ON LOGICAL NECESSITY (*)

Philip P. HANSON

Some would claim now a coherent understanding of modal
contexts in the light of the extensive work on possible-worlds
semantics . ... There remains a nagging doubt . . ., however, that
the problem solved by the use of the possible worlds approach is
not quite the original problem of modal logic, only an analogous
one sharing certain formal similarities (Dana Scott, [27], p. 788).

In this paper I will consider an extension of S5 that I dub ‘S’. The
intuitions underlying S have received formal treatment at least as
early as Carnap, and have resurfaced in the literature in different
formal guises with surprising regularity.(') Nevertheless, the present
re-examination is justified on several grounds. First, S is here
characterized semantically and syntactically making close use of ideas
of Gentzen and Scott ([10], [27], [28], [29]). I think this mode of
representation casts an interesting light on certain contentious issues
in the ‘metaphysics’ of logical necessity. Secondly, some philosophi-
cal insight can be gained by properly locating S within the context of
other recent work on necessity. And third, artificial intelligefice
researchers have recently become interested in so-called ‘non-mono-
tonic logics’ for modelling inferential processes involving the rejection
of previously held beliefs (cf. [20f). Non-monotonic logics are cha-

(*) I have benefitted from discussions on aspects of this paper with Raymond
Bradley, David Copp, Raymond Jennings, Bernard Linsky and David Zimmerman.
Hans Herzberger and Peter Schotch kindly commented on an early 1979 draft. Richard
Routley brought the new literature on ‘non-monotonic logics’ to my attention.

(") cf., e.g., [31, [4], [5], [19], [34). Kit Fine mentioned in correspondence that David
Lewis, citing Scott, suggested something like S several years ago in correspondence
with him. An anonymous journal referee said that essentially the same semantical ideas
form the basis of David Kaplan'’s S13 in his UCLA Ph. D. (1964) dissertation,
Foundations of Intensional Logic.
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racterizable as **... logics in which the introduction of new axioms
can invalidate old theorems™ (20}, p. 41). Such logics characteristi-
cally involve deliberately non-truth preserving rules. Interestingly
enough, S also has a non-truth preserving rule, although the theoreti-
cal concerns leading to S are apparently quite distinct from those
leading the artificial intelligence people to non-monotonic logics. In
any case, the formal analogy is striking enough to merit attention.

I. THE PROBLEM

We will approach the several concerns of this paper by reviewing an
issue in modal logic which has some claim to historical priority, if by
‘history’ we mean the history of modal since Principia Marhemarica
(1261). C. I. Lewis, a father of modern modal logic, thought that *
logically 1mplles B’ could be analysed as ‘Necessarily if A then B
symbolq (A :B) .(*) By definitional abbreviation, D(A DB) \
became (A —EB) » which Lewis then read as ‘A strictly implies B.’

Lewis’ two desiderata for a ‘logical calculus’ were that it be both a

. canon and critique of deductive inference. .. (|16, p. 247), that
it be a system not only of implications but about implications, and
took his own calculi of strict implication to be logical calculi in this
sense. Modal logic as conceived by Lewis was thus not only part of
logic, but also embodied an analysis or theory of logical implication.
Its theorems were not only vahd truths on a par with the law of the
excluded middle, (A V ﬁA) but at the same time expressed truths

(*) cf. [16]. ‘A’ and ‘B’ are metavariables ranging over declarative English sentences.
They are therefore replacaeble by names of particular English sentences formed by
putting the sentences in regular quotations. ‘>’ is the dyadic sentential operator
expressing the material conditional. ‘r(A = B)1 is true just in case either A is false or B
is true. ‘00" is the monadic sentential operator expressing necessity. The inward-facing
corner quotes are Quine’s ‘quasi-quotations’ (cf. [22], pp. 33-7). ‘rD(A = B)I refers to
the result of putting in particular English sentences (ot their names) in place of ‘A’ and
‘B’, appropriately replacing the sentential operators with their English translations, and
then replacmg the quasi-quotes with regular quotations marks. In effect, then

D(A =] B) names the sentential context ‘Necessarily, if . .. then ---," but by using a
mixture of symbols from both the object language and the metalanguage. The use of
quasi-quotes avoids use-mention confusion. Of course, Lewis did not himself have the
paraphernalia of quasi-quotes; indeed, he apparently did not have clearly in mind the
distinction of language levels signaled by their use.
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about the binary relation, on sentences, of logical implication. It is
because Lewis saw Russell’s material conditional as capable of
satisfying at best only the first desideratum for a logical calculus that
he found it wanting.

But, as is well-known, Quine argued that nothing could coherently
fulfill both these desiderata, and that Lewis' critique of Russell was
conceived in several sins simultaneously ([22|, pp. 14-33). At the level
of syntax, Lewis had confused the distinct roles of binary sentential
operators and two-place predicates. This syntactical confusion re-
flected a deeper semantical confusion about what could be properly
expressed using such constructions. The relation of implication could
only be expressed by a predicate, since sentential operators were
syncategorematic and thus nonreferential. But the worst sin of all was
confusing ‘use’ and ‘mention.” For since implication was a relation
between sentences, identifying an instance of this relation involved
mentioning, i.e., naming the sentences so related, and this was
properly done in the ‘metalanguage’ in which we talk about the ‘object
language’ to which those sentences belonged, not in that object
language itself. By contrast, a sentential operator functioned within
the object language, forming more complex sentences, not out of the
names of simpler sentences, but out of those sentences themselves.
The latter were ‘used,’ not merely mentioned. Failure to observe this
distinction led to dire paradox, as Tarski and others had shown.

But with the advent, in the fifties, of ‘possible worlds semantics.’
Quine’s criticisms seemed to lose their sharp edge. His charge that
modal logic was incoherent could now be answered in terms of its
consistency and completeness under its formal model-theoretic inter-
pretation. A strictly implied B just in case every possible world in
which A was true was a world in which B held also: which was just
another way of saying that "(A 5B) held in every world, i.e., was
necessarily true. (%)

(*) See (12|, [13]. My rendition of the possible worlds interpretation of strict
implication, if the crudest, is also the most transparent. In certain modal systems an
“accessibility relation’ on worlds is also invoked. In these systems A strictly implies B,
relative to a given world, just in case every world accessible from that given world in
which a is true is also one in which B is true. Different constraints on accessibility result
in different systems. But whatever the merits of an accessibility relation for other
analytical uses of “strict implication,” there seems to be nothing in our intuitions about
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The focus of philosophical defence and attack now shifted to the
notion of possible worlds. How many were there and what were they
like ? Did accepting the model theory commit one to the existence of
nonactual possible worlds in some ‘fullblooded realist’ sense, or, by a
more ‘moderate realism,’ to their existence merely as, say, uninstan-
tiated properties or as maximal consistent sets of propositions; or
could ‘possible worlds talk’ be construed merely as talk about
different conceivable states of affairs involving actually existing or
imagined entities ?(*) And by now modal logics were proliferating at
an astounding, some said unseemly, rate. Which one embodied a
conception of necessity appropriate for the analysis of logical impli-
cation as strict implication ?

Some said ‘none,” on such grounds as that if logical implication
were the necessity of the material conditional, then A would logically
imply B for any A and any necessary B. This violated intuitions that
there must be a ‘connection of meaning’ between an implicans and its
implicandum. (°) I will set such objections aside here, on the grounds

logical implication to which it corresponds. An accessible introduction to these
complexities is [6].

(*) Naturally, all of these schools of thought and more are represented in current
philosophical polemics on possible worlds semantics. Declared representative of
‘full-blooded realism’ is David K. Lewis (see [17], pp. 85-6). Representative of the
‘imaginable counterfactual situation’ interpretation is Saul Kripke (see [14], p. 267).
Would-be ‘moderate realists’ include Robert Adams [1], and Robert Stalnaker [33).

(°) Lewis was well aware of this and the other so-called ‘paradoxes of strict
implication,” and of the fact that they paralleled the paradoxes of material implication
which he had invoked against Russell’s (confused) talk of the material conditional as
expressing implication. But to the extent that Lewis does insist on implication involving
a ‘connection of meaning’ between implicans and implicandum and on its analysis
explicitly reflecting this, I think that Lewis’ attempts to avoid the paradoxes of strict
implication fail. ‘Relevance theorists’ make much of the latter paradoxes. Anderson’s
and Belnap’s ‘system of entailment’ suffers from an attenuated form of the same
problem, however: witness the embedded entailments in their *“. .. strong and natural
list of valid entailments ..."" (|2], p. 26); e.g.,

(A-B) - (A-(C-C())), and
(A->A)-> B)-»B

Although the Anderson-Belnap system can no longer be faulted for lack of a semantics,
it turns out that the semantics that it now has is a possible worlds semantics involving a
complicated triadic counterpart to Kripke’s diadic ‘accessibility relation’ on worlds (cf.
n. 3 above, and also (23], [24], and [25)).
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that we want a theory of logical implication to embody only the most
general principles of implication, only those which hold independently
of the meaining of sentences. C. I. Lewis, in fact, worked with a
formal language whose ‘atomic sentences’ were completely unanlysed
(1164, p. 122).

A more pressing reason for rejecting, say, Lewis’ S5 as an account
of logical implication in terms of strict implication, concerns our
intuitions about possibility. If A is necessarily true just in case it is
true in all possible worlds, A is possibly true just in case it is true in
some possible world. If A is necessarily true, then our logic of
necessity ought to say so by making A a theorem. By the same
token, if A is possibly true then "—O —A ", or by definitional
abbreviation, "<> A ", ought to be a theorem of our logic. Now it seems
that for any declarative sentence not expressing a self contradiction
we can imagine a possible world in which it holds. Therefore A"
ought to be a theorem for any non-selfcontradictory A, and, for
instance, this will include all atomic sentences of the formal language.
But this does not hold for any atomic sentences in S5. So if our
intuitions are correct, S5 is apparently, if anything, not inclusive
enough.(°) This has obvious implications for the analysis of logical
implication as strict implication. For all theorems of the form rO/A),/
we will have ‘0B > <CA) |, for any B, and therefore 'B<3JA .
Given that we are setting aside considerations of meaning connection
in our quest for the most general principles of implication (see above),
B does, indeed, logically imply any such theorem. So S5 strict
implication is apparently inadequate as a theory of logical implication.
Is any modal system adequate ?

(*) This problem does not arise in the same way in connection with S5’s alternate
semantics, involving a reflexive, symmetric, and transitive accessibility relation on
worlds. Such a relation in effect exhaustively divides the worlds into mutually exclusive
equivalence classes. So, A is possibly true ar a world w, (say, the actual world), just in
case it is true in some world accessible from w, and therefore in the same equivalence
class. This cary fail to be the case even though A is true in some world belonging to a
different equj&lencc class. So our intuitions about non-self-contradictory sentences A
being true in some world can be built into an S5 semantics. But then what notion of
possibility does S5 capture if truth in a possible world is not enough to make ' <A 'a
theorem? Surely not the notion of logical possibility. By the same token it is
problematic as to whether S5 strict implication expresses logical implication.
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II. A FORMAL REPRESENTATION

Our language will consist initially of a denumberable set, &, of
‘unanalysed’ sentences, represented by ‘propositional constants,’ a,,
a, . . ., closed under a relation of ‘conditional assertion,’ . Sentences
are to be true or false. A valuation is a function, p, from sentences to
truth values: p: 6— {T,F}. For each sentence Ae S, p(A) is the truth
value of A as assigned by the function p. — holds between finite
subsets of ©. In the metalanguage, ‘A,’ ‘A,,” ‘A,,’. .., ‘A, ‘B
‘Bo,” ‘By’..., ‘B,_,” range over members of . We let 1, ')
CELLU B, €0 L stand for finite subsets of . Given some
intended set of valuations, 3, we further intend that

A5 B if and only if (hereafter iff) for all p e B, whenever p(A,)
= T for all A;e2, v(B) = T for some B;e 3.

If we assume that the sets are such that % = {A,, A, .. .., A,_,} and
B = {By, By, ...., B,_,}, then we may write Az Bas: Ay, Aq, ...
A,_5Bo, By ...., B _, for short (i.e., minus the set brackets).

In a relationship 2 5 B we call the set U the antecedent, and the set
B the consequent. It is asserted that at least one of the members of the
consequent is true, conditional on the truth of all the members of the
antecedent. If A5 B does not hold, we may write ‘U4 B, ‘5 B’ will
abbreviate ‘¢ k; B, where ¢ is the null set; ‘i; 8° asserts unconditio-
nally that at least some member of B (not necessarily the same for
each valuation) is always true. If B consists of a single sentence B;,
then B; is unconditionally asserted.

What formal properties does such a binary relation, —, on sets of
sentences possess? It is not difficult to establish that the following
rules obtain.

(R) A=V if AN B =+ ¢ (‘reflexivity’)

(M) AN (‘monotonicity’)
A=Y B
where the notation *2(, %' stands for “3 U’ (on either
side of ‘+")

(T) A~B, ¢
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9, B+ ¢ (‘transitivity”)
where the notation ‘B, ¢’ stands for ‘{B} U ¢’ (on either
side of ‘+’)

Are there any other essential properties of such a relation ? Suppose
that we are given denumerable &, and a binary relation + defined on
finite subsets of © as satisfying the rules (R), (M), and (T). Is - then a
relation of conditional assertion? How can we show this?

We can define 3,_as the set of valuations ‘consistent’ with -, i.e., as
the set of all valuations p, such that whenever 2% — B and p(A) = T for
all Ae ¥, p(B) = T for some Be 3. But given 8,_ we know that we can
define a relation of conditional assertion on & and relative to 8 as
follows.

ARYB iff whenever pe¥,_ and v(A) = T for all Ae?, then
p(B) = T for some Be 3 °

It can be shown that, so long as + satisfies (R), (M), and (T), — = ks s
and therefore that ~ is indeed a relation of conditional assertion. But
since — was completely characterized by (R), (M), and (T), it follows
that satisfaction of those three syntactical rules is necessary and
sufficient for a binary relation on finite subsets of sentences to be a
relation of conditional assertion in the sense of our semantic defini-
tion. (It is also not difficult to show that, provided 3 is finite, 8 = *l}g.)

We can now extend our language by extending © to a larger set
Ope, by adding closure under truth-functional negation, ‘—,” and the
material conditional, ‘>.” We ignore other truth-functional connecti-
ves, as they are easily defined in terms of these. At the same time we
extend each pe 3 to a pye defined on S 50 as to be consistent with
our intended interpretations of truth-functionally complex sentences.
We intend for each pe 3, that

bec( —A ) = Tiff ppe(A) = F; and
T .
bpcl ADB) = T iff ppe(A) = For ppe(B) = T.
We then have
Bpe = {bpc 10eV}

as the set of intended valuations for Gp. This allows us to define i;

L]



272 PH.P. HANSON

which proves to be an extension of ;. It is then easy to show that our
intended interpretations of ‘—' and ‘>’ are completely and soudly
captured syntactically by the following rules:

(—) A-A, B

A, r —TA_WI— B
(@) A, A-B, B

A~ ASB, 3

where the double bar signifies that the rule holds in both directions.
That is given that (R), (M), and (T) jointly capture, with respect to
Opc, our intended interpretation of i, we can show that (—) and ()
. . r 2 rpC A .
hold for G,-justincase —A and A > B are interpreted as above.
We now extend our language yet further by extending Sy to &p,by
adding closure under the modal operators for necessity, ‘C],” possibi-
lity, *<,” and strict implication, ‘-3.” ‘0’ is introduced as a primitive,
while the other two are defined by means of it as follows.

rOA—‘ = dfr'—|E}——nAﬂ
"A3B = df '0(A>B)’

At the same time we extend each v, € Bpc to a b, defined on & s0 as
to be consistent with our intended interpretation of modally complex
sentences. We intend, for each cop. € By, that

bo(OA) = Tiff b,(A) = T for all bpce Vpe,

po((OCA) = Tiff bo(A) = T for some ppc € By, and

bo) A3B) = T iff for all bpeeBpe, if bo(A) = T then
bo(B) = T.

So we then have
By = {bp:0pc€Vpc}

as the set of intended valuations for S,. This again allows us to define
tz_» which again proves to be an extension of +7_‘(and thus of ).

n addition to the definitions for ‘<’ and ‘3,” we need only the
following two rules to completely characterize syntactically our
intentions with respect to ‘0J,” *<,” and ‘3.

() A-B where "% * abbreviates *{ O ': A;e A}’
‘D% '-"0OB' and ‘B’ abbreviates ‘{B}".
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I—r —0d A1
(—0) says that if A is not unconditionally asserted, then '— A"
is.(")

Of course (—0) is not a rule if rules must take you from one
conditional assertion to another. (—[J) cannot be used to establish
conditional assertions on the basis of previously established conditio-
nal assertions, as is usual in natural deduction systems. Nor is (—J) a
‘truth preserving’ rule as this is usually understood. Still, (—0) is a
perfectly coherent principle which, as we shall demonstrate, does help
to capture, syntactically, our intended interpretation of ‘00°.(%)

Syntactically, our formal representation of logical implication, S, is
constructed in G, and consists of the rules (R), (M), (T), (—), (D),
() and (—0O), together with the definitions for *{’ and ‘3’ (and
definitions of other truth-functional operators, as required). To show
that these rules capture our semantic intentions it remains simply to
prove that (O) and (—0O) hold for & just in case: b, (rl:l A-5 = Tiff
b, (A) = T forall p & 8, given that analogous results are previously
obtainable for the non-modal fragment of S. It remains, therefore, to
prove four conditionals.

1. To prove: Ifngi(rl:] A) = Tiffb,:]j(A) = Tfor a]lnDje‘BD, then (O)
holds.

(') We could have preserved a certain aesthetic uniformity to our system by
formulating (—0O), equivalently, as

9 . 9
- ;I “l? =, or indeed as —-I:AL;
—0%A + —0OB ¢ - —0OB

(*) In a limited way (—0) could, in fact, function deductively if applied to ‘anti-

theorems’ via a ‘rule’ such as :; But this would only get us to — '—OA " when

A is a contradiction, whereas (—0) is also applicable to contingent propositions.

Clearly, in order that all of the intended theorems of the form "—[JA " where A is
contingent be derivable in S as it stands, we would have to add the relevant A as
‘anti-theorems,” i.e. as '~ A.’ I have not bothered to do this because my concerns here
are not with derivability but just with the notions of logically necessary truth (and
logical implication) per se. For this purpose I need not prove semantic completeness
and soundness in the usual sense. It will be sufficient to demonstrate that the rules for
necessity obtain in S if and only if ‘0’ is interpreted as we have done.
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We assume that (1) b, ( DAﬁ T iff bDJ (A)=T f01 all nDJeBD,
and that (2) %+~ B. We want to show that "0 '+ ‘OB . Suppose that
b, (B) = F. Then, by (1), Do, (B) = F for some p, € B,. But then, by
(2) by (A) = F for some Aa"[ from which i]t follows, by (1),
that nu (OA, _) F for some Al Therefore, wheneve:
bﬂ(DA“) T for all A2, B, (DBB T;i.e. OU'+-"0OB, by
definition of . Q.E.D.

2. To prove: If vy, (OA) = T iff by, (A) = T for all b, € B then
(—0D) holds.

We again assume that (1) v, (OA) = T iff be (A) = T _for all
b€ 2, and also that (2) += A. We want to show that - — A~ From

() we know that v, (,;\) = F for some po, € 8o But then from (1) it
follows that b, ( OA F for any, i.e. aH Du,€‘3 But then since

Sy is closed under —' and p, is consmtent with our intended
interpretation of ‘—' we have that b, ("—OA) = T for all b, € Bp,
which is just to say that — '—OA" Q E.D.

3. To prove If (O) and (—(0O) hold, then if b, (A) =T for all by € B,
then v, (OA) = T.

We assume (O) and (—1D) and that (3) v, (A) = T for all po e V.
We must show that b, (‘O0A) = T. From (3)J and our deﬁnmon of
it follows that A, and therefore, by ((J) that ‘0A". But then
pg,(OA) = T. QE.D.

3

4. To prove: If (1) and (—0J) hold, then if v, (‘A ) =T then
by, (A) = T for all b€ B

We assume ((J) and (—[) and that (3) e, (rD A-l) T. We must
show that p, (A) = T for all bo; e By We proceed by reductio ad
absurdum. us we suppose that (4) vy (A) = F for some p B,
From (4) and the definition of ‘" we would have that +A. From (3)
and the defi nltlon of — we would have that p, (—OA)=F, and
thus that = —C A" But then using (—0) we could infer not =A,
i.e., —A. So we would have both —A and + A. Therefore we must
deny our reductio assumption. Therefore bo, (A) = T for all b, € B,
Q.E.D.
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Now S contains S5. S5 is constructed in ©, and consists of the
principles (R), (M), (T), (=), (—), (O), the definitions of ‘<’ and * 3,
and the following principles.

(OR) 'OA '-A
@mn oDA'-"ODOA”
(OS) "COA A
To establish that S contains S5, it remains only to establish that (OR),

(OT), and (OS) are contained in S. Since we have shown that the
syntax and semantics of S are matched, we may proceed semantically.

5. To prove: (LUR).

Assume, by reductio, thdt "OA'=A. Then for some A;e &y and
for some b, e By, bo( OA; —j T and b, (Aj) = F. But
by, (DA ) =T iff by (A =T for all bo, & ¥o. Thus be (A= T
whnch conflicts with our previous result. Therefore we must reject our
reductio assumption. Q.E.D.

6. To prove: (OT).

Assume, by reductio, that "] A '+~ "[1C] A . Then for some A, ¢ Sy
and for some b, € Bp, nD(DA3 T and bD(DCIA_') F. If
o, (A ) =T, then by (A) =T for all poeBo. If
bD(DDA3 F then vy, (DAB Fforsome:t)G ‘BJTakeone
such bo,- Then vy (A) = F for some vy & By, but thls conflicts with

our previous result. Therefore we must reject our reductio assump-
tion. Q.E.D.

7. To prove (1S).

Assume that v, (A) = F. Then FA by deﬁnluon of ‘+’. Therefore
Y by (——|I:l) Therefore i— "mM—0OA" by ([J), and by defini-
tion of ‘<’ this transforms into — —<OA ", By definition of ‘' it
follows that bD( —<0 A_b T and by definition of ‘— that
oo, ( COA) = F. So, whenever b5,(A) = F, g, ( "OOA) = F
Wthh is to say that whenever b, ( O©OAY) = T then bo, (A) =
ie., " OOA-A. Q.E.D.

But though S contains S5, S5 does not contain S, for the rule (—0)
fails in S5. For let b, (A) = F, b, ( 'D0A)=F, vp5(0A) =F,
by, ( "OOA) = Fobo ( —0 A_)- T; and, for some bo, o, let
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bDl(r—nEI A)=F. by, and by are jointly consistent with all the
principles of S5. Yet since by, (A) = F we have by defintion of ‘" that
J«‘A and smce nD( —0O A-5 F we have by definition of ‘+’ that
="—0OA" Q.E. D.

Just as there is an gbvious relationship between our interpretations
of '+’ and of'0)’, to wit:

—Aff-"0OA"
so there is an obvious relationship between our interpretations of ‘—
and of ‘=3,” to wit:

A-Biff -"A3B"

We can think of ‘0" as a device for expressing truths, in the object
language, about logical truth, that may also may also be expressed
metalinguistically using ‘+." And we can think of ‘=" as a device for
expressing truths in the object language about logical implication, that
may also be expressed metalinguistically using ‘+.” For we can take
Gentzen'’s relation of conditional assertion as a formal representation,
at the metalinguistic level, of the most general properties of implica-
tion. This ability of S, and indeed of S4 and S35, to ‘confuse’ the
validity of a conditional assertion with the unconditional assertion of a
strict implication can be represented syntactically by the rule:

A+B
— A3B
which Scott dubs the ‘rule of confusion.’ (*) Apparently, then, what

(*) Cf. [27], |29]). Scott has a very nice result to the effect that for a certain class of
modal systems containing the rule (C) and certain others, a ‘vertical rule’ of the form

A + By

Ay = By

Up-1 — Buoy
A, — By
is derivable within the system if and only if its ‘horizontalization’ also is: 3i, 3 B,,
9,38, ..., 9,-, 38,9, 3 B,, where *di;" signifies the result of conjoining all
the members of A; and * B;’ signifies the result of disjoining all the members of %; (with
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Lewis wanted can be had. In Scott’s pregnant phrase, **. . .metatheory
can be (fragmentarily) self-applied...” ([27], p. 804).

Steven K. Thomason has kindly pointed out to me that S is closely
related to a system he described in [34]. The relation is that Thoma-
son’s system is a recursive axiomatization of the valid unconditional
assertions of S. Theorems of the form " —[J A for contingent A are,

in effect, included in his axioms, which include all formulae of the
form

O&{a*li=1,...,n},

where ay,...,a, are distinct propositional constants and each a;* is
either a; or —a;. Thomason notes that such a system is not closed
under substitution. His ‘new representation of S5’ is, in effect, that
the theorems of S5 are precisely those formulae of his system such
that all of their substitution instances are theorems of his system. (**)

If S is not closed under substitution, is it a logic ? That is, is it a logic
in the sense that its theorems are truths of logic and its conditional
assertions hold by virtue of logic ? Surely one of our more persistent
intuitions is that a logical truth is so merely by virtue of its form,
where the notion of form includes the idea that each logical truth is a
member of a whole class of logical truths sharing the same form and

association to the left). This result turns out to hold for S4 and S5, as well as our own S,
provided it is remembered that S’s characteristic rule (—0) does not qualify as A
‘vertical rule’ of the form circumscribed by Scott. Given a suitably defined ‘accessibi-
lity relation’ on valuations, S4 and S5 can also be provided with a ‘worldless’ semantics
in the manner of S.

(*°) Since substitutivity fails in Thomason’s system and in S, these systems are not
‘normal extensions’ of S5 in the sense of [21), p. 7. Therefore neither are these
extensions ‘quasi-normal’ in the sense of Schiller Joe Scroggs in [30], p. 112, and thus
are not covered by Scroggs’ result: i.e., that all quasi-normal proper extensions of S5
have a finite characteristic matrix, where S5 is not a proper extension of itself, and
where a finite characteristic matrix for a propositional calculus is a matrix of a finite
number of elements (truth values) which satisfies those and only those formulae which
are provable in it (see [7]). Scroggs says, ‘‘The class of quasi-normal extensions of S5 is
a very broad class and actually includes all extensions which are likely to prove
interesting.”’ ([31], p. 12). I disagree. More recently, Krister Segerberg has defined
‘modal logic’ in such a way that if a set of formulae fails to be closed under substitution,
it fails to be a modal logic ([31]). One can accept Segerberg’s definition, in the context of
his essay, without accepting its innuendo.
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thus satisfying closure under some appropriately articulated rule of
substitution.

Without having to legislate on this intuition, I think that, should it
be sustained, its negative implications for the status of S as logic
should not necessarily be viewed as problematic. Even if S were
closed under substitution, that would not necessarily be sufficient for
it to qualify as logic. For if S is, in Scott’s phrase, ‘‘... metatheory
self-applied. ..”" (see above), then perhaps S is not logic per se, but
rather a formalization of (part of) the theory of logic. The truths of the
theory of logic need not be considered themselves to be truths of
logic. To so consider them may well involve a kind of use mention
confusion less forgiveable than Lewis’.

III. DISCUSSION

A. Worlds

Notice that ‘worlds’ do not appear in the semantic for S. They do
not appear, that is, unless ‘worlds’ are valuations. Of course if
‘worlds’ are valuations, then they are abstract entities of a familiar
sort, which, if they exist at all, exist in all possible worlds including
this one ! So we were dealing with ‘worlds’ all along even when giving
the standard semantics for the truth-functional propositional calculus.

But perhaps it is not that worlds are valuations, but that they may
be represented by valuations in our semantics. We can, if we like, say
that the valuation which maps all and only true sentences into the
value, True, characterizes and is realized by the actual world. But do
we need to suppose that the other valuations are realized by other,
nonactual, worlds in order that those valuations make good sense of
sentences, in e.g., the truth-functional propositional calculus ? Surely
their existence as unrealized functions is quite sufficient. If so, we do
not need to suppose that valuations ‘represent’ nonactual worlds in
any sense which implies that those valuations are realized. Valuations
can represent possibilities without realizing possible worlds.

One can argue for this as follows. Intuitively, possible worlds
cannot be identified with valuations or any other abstract platonic
entities. The whole idea of possibilia was that they need not be actual,
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so to identity them with necessary and therefore actual existents
would rob them of their distinguishing feature, and improperly
conflate the notions of abstractness and possibility.

This suggests, in fact, that there may in general be something wrong
with the standard set-theoretic representations of possible worlds and
other unactualized possibilia if taken too literally. For consider a
principle of set existence: that sets do not contain nonexistent
members. ('') Suppose we postulate possibilia — worlds, individuals,
etc. — as the members of certain sers, as is standardly done in the
semantics for modal logics. But since sets do not contain nonexistent
members, therefore, by our principle, in postulating the sets, we
postulate their members. But to postulate them is to postulate their
actual existence. So if these sets existed, as per a literal construal of
the standard semantics, so would the ‘unactualized possibilia,” which
seems incoherent.

David Lewis (17|, pp. 86-7) would take this somewhat controver-
sial principle to beg questions about the interpretation of ‘exist’ and
perhaps ‘set.” It is one thing to exist, another to ‘actually exist.’
Perhaps it is one thing to be a set, another to be an *actual set.” Lewis
could then say that our principle holds only if given a narrow actualist
interpretation: actual sets do not contain non-actually existing mem-
bers. Our argument would not then go through, and set-theoretic
representations of possibilia would be sustained at face value. These
moves seem to me themselves questionbegging and controversial. But
the issues, including intricacies of modal set theory, cannot be further
explored here.

B. Non-monotonic Logic

Now S is ‘monotonic’: in particular, the introduction of new
theorems via the rule (—0O) does not invalidate any previous theo-
rems. But the syntactical similarity between (—O) and an inference
rule cited as a non-monotonic rule is striking: ('*)

(*") Cf. [11], p. 4. A recent and fairminded discussion of related set-theoretical
principles is found in |9].

(*?) Cited in [20], p. 50. The authors there want to “‘capture the idea’ of (N) (see
main text), but claim that (N) as it stands is circular: ** ‘Derivable’ means ‘derivable
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=—A
A

especially given that applying to it the definition of ‘<’ we obtain

(N)

= —A
——=0—A

which is contained in (— ). What then is non-monotonic about (N)?
As far as I can tell, nothing about it per se is non-monotonic except
perhaps that one is allowed to envisage it applying to ‘theories’ that
include both ‘logical’ and ‘nonlogical’ axioms, and the nonlogical
axioms might at one time include, e.g.:

(1) B
2 '‘B&—-0—A) > A"
and (3) 'C > —A " (cf. (20}, p. 44)

Now if we also have at time that += — A, then by (N), together with (n
and (2), A will be derivable as a ‘theorem.’ But of course ‘—[] —A" in
this context has to mean something like ‘A is consistent with the
(other) assertions of the theory.” But if at a later time C gets added as a
further nonlogical axiom, this can force the withdrawal of A as a
theorem. So monotonicity fails, not because of the syntax of (N) per
se but because of how it is being interpreted when applied to particular
nonlogical theorems in this way.

In that case perhaps we may say that S has a syntax that lends itself
to non-monotonic applications and interpretations. But the represen-
tation of logical necessity embodied in S is not non-monotonic per se.

C. Iteration

One objection to our approach that naturally arises is that while

from axioms by inference rules.” So we cannot define an inference rule in terms of
derivability so casually™ (p. 50). If this were a well-founded worty then most classical
inference rules, e.g., Modus Ponendo Ponens would be objectionable on the same
grounds.

It is probably worth emphasizing here that this notion of a ‘non-monotonic logic’ is
unrelated to our so called rule of ‘monotonicity’, (M). I have carried over the latter
terminology from Scott [27].
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sentential operators iterate, predicates do not. So how can A"
express in the object language the metalinguistic claim that A is
logically valid ? Does "[J 0 A "then express that ‘A is logically valid’ is
logically valid ? What does this mean? M. H. Lob, in a ground-brea-
king paper, puts the problem succinctly, and suggests a solution.

In a relation to a given formal system, S say, the notion of a
world may be satisfactorily identified with that of a model. Then
we are led to define O ¢ where ¢ is a Py—formula, as ‘¢ is true in
all models of P,.” This approach is, however, not available when
¢ itself contains occurrences of the square. Consider, for ins-
tance, the formula O O ¢, where ¢ is a Po—formula. For the inner
formula, ()¢, as rendered by our interpretation, is not a P,—for-
mula, but belongs to some metalanguage, P, say. Therefore the
notion ‘model of Py’ is not applicable to it, thus preventing us
from interpreting the outer square as we did the inner one. It is
natural, however, to attempt to interpret the outer square analo-
gously to the inner one by rendering it, for instance, as true in all
of an appropriate class of models of P,. Similarly consideration of
formulae such as OO0 ¢, etc., would lead us to repeat the
previous observation and to talk about models of, P, say, and so
on. We therefore wish to have at our disposal an infinite
hierarchy of metalanguages P,, P,, P,, ... such that the notion of
a model of P; can be defined in P,., (|18], pp. 23-4).

Given such a hierarchy of metalanguages, we can make sense of
something like iteration of the predicate “... is true in all models’:
namely that the predicate *‘...’ is true in all P,,, models’ is true of
sentences of the form **. .. is true in all P, models,’ for i=0. But does
‘0’ express logical validity on this treatment, as opposed to some
broader merely model-theoretic notion of validity-at-some-level-of-a-
hierarchy-of-metalanguages ? If A is a truth of logic, is*A is valid in P’
a truth of logic in P, ? It is unclear to me that we want ([ A 'to mean
that ‘A is logically valid’ is logically valid. But if not that, what ?

We can avoid a hierarchy of metalanguages in the way that we have
in fact done so. Following Scott, we have in our system S that for any
sentence Ae Oy, modalized or not, bgj(rD A)=Tiffv, (A) = Tin
all b€ B,. Of course it is true that the bo, € By are extensions of the
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valuations B,. for the propositional calculus, which in turn are
extensions of the valuations 3 of the ‘calculus of unanalysed senten-
ces’ involving only ‘~'. So we could, alternately, say that
bmi(rD A') = Tiff npcj(A) = T for all vpc. € By as extended to B, (or
iff b;(A) = T for all pe D as extended to ‘i!g). But such extensions do
not have to involve a hierarchy of metalanguages. Indeed the U, have
been extended to B, precisely so as to make [JA true in all B if A
is, for all Ae ©. The deliberate effect of this is to make '[JJ A 'and
‘DA express the same thing: logical validity of A, where A is
unmodalized. In Lob’s construction they do not. This must not be
confused with the fact that both ‘DA '+~ 'O0O0A and 'DOA"
+ 'OA " hold in S, S5, and S4. These principles hold in Lob’s
construction as well, but there ‘DA and "I A" make distinct
claims. The point is that given Léb’s semantics these principles are
non-trivial and, if ‘00" is to express logical validity, non-obvious.

More recently, Brian Skyrms, citing Laob, has explored this sort of
interpretation ([32]). Skyrms says, ‘“You may, if you please, regard
the modal operators as the object-linguistic shadows of metalinguistic
predicates. The ‘projecting down’ of metalinguistic predicates to
enrich an object language is, in fact, a process of general interest.
Negation can be thought of as the projection down of falsity. In a
slightly more complicated way, the existential quantifier can be
thought of as the projection down of ‘is satisfied.” From this stand-
point, the problem of mixing modality and quantification is the
problem of simultaneaously projecting down two metalinguistic cate-
gories’’ (|32}, p. 387). I find this very suggestive and in the spirit of our
own approach. But I would also then argue that the ‘projecting down’
of the notion of logical validity no more needs to be a projecting down
from a hierarchy of metalanguages than the projecting down of falsity
into the ‘calculus of unanalysed propositions’ (see above) needs to be
a projecting down from a hierarchy of metalanguages. ' ———A
means the same as r—mAj, not ***A is false’ is false’ is false.’

Our interpretation of iterated modal operators in S receives further
clarification and explanation when S is extended by quantification
(see below).
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D. Adding Individual Quantifiers

What happens whan we add to S the syntax and rules for the first
order quantifiers and identity? Call such an extension Q=S. An
answer is given in a very interesting paper by Nino Cocchiarella ([5]).
He establishes the following lemma with respect to sentences A,
Be Oqz» Where GOE is Oy extended in the usual way by n-adic
predicates (including at least one non-monadic predicate ; identity will
do), and individual variables and quantifiers, where B, is extended to
By=via the standard truth conditions for sentences with individual
quantifiers and identity. Each bop, € B, remains a function from UQ
into {T, F}, but the truth value a particular sentence takes in bog, is
now dependent on values assigned by a ‘satisfaction function’ to its
predicates and variables in a domain of individuals.

Lemma: If Ae Sqz, is satisfiable, but only in an mﬁmte domain, and
Be §y= 1s a modal and identity free sentence, then 'A > —[B"
logic ally true iff B is not logically true ([5], p. 17).

The proof makes use of the Lowenheim-Skolem theorem. The
significance of this lemma is immediate. Since the B¢ Gqg, such that
B, is modal and identity free and not logically true are not recurswely
enumerable, neither are the modal truths of the form 'A > —0 B, |
and therefore neither are the modal truths belonging to Q=S, which
include these. QS is semantically incomplete.

Why is QS incomplete while quantified S5, say, is complete under,
e.g., Kripke’s semantics ? The lemma shows why Q=S is incomplete,
but how does quantified S5 escape the lemma?

Cocchiarella’s thought is that it does so because 1A, under
Kripke’s semantic’s is evaluated with respect to ‘possible worlds,’
where these may correspond to any arbitrary subset of the set By,

'O A is said to be ‘universally valid’ just in case ‘true in all worlds,’
but what is true in all ‘worlds’ need not be true in all B,=. The
suggestion then is that, insofar as quantified S5 is semantlcally
complete, to that extent its necessity operator fails to express logical
necessity, since, intuitively, logical necessity is a matter of truth in al/
valuations. Cocchiarella says:

The significance of this lemma should not be seen as rendering
suspect our primary semantics for logical necessity. Indeed,
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..., what this lemma shows is that there is a complete concur-
rence between logical necessity as an internal condition of modal
free propositions . . . and logical truth as a semantical condition of
the modal free (first order) sentences expressing these proposi-
tions... And it is precisely this concurrence which must hold if
the modal operator for logical necessity is to represent merely
formal and no material content. Of course, this means that we can
express in modal terms the non-logical truth of modal free
sentences of standard predicate logic (with identity) .... ([5],
p. 18).

It is revealing to compare these remarks with the following heuristic
remarks of Kripke’s, in which D is a non-empty domain of individuals,
G is the valuation representing the actual world, and K is a set of such
valuations, including G.

In trying to construct a definition of universal logical validity, it
seems plausible to assume not only that the universe of discourse
may contain an arbitrary number of elements and that predicates
may be assigned any given interpretation in the actual world, but
also that any combination of possible worlds may be associated
with the real world with respect to some group of predicates. In
other words, it is plausible to assume that no further restrictions
need be placed on D, G, and K, except the standard one that D be
non-empty. This assumption leads directly to our definition of
universal validity ({12, p. 3).

Cocchiarella wants the notion of logical necessity to be truly universal
by requiring that "OAis true just in case A is true in all valuations.
Kripke wants the notion of logical necessity to be truly universal by
requiring that its principles hold for any arbitrary set of valuations.
Now which is the true measure of universally: the truth of ‘1A
being determined relative to the set of all valuations, or relative to
any, and thus, in effect, all subsets of valuations (note: the set of all
valuations is a subset of itself) ?

I would say that both Cocchiarella and Kripke are concerned with
universality : Cocchiarella with the all-embracing scope of the claim
that a proposition is logically necessary, and Kripke with what
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properties hold of any and all notions of ‘necessity.” What Cochia-
rella, and we, are calling ‘logical necessity’ is a limiting case of the
latter. But precisely because it is a limiting case, its special properties
are of special interest. And, as we have seen, QS is semantically
incomplete. But, as Cocchiarella intimates, it surely should not have
surprised us that the whole truth about what is and is not logically
necessary, i.e., true in all B,z and expressible in Oqp, should defy
recursive specification. Thus the fact that Q=S is incomplete tells in its
favour if anything.

Cocchiarella enlarges the philosophical impact of his incomplete-
ness result by showing that it is equivalent to the incompleteness of (a
proper subsystem of) standard second order logic with respect to its
primary or standard semantics. There is a transformation definable on
sentences in Oqz, such that a sentence is logically true just in case its
transformation is. The key clause of the definition is this:

t(0¢) = Amy, ..., Am,_, t(p), where m,, . ..,m,_, are all the pre-
dicate constants, now reconstructed as predicate variables of the
same addicty, occurring in ¢ (5], p. 18).

Cocchiarella also is able to turn this relation to explanatory advantage
in connection with the problem of iteration (see above).

The modal operator for logical necessity is interpreted according
to the above transformation as a universal quantifier binding all
the predicates occuring within its scope. The null effect of
iterated occurences of the operator is hereby explained by the
null effect of iterated quantifiers binding variables already
bound. (%)

(**) 151, p. 19. A similar explanation for the redundancy of iterated modal operators is
suggested in [15], pp. 1-2, but in connection with a construal of the necessity operator
as a first order universal quantifier, ‘(|x),” ranging over all possible individuals.
*Necessarily’ is held to signal intensional relations among particular predicates. Thus
‘O(x) (Fx >Gx)’ goes into ‘(|x) (Fx >Gx)’ and can be true if the right intensional
relation obtains between ‘Fx’ and ‘Gx’. But on Cocchiarella’s translation scheme the
same sentence would go into ‘(F) (G) (x) (Fx ©Gx)’ where ‘F’ and ‘G’ are now
predicate variables. But this sentence is not a valid sentence of second order theory.
Cocchiarella would say, I think, that this construal of necessity brings in the descriptive
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The relation might also help us with the interpretation of ‘quantifi-
cation into modal contexts,” and with the question of modal logic’s
status as logic; but these possibilities would require careful explora-
tion, the intricacies of which are beyond the scope of this paper. Of
course, to the extent that atomic sentences of S receive a partial
‘analysis’ in Q°S, Q7S already takes us beyond the scope of C.I.
Lewis’ conception of a canon and critique of logical implication (see
above).

There remains a problem related to, but 1 think distinct from, the
fact that Q7S is semantically incomplete. The truths of Q=S defied
recursive specification, but this is a problem about whether all ‘modal
facts’ are expressible in language, recursively or otherwise. Thus
(bears, of course, on any identification of possible worlds with
valuations, but it also) bears on the representational suitability of
valuations, since of course valuations are functions from sentences
into truth values. A pivotal point is that QS has a denumerably
infinite set of aromic sentences. So if these are of cardinality No, 8=
is at most of cardinality 2% . But supossing there to be at least 2"0
non-modal facts, there would have to be on the order _01’22 ‘possible
worlds’ involving these. And there are at least 2° non-modal facts, if
e.g., we admit the real numbers as existents, or all subsets of a
denumerable domain of individuals, or all points in continuous
space-time. This suggests that we ought to view ‘possible worlds’ not
as valuations, but as language independent abstract entities.

If postulating full-blooded worlds in order to explain our talk of
possibilities seems like explanatory over-kill, postulating language
independent platonic structures may seem scarcely to connect in any
explanatory way with our modal talk. But if we can think of a
reasonable modal logic as a regimentation and idealization of our
pre-theoretic notions of possibility, necessity, and implication, there
are ways of construing these mathematical structures that would
relate them to valuations. One way is to liberalize the notion of a
language and envision ‘superlogics’ constructed in ‘superlanguages’
with uncountably many sentences. (**) Each bl-:‘BO:D would then de-

element of intensional relations among particular predicates and thus fails in this respect
to express the purely structural notion of logical necessity.
(**) Perhaps this could be done along the lines of Kit Fine's ‘ideal languages,in (8],
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termine a set of ‘supervaluations,” each member of which would be
consistent with p.

Insofar as these notions could be understood as abstractions from
our more familiar notions of language, logic, and valuation, the
resulting conception would still connect with, and help to explain, two
rather common intuitions. The first is that the interpretation of
sentences of a natural language like English is often relative to
different conceivable states of affairs. The second is that what
interpretative differences are due to attendent differences in concei-
ved states of affairs, and indeed what differences in such states there
may be, are only imperfectly and incompletely reflected in the
interpretive conventions of the language. The transfinite abstractions
we make in modal theory could then simply be seen as parallel to
those made in other mathematical and scientific theorizing on behalf
of abstract and concrete uncountables.

Simon Fraser University Philip P. HANSON
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