classicalists. Consi-
der only the Q worlds of frame theory and the heavens of Cresswell
[4]. So if in the present case inconsistent and incomplete worlds
achieve no more than a technical usefulness, they have achieved as
much as any worlds (except possibly the real one) in the modern era.
This discriminatory prosecution of the paraconsistentists is entirely
misplaced. It would remind one of ordinary ranting fundamentalism
save for the feature that in this case the ranters behave as co-authors
with the almighty of the scripture in whose defence they rant.

We begin our essay with the remark that the notion of a world, even
of the real world, is, for us, a problematic notion. Furthermore, we
confess to grave philosophical inadequacy in our understanding of the
nature of truth, (What can be meant by the notion of something’s
being ‘literally true’, let alone ‘literally both true and false’? What is
the literal meaning of ‘truth’?) We have accordingly tried to assume
about either notion as little as possible. We assume that the process of
saying in general terms how the world is is a process in part of
devising a language with which to do so, and thus that the sentences
which the world makes true are sentences of a language of human
contrivance. We assume further that some sentences of such a
language would be true because of the nature of the language rather
than, or as well as, because of the way the world is. We also assume
that at a particular stage in our attempt to give an account of how the
world is, the account that we give may have consequences which we
would rather it did not have, such as, for example, that there are
physically realisable circumstances in which a particle would have
infinite potential energy. We envisage both the likelihood that we
should seek to revise our language or the set of sentences of the
language to be regarded as true in order to avoid such consequences,
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and the possibility that we should be unable to do so. Finally, we see
no reason to suppose that the best theory we can come up with in the
best language we can devise will be free of unwelcome consequences,
even contradictions. We do not contend that this would tell us
something about the world, but do suppose that it would tell us
something about our world, i.e., the world as viewed by the collective
and possibly embarrassed human intellect.

Now if there are some sentences which are true independently of
how the world is, and if the objection to true contradiction is just that
there is no way that the world could be which would make them true,
this still leaves us with the prospect of contraditions which are true
independently of how the world is, true that is, because of the nature
of the language, true even because of the meanings that we have given
to certain words. If it is insisted that such a language would be faulty,
we will agree that it is less than ideal, less perhaps even than we will
ultimately achieve. But since the contradition has no empirical
content, our view of the world need not suffer, provided that we are
sensible about what follows from the contradiction.

Implication as a preservation

If you have insisted that implication implies relevance, but have not
yet been able to say what relevance is, it might almost seem a divine
intervention when you find a plausible story according to which at the
very point at which it fails most disasterously on the score of
relevance, material implication fails also of the one virtue for which it
still finds thin praise, namely the preservation of truth. But if the
alternative implication has no more to be said for its preferment than
that it preserves truth in that out of-the-ordinary case in which the
other does not, the fundamentalist will not be impressed anyway, and
the more substantive demands which should be made of implication
will be lost sight of. It seems to us wrong to insist exclusively upon the
truth-preserving property of implication. Truth is one kind of metalin-
guistic information about the antecedent, but only one among many,
and the kind of implication that one adopts in a given circumstance
ought to be designed around the kind of metalinguistic information
that one wants to preserve. In various of the polylethic semantics
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which Lewis lists, implication is required to preserve various combi-
nations of truth and truth only. Jennings and Schotch (in [7] and [11])
have suggested, though in the context of illative rather than implica-
tive systems, that inference should, in certain cases, preserve the
level of coherence, that the least partition of a set £ into inconsistent
sub-sets ought to be equinumerous with that of the inferential closure
of Z. A similar requirement can be used to achieve relevant inference.
Simply consider the least partition of a set £ into relevant subsets,
subsets in which every sentence is relevant to every other. Call the
size of that partition the level of irrelevance of =. r.a.e. (*) For obvious
reasons, none of these is a suitable restriction for implicative systems.
But there are other metalinguistic features of antecedents besides
truth which even blushing classicalists expect to see preserved by
logical implication, for instance, necessity. To say that necessity is
monotonic is just to say that logical implication preserves it.

It is in some quarters held to be a virtue of the American style
semantics as against the Australian, that it’s negation is classical
negation. The greater virulence of the classicalist reaction to the
Australian semantics is due in part to it’s making negation move over
(rather a long way, in fact to a neighbouring world) to make room for
contradiction. [One might express this perceived virtue of the Ameri-
can plan as that of tolerating contradiction without accommodating it. |
The perceived vice of the Australians is that they accomodate
contradiction whilst claiming to take no pleasure in it. (They make no
such claim about the outrage this generates.)

But this also separates them from the support of a large (and one
wants to add ‘level headed’) contingent of philosophers who will be
tempted to regard the dispute (if they should hear about it) as between
one troop of possible-world-niks and another. When the most persua-
sive examples of true contradictions are instances of mathematical
paradox, it will seem to have required a particularly virulent attack of
the realies to suppose that worlds have somehow to be doctored to
allow them their place in the sun. But if this dispute about landscaping
requirements seems calenturical, it has to be said that the American
idea seems at least equally ill suited to the representatic of that kind of
contradiction. The Belnap story is one in which conflicting empirical

(') Fratris aut sororis Roberti filius aut filia es.



296 R.E: JENNINGS AND D. K. JOHNSTONE

information is processed, but in the case of paradox we have instead
conflicting necessary truths. Here, the language we have adopted, say
the language of naive set theory, is such as to make each of a sentence
o and its negation " la, true in virtue of the meanings of its terms. We
may, on that account, regard the language as faulty, but there can be
no doubt that at least relatively to that language some sentence is
necessarily true, whose negation is also necessarily true. There are
many features of this situation which we might want to complain
about. We might want to object that this shows that for example the
Russell set does not exist. But in what sense does any set exist?
Anyone who is not a realist about these matters anyway may
nevertheless want to know the properties of such an object, and may
well be prepared to accord it, for the purpose, as real an existence as
any other mathematical object. But there is a problem about what
logic to use, and classical logic will not work here. The problem is not
simply that the true contradiction violates a principle of the logic.
The true contradiction might well violate a principle of whatever logic
we adopted. The problem is that classical logic cannot cope with what
happens in this language. In this language, the sentence g is necessa-
rily true: sois ~lg. But in classical logic g is equivalent to ¢ A T, and
accordingly, on the supposition that g is true, so is every other
sentence, including those which even in this language concern matters
of contingent fact. Moreover, since o is necessarily true, so is every
other sentence, including the ones which we had regarded as contin-
gent.

Now this brings us almost to the point of our earlier remark, that the
process of devising a theory about the world is in part a process of
devising a language. This seems equally to be the case in the process
of devising theories other than theories about the world. As we have a
notion of something’s being true according to a theory, we need a
notion of something’s being necessarily true according to the language
of a theory. What is more we need a logic which preserves this
necessity-according-to-a-language. Such a logic must distinguish
between sentences which are logical falsehoods or truths because of
their logical form, and those which are necessary truths or falsehoods
because of their non-logical content. To this end, the logic introduced
below will distinguish implicationally between ‘L’ and ‘p A —p’ ()

(®) In fact, the logic keeps distinct all pairs of sentences of the form ‘e A —a’ in
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The point is this: paradoxes and other contraditions can occur
beneath the level of sentence structure that the language of the logic
enables us to analyse. That is to say, not every contradiction in
natural language is of the form ‘a A —a’. Of course, classically we
might argue that if § is logically false then —p is logically true and
therefore § is equivalent to f A —f (see J. Bennett [2]), but, we
maintain, we should distinguish between contradictions of this form in
which one conjunct is logically false (and the other logically true) and
those in which both conjuncts are contingent. The former sort is taken

to represent the sort of paradox of which our logic is, as advertised,
tolerant.

Theory and Logic

We distinguish between the language of a particular theory and the
language of the logic in which we study the theory. This is not to say
that the two may not share vocabulary, ‘and’, ‘or’, ‘not’, etc., but we
will imagine ourselves taking sentences in the language of the theory
and combining them in various ways which may or may not result in
sentences of the theory. Furthermore we will pretend that the
sentences that we manipulate in this way are unanalysable in the
language of our logic. It would be better to say that if the sentences
which are the raw materials of our manipulation are analysable (into
conjuncts, or disjuncts autc.) we simply ignore the fact. An exception
is that we will think of ourselves as adding to the language of the
theory a kind of implication by which we can give the closure of a
given set of sentences of the theory language. These dark doings will
become less dark in the sequel.

Language-dependent truth

This paper embodies an oversimplification which must await a later
essay for its repair. This is that we take the notion of language-depen-

distinct variables. In distinguishing between compound and non-compound falsities,
this work goes beyond (7] and [11) in which the sets {p, —p} and {p A —p} are
inferentially distinguished.
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dence of truth values to be two-valued. So we say that the truth-value
of ‘some squares are not rectangular’ to be determined by the meaning
of ‘square’ and ‘rectangle’, but the truth-value of ‘Mussolini abhorred
linguine” to have been determined by material circumstances. This
ignores the problem cases such as ‘Horses are perissodactyls’.
Something a little more Quinian is promised for the future; for the
present the dogma must do. In addition we distinguish both of these
from logical truths such as ‘Either Mussolini abhorred linguine or he
didn’t’, but this last plays no interesting réle in what follows. We will
mark the former distinction semantically by means of a function &
called a dependence function, which maps atomic sentences into 2 and
is extended to the set of all formulae by a set of rules representable by
matrices. Thus to say that 8(a) = 1 is to be understood informally as
saying that the truth value of a is language dependent ; if (at) = 0, the
truth value of a is determined by material fact. Since we have as well a
standard valuation function V, we have four possible combinations of
truth and dependence values as set out with the corresponding
decimally encoded matrix entry in Table 1.

V(o) d(a) w(a)
1 1 3
1 0 2
0 1 1
0 0 0
Table 1.

The matrices

As usual, we take the valid formulae to be those to which V
always assigns 1, so the set D of designated matrix values is {3,2}. The
extension of u to arbitrary formulae PL is achieved by rules which are
encapsulated to the following matrices:
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a | o VIO 1 2 3 AlO 1 2 3
0| 2 0]l0 0 2 3 0]l0 1 0 0
1|3 1jo 1 2 3 11 111
210 212 2 2 3 210 1 2 2
311 313 3 3 3 310 1 2 3
(Dl (W) [r(A)]
510 102 3 =|0 1 2 3
012 2 2 3 02 2 0 0
113 3 3 3 112 3 0 1
210 0 2 3 210 0 2 2
310 1 2 3 310 1 2 3
(n(=2)] (u(=)]

Note that these matrices do in fact record truth values in the classical
way as well as the dependence of the truth value of truth functional
compounds upon the language from which the arguments of the
function are drawn. While we may speak informally of the value 3 and
2 as though they distinguished necessary truth from contingent truth
this manner of speaking applies, if at all, only to non-compound
sentences. If u(p) = 2 then u(p V —p) = 2; thus in the informal idiom
p vV —p is a ‘contingent’ truth, for the matrices ignore tautologies at
this level, except of course inasmuch as 2 is a designated value. Two
connectives remain to be introduced. Since the paradox-tolerant logic
(PTI) is to be introduced as an extension of PL, axiomatised with o
and the 0-ary | as primitive, we may mention that L will take the
matrix value 1. The purpose of this is that * L’ is to be thought of as
representing a non-compound language-dependent falsehood. It will
enable us, in the usual way to introduce ‘T" by the definition:

[df.T} T=df. Lol

Thus T will represent (informally) a non-compound language-depen-
dent truth, and receive the matrix value 3.
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Finally, we will introduce an implication connective ‘-’ whose
interpretation is given by the following matrix :

|0 1 2 3
02 2 2 3
1|1 313
210 0 2 3
301 1 1 3

(u(=)]

It is to be noted that — preserves both truth and dependence. The
specific entries are explained in the following way : If both truth and
dependence are preserved, p(a—p) €D, i.e. V(o —»B) = 1. Think of
V(y) as changeable (by changing circumstances, for example) if
d(y) = 0, else as unchangeable. Think of 8(y) as always unchangeable.
Then if V(a—B) = 1 is changeable because V(a) or V(B) is changea-
ble, then w(@—f) =2, else w@—pP)= 3. Thus, for example,
u,3,2) = 1, since d(a) = 1 and &(B) = 0. Now V(B) is changeable,
but a change in the truth value of § will not affect the truth value of

o—p since &(a) would still not be preserved. On the other hand
W, (2,2) = 2 since dependence is vacuously preserved as well as truth.

But since 8(B) = 0, V(a.—B) is changeable to 0 by a change of V(B) to
0. Thus the matrix value 2 rather than 3. Similar reasoning underlies
the other entries.

This seems to us a natural and intuitive construction for an — matrix
in which the language-rootedness of truth-value is to be preserved.
The S matrix is not constructed according to these principles but only
by reordering the rows of the V matrix. It is, however, some
indication that the V matrix makes the right sort of sense for present
purposes that the 8-components of the entries in the > matrix will
bear the same interpretation as those of the — matrix.

An axiomatisation of PTI

Our axiomatisation of PL is as in Segerberg [12]:

[PLI) =p2(p=p)
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[PL2] H(p2(p=1) 2 (p2q)2(p>r)
[PL3] —((p>L)>1l)>op

with uniform substitution ([US]) and modus ponens ((MP]). We retain
closure under [US] and classical [MP] and add these further axioms
(with no claim as to independence or minimality). We call the resulting
logic PTI (Paradox-tolerant implication).

[PTI 1] —p—p

[PTI 2] —(p—>q)>((q—1)>(p—>T))

[PTI 3] =(p—q)>(p>q)

[PTI 4] ~(p—>q) 2>(L-p)>(L->q)

[PTI 5] —((L-p)2(L-q)>((p29) 2(p-q))

[PTI 6] —(Ll-=(p-q)2(((L-p)o(Ll-sg)>(Ll->(poq)
[PTI 7] ~(L=(p>q)2(L-(p->q)

[PTI 8] —(Ll-p)2((Ll-q)2)>(L-(p-q))
[PTI 9] ~(L-p)oo(Ll->p>2q)>q)

[PTI 10] —(L-=p)o ) >((L->(p>2q)>(L-q)
[PTI 11] —((L-p) 2 ) 2@>((L-q) 2(L->(p>29))
[PTI 12] —(po> L) o(L-sp)o(L=(p2q)) .

[PTI Bl —(LoD-p)>((Ll-(p>2q9)2(L->q)

[PTI 14] ~(L>)=p)2((L-q)o(L-(p2q)

Soundness

A model M for PTI is a pair <V,8> where both V and  map At
(the set of atoms) into 2, and are extended to &, (the set of all
sentences) by the following set M of matrix-defining rules:

(Loy vihy=o0

(L1 8l =1

[20] V(a2p) = 1if V(a)=V(B); else V@ =2p) =0

(1] if 8(@) = 0, 8(a >B) = Min [V(B),5(B)]

(2] If 8@) =1, d@>B) =1 if V() =0; =d@) if
Via) = 1;else d(a2p) =0

[-0] Va-p)=1 if V@=VEP) and &)=<6P): else
Via-=p)=10

[(10@—-B)=1 if da>B)=1 or dP)<b(a); else
da-p) =0
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It is a straightforward matter to show that V maps every substitution
instance of every axiom onto 1, and that [MP] preserves validity.

Completeness

To show completeness, it is sufficient to show that every PTI
maximal consistent set = generates a model My = <Vy, §s > such that
Vaed, Vi) =1 iff a €Z. Let £ be PTI maximal consistent. We
define V; and 9 in the following way :

Vaed, Vi(a) = 1 if a EX
= 0 otherwise

Vaed, d,(@) = 1if Lsaex
= () otherwise

The burden of the proof lies in showing that V. and 6, satisfy the
matrix defining rules enumerated above, and thus that 95 is a model
of the required sort. But the set of axioms and the canonical V and &
functions are designed as though with this in mind.

About the logic PTI

It is not claimed for PTI that it is a relevant logic, only that it
tolerates paradox. As it happens, it tolerates contradiction in general,
since its models treat every contradiction as at least potentially
paradoxical. Thus we do not have pA-—p—qA —q since this
implication will fail when p(p A —p) =1 and u(g A —q) = 0. For
similar reasons, ex falso quodlibet is also rejected. In the other
direction, the logic treats every truth as potentially language depen-
dent and, therefore, not only do we lose implications between
tautologies, but we lose implications of tautologies by arbitrary
formulae. When p(p) =3 and p(qV-—q) =2, the implication
p—(q vV —q) will fail. But the toleration of paradox and contradiction,
and the disassociation of linguistic truth and falsity from mere
tautology and contradiction is achieved at a price. For the implication
introduced lacks much that one might not wish to bring into question.
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Among the casualities are the formulae listed below, with examples of
invalidating matrix assignments:
p—(pVq) <1,0>
(P—9q) - (—q—>—p) <0,1>
pPAQ)-p<0,1>
(p—=q)—= {(gq=1)=(p->1) <0,1,0>
(p—q)— (r-p) = (r-q) <1,0,0>
(p~>g-=r)->({(pAqg)—-r)<0,1,0>
(PVq)—1) - (p—>1) V(g-1) <0,3,0>
(p=(qAr) - (p—>q) <1,0,1>
P—q) = (pAQ)—q) <3,0>
(p=qA(r-q - ((pAr)—=q) <0,03>

Against this, De Morgan’s equivalence, double negation, and various
commutations hold, as well as some implications less welcome such
as:
p— (—p— p) which preludes non-trivial relevant necessity, and
(p—»>(@qVr) - (p—>q)V(p—>r) which is a defect also of
material implication.

Moreover, the logic is as relevant as it is only within the confines of its
own limited expressiveness. We have said that ‘L’ and ‘T" are to be
thought of as language — dependent and unanalysable representatives
of the constituents of paradox. So in the language of PTI there is only
one paradox, namely L AT. But if we enrich the formal language by
the addition of 1, ... L, to represent the makings of orthographically
distinct paradoxes, the logic will lack the implicational means of
distinguishing them, since they must all bear the matrix value 1. We
can at best, by such methods, hope to distinguish more than two
classes of contradictions by recognising that the notion of language
dependence is multiply valued. As we have remarked earlier, this
must await a later study.

Necessity

PTI gives rise to a notion of necessity which can be studied
independently of P77 itself. The modal operator [J is introduced by

[Df. 0] Do =dfT-»a«
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and < by the usual
IDf. &) Ca=df —0O —e.

On these definitions, the O and < matrices are as follows:

A |Oa <a
0 1 3
1 1 1
2 1 3
3 3 3

We can suppress the definition and axiomatise the modal logic LD
directly by adding to the PL axioms the principles:

[h] O(p>q) =(Cp>0Oq)
[K] OpAOq=0(pAq)
IN] OT

[T]Op>p

[4) Op>0O0p

5] COp>0Op

closing under [MP] and [US].

Although this logic has many S5 features, there are some rather
interesting differences. For example, it lacks the S5 rules

[RN] Foa=+0a
[RE] Fa=p=>+0a=08p.

But it is not a sub-logic of S5: the ‘only if* direction of [h] is not a
theorem of S5.

Soundness and Completeness

Soundness is straightforwardly proved. For completeness, a Hen-
kin construction is used, with Vy and &; once again defined for an
arbitrary maximal consistent set = by the following:

Vi) = 1 ifa €3

0 otherwise
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Oz(a) = 1if CoOa sz
= 0 otherwise.

The basis of the definition of 8 is easily seen. Since either « or —a
will have a V-value of 1, and &(a) = 8(—a), either Do or O —a will
hold whenever d(a) = 1. But clearly O —a VOa is equivalent to
Sa>0a.

Again completeness is proved by demonstrating that Vy and &y
exhibit those features defined by the matrices given above. For
example, we show that 85 (L) = 1:

OTES by [N)] S.O—~lex
sO0-lvolexr .—O—-l-onoles
o (=1

Thus &; obeys the rule [L1].
Of course, Vy must obey the rule:

VOo)=1iff V(o) =1 and d(a) = 1.

This can be seen from the O-matrix. The result is easily proved:

(=) Assume Da€X S.Coao0aEX
SO =1 But a €Z by [T]
SV =1

(&) Assume o €X and Ca>Oa X
But o > Ca €X by [T]
S.0aEs SV 0a) =1

It is a simple matter to show that d; produces the §-values required
by the >-matrix. To this end we note the following facts about this
matrix :

r1ifV@eop)=1,8@>p) = 1iff
(@) V@=0andd(@) =1, or
(b) V@B)=1landd @) =1

(2] if V(@>PB)=0,8(@>p) = 1iffd (@) = 1and 5 @) = 1

We need only show that this holds for 85, and again this is not difficult.
For example, consider:

Lemma : d;(@>B) = 1if Vz(a) = 0 and d; (o) = 1
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Assume —a €X and Coa>Ja X

Lda D —OaEX ie. O—a>0—aEX
But —a > < —a €X by [T

J.O—oeEeX S.O0—aVOPEZ
SoCa2OpES

C.O(e 2p) EZ by [h]

.05 (@ >f) = 1 by the preceding lemma.

The other lemmas required are proved analogously.

Entailment
The notions of implication introduced above give rise, in the usual
way, to an entailment relation # by the definition:
o #f = df Oa—p)
as well as a strict implication = by the definition
a3f =df O =p)

The # matrix has, as one might expect only & components of 1

P01 2 3
ol1 11 3
1131 3
20111 3
30111 3

and is moderately relevant.
The 3 matrix has, similarly, only & components of 1 but is
immoderately irrelevant:

3101 2 3
o1 1 13
I3 3 33
211 113
311 13
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The logic PTE of entailment is completely axiomatised by PL1-PL3
with E1-E3 and [US] and [MP].

[E1] (P»Q) = (P»Q)
[E2] (Q=>(P#Q) =(Q#»Q))
[E3] =Q2((P#Q) =(—~PA(PPP) A (Q#Q)
Completeness is straightforwardly shown via the canonical defini-
tions :
For Z a PTE maximal consistent set,

Vi(a) = 1 if a €Z; else Vy(0) = 0
52((1) = lifapaEX; else d;(a) = 0.

The axioms correspond to the three matrix rules.

(#1] o(awp) =1

2] if VB) =1, V(a#p) = 1ifdPB) = 1; else V(app) =0

#31if VE)=0, V@sp)=1 if V@=0 and
() = 0(B) = 1; else V(anp) = 0.
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