ALGEBRAIC THEORIES OF THE SYLLOGISM

Pierre V. GROSJEAN

Summary

The present paper is divided in two chapters, each giving a theory
and an algebraic method for calculating syllogisms. Chapter I compa-
res the theory given in this issue of Logigue et Analyse by Alfons
Grieder[1], with the theory I presented[2] ten years ago, also in L &
A. The two theories are isomorphic, and both lead to diverse
interesting generalisations.

Chapter II is devoted to a new and original theory of the syllogism,
based on the notion of the tensor product between elements of two
“wefts™, and allowing for very rapid and easy calculations.

Chapter |
THE GROSJEAN-GRIEDER THEORY

§ 1.1.- Flag-Diagrams and 2-Predicates Matrixes
The 16 dyadic functions fi(A, B) of two predicates A and B can
effectively be represented by their Euler-Venn diagrams, as done by

Grieder in[1]. But through continuous deformations, such a diagram

generates a square flag-diagram. If we valuate a flag according to the
rule:

(1.1) val(Black) = 1 val(White) = 0

we get a square truth-function, i.e. a matrix which elements are
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elements of the binary set © = {1,0}.
Grieder prefers column-vectors to matrixes for the truth-functions;
that procedure is classical and correct, but it causes some losses of

symmetries.
Fig. 1 gives as example the function OR (union).
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(Fig. 1)

Let A be the negation of the predicate A. The tensor product (sign:
®) of two pairs (A, A) and (B, B) gives a 2-predicates matrix (Fig. 2),
which is presented as a column-vector by Grieder (Fig. 2).
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Miisie A 2-Predicates Square
(Fig. 2-3)

In each tile of a 2-predicates matrix, the product is the logical one
(sign: a dot), i.e. the function AND.
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§ 1.2.- Symmetry Group for the Square

A 2-predicates square (Fig. 3) is a shortened representation of a
2-predicates matrix. It is well known that such a square is invariant for
a symmetry group of 8 operators; each of these operators permutes
the letters A, A, B, B, with a restriction: A must remain opposite 4,
and B opposite B.

In other words, the square of Fig. 3 is supposed to be a rigid
cardboard piece, with two faces; its 8 symmetries are schematized in
Fig. 4, where the dotted lines are rotation axes. For that Fig, 4, we
have used the Grieder’s notations E, K, C, L, because the Grieder
group is nothing else but the classical symmetry group of the square.
The matrixes of Grieder belong to a degree-4 representation of that
group (matrixes of order 4). A more classical representation of the
same group is a degree-2 one,- without interest here.
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Fig. 4: Symmetry Operations for the Square

§ 1.3.- Boole Wefts

It is well known that the 16 possible flags can be arranged in a Boole
lattice, or, better said, in what I called in[2] a Boole weft W (A, B). A
Boole weft is a Boole lattice which basis is also a Boole lattice ; the
elements of I (A, B) are called ‘‘events’ X (A, B). Fig. 5 is the Hasse
diagram of that weft.

dnoun



22 P.V. GROSJEAN

Tautology \’p%

Contradiction

c:,Qv
Symmetry elements figure centre : negation of the function
and symmetries — vertical axis : negation of the 2 predicates
horizontal axis : order inversion in the lattice

De Morgan duality: * = 9% = ¥ofo X, ie.: AUB=ANB

(Fig. 5)

A Boole weft is also a vector space built on the binary set @ ; its 4
basis vectors are the four AND’s, and these are also the basis events
of the weft. The predicates A and B are the generators of the weft
W(A, B).

If we apply the valuation (1.1), any particular weft W (A, B) gets
into the same general weft 1B, the events of which are the 16 matrixes
truth-functions. These events are noted, here and in[2], by cursive
capital letters: s, B,..., X, ¥, Z.

The Hasse diagram of 0 has been given in[2] (Fig. I, page 549); it
is isomorphic to the above diagram of Fig. 5.
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The vowels o/, &, 7, @, are the ones of the famous scholastic
logical square (Fig. 6).

3 [

J o]

Fig. 6

The basis vectors are noted f; in[1], withi = 1,2,3,4, and €,s in the
present paper, with a, § £®. We have, in various notation systems:

1 0 o= 0 1 —
f1:C’11:( ) =J=6; fi=ey= ( ) = 0=

00 00
(1.2)
0 0 = 0 0 _
fa=eon = (] 0) = @Gr=of¥ L fimegs = (.0 1) = J*= &

Notations . a) T is the transposed matrix of 2°; b) .# and &* are
respectively the truth-functions of AND and of OR.
For any 2 €%, we have the vectorial decomposition:

: . i=1,2734
(1.3) F=)zgf= ;z €4 {
Ef (21‘ L a,ped

At every flag X(A, B) is associated a rormal disjunctive form
(abbreviated notation: NDF), which is the logical sum of all the black

tiles of the flag. More mathematically said, we have for the NDF
associated to Z(A, B):

(1.4) Z(A, B) & (4, B)oZo (%) =

(1.5) =211 (A B)+ 21 (A B)+ 29 (A B) + 200 (A - B)
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For instance, the NDF of the function OR is (A-B+ A-B +
A - B); the equivalent forms (4 -B + A) and (AB + B) are not
“‘normal’”. The non-NDF’s shall never be used hereafter.

The weft of the 16 NDF’s on A and B will also be noted (A, B).

§ [.4.- Relation Products

I pointed out in 1970(3] that every dyadic function is at the same
time a binary composition on ® and a relation on ®. More generally
and more precisely, the matrix of a dyadic function is the characteris-
tic function of a relation from (A, A) to (B, B).

Remember that a relation % from a set M to a set 9 is a subset of the
cartesian product M x N. The characteristic function takes the value
lifxeNRand 0if x & N,

A relation M can also be represented by a graph (arrows diagram).
We have, f.i., for the relation OR:

B B ; 2
(1.6) 4 < matrix; graph — i E
A 1 A B
A

1
1 0

The relation product (sign: a little circle) of two relations %, and N,
is also a relation % . The characteristic matrix % ;of the result is the
matricial product of % ,and #,; but, in that calculation, the multipli-
cation is the logical one (function AND) and the addition is also the
logical one (function OR), which is idempotent: 1+ 1=1, A+ A= A.
(The binary addition is nilpotent: A+ A= 0). We have thus:

(1.7) RioNa= Ry R0 RBy= Ry

The graph of N,is the set of all resultants of the arrows of N ,and of
N, For instance, we have for .o/ (implication), which is idempotent :
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Aol = .o

matrixes graphs

0 0:00-0% h2e = b=

(1.8)
1 1 11 1 1

In (1.4), the product between the matrix 2 and the vectors (A, A)or
(B, B) were already relations products.

In the paper[1] of Grieder, the Pythagoras table at the end of its
Section 5, is a table of relation products.

§ 1.5.- Syllogisms as Relation Products

Definition: The conclusion Z(S, P) of a syllogism is the NDF of an
element of W(S, P), the matrix Z being the relation product of '€ M
and % €10, The premisses of that syllogism are the minor one
X(S, M) and the major one Y(M, P).

Shortened definition: A syllogism is a relation product in %

(1.9) X o % = @
(minor) o (major) = (conclusion)

For instance, (1.8) is the famous **Barbara’’ of the scholastic logic.
For other details or developments, see [2].

To a given syllogism (1.9), are associated 3 equivalent ones ; those 4
expressions for a same syllogism correspond to the 4 Aristotelician
“figures™, namely I, II, 111, 1V:

(1.10) { ToW ToW Tow XoW
1 1 v }

Recall here that the matrix 7 is the transposed one of the matrix 4 ;
s0, the relation 4 is the converse of .
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§ 1.6.- Algebra on W — Symmetry Group

The relation product is distributive on the addition in 3. Conse-

quently, its existence gives to the vector space M the structure of an
algebra, the syllogistic algebra W

(1.11) [(@ew)and @ ew) | = [(To¥)=n)]

Remark : ““Syllogism’’ is taken here in a far more general sense than
in the Greek logic. Indeed, in that logic, the conclusion must be only
one of the 4 Aristotelician relations o, &, 7, @, while different
classical rules do restrict the choice of the premisses. Moreover, 9 of
the 24 valid classical syllogisms are ‘“‘hidden sorites’’, as can be seen
in[2]. The classnca] syllogistlc composmom between the 8 classical
relations .o/, sz¢ &, é I, ﬂ o, 0 do not generate a complete
subalgebra. For instance #o @ = € is not classical ; the tautologic
conclusion of &7 0./ is not classical.

Group: 2 is provided with one unit element % (the affirmation) and
with only one other regular element, which is the involutive negation
A (see Fig. 5). Both form a group &:

o 4 =/1f‘ ¢
(1.12) U = (1 0) (0 1\ ’ {f/o?/ o/’V' ?/}6
0 1 I 0/ ol = NoW =N

The four order-4 matrixes E, K, K,, K ; of the Grieder group & are '
tensor products between the matrixes (1.12):

(1.13) {E U, K,

I
1

N QU }@

K,=%® K, Ky=F¥@N

Consequently, there exists an isomorphism between the Grieder
theory and mine of 1972. We have, f.i.:

(1.14) K, f=g¢ & NoFoU=%
(Grieder) (Grosjean)

And the operator C of Grieder is nothing else but the transposition
for the matrixes of .
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(1.15) C-f=h S FF=w
Combined with C, the group (1.13) gets into the symmetry 8-group
of the square. But that group is too rich, because only a few of its
subgroups are usefull here. These subgroups divide I3 in 6 subsets (or

categories), hereafter enumerated following the number of black tiles
(see Fig. 5):

0) The subset {Q}: invariant for all subgroups.

1) The basis (the four AND’s set): invariant for .

2a) The group ©: invariant for © itself.

2b) The set of the 4 degenerate functions: invariant for ®.
3) The dual basis (the four OR’s set): invariant for ®.

4) The subset {U}: invariant for all subgroups.

NB: The 4 degenerate dyadic functions are A, A, B, B (Fig. 5); they
are mere monodic functions.

““Classical’’ subalgebra: At the end of Section 5 in[1], one can see
the Pythagoras table of a subalgebra of 3. According to Grieder, this
is the table of the classical syllogisms of the first Aristotelician figure,
with rwo universal premisses. That interpretation thus admits that the
tautology may be considered as a classical premiss or conclusion
(compare with the remark in § 1.6 above).

Basical products: It is well known that an algebra is fully determined
by the products between its basis vectors. Here, the basical products
are the elements of the S;-matrix of Grieder,[1] Section 5:

(1.16) Sy = f@f, where f is the column-vector of the £’s.

We have:

(1.17) To¥ =( )xfi)®( Y yifi) = Z 2% S ¥i
1 J 1]

For the other Aristotelician figures, we have the 3 other St
matrixes of Grieser. F.i: £ 0% = Z inS(z)ij Y
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§ [.7.- Some examples

1.7.1.- Classical examples :

a) Barbara: see (1.8)

b) Darii: Fosf = .7
00

1 00

(”8)( 0), (1 0) (1 0y, [s——m———ap’ P—w\

S M——-)P

¢) Baroco-Bocardo : Ood = O =0
Baroco (2™ figure) - Bocardo (3" figure)

O (= (e (2
(1.19)
B e < it i

1.7.2.- Non classical examples

d) with a void conclusion: @0 .# = contradiction = .o @

0 (g o)els o)=(o o) fs~~n 3|2

e) with a tautologic conclusion: (OR)o (OR) = Tautology

(1.2:)(; é)o(: é ‘ ZMy\p\ [22;‘

f) similar calculations and graphs can be made about the syllogism

hereafter:

(1.22) Fof = F
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Remarks about that example (f): i) the implication o/ is an order
relation, and the AND 7 is a projector, seei2]; thus they are
idempotent, see (1.8) and (1.22). ii) See the important remark in 2.7.3
hereafter.

Chapter I1
TENSORIAL THEORY OF THE SYLLOGISM

§ 2.1.- Generators Independence

When drawing the navy flags of the weft Fig. 5, we had made an
implicit assumption: The generators A and B are independent.

Definition: A and B will be independent iff none of the four
predicates A, A, B, B implicates another. In the sets language, the
definition is:

2.1 X¢Y , VX=+Y , VX,YE{A,A, B, B}

In other words, no X is the “cause’” of any ¥ =X.
An equivalent definition is:

(22} (A-B+0)and (A-B+0)and (A - B+0) and (A - B +0)

If that condition is not verified, then at least one of the basis vectors
of W(A, B) will be zero, and the weft will be degenerated.

Remark: The condition (2.2) is necessary to the usual probabilisa-
tion of the weft. Indeed, if we have the probabilities p(4) and p(B),
then we shall have[3]:

(2.3) p(A-B) = p(A)- p(B)
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§ 2.2.- Syllogisms as restricted Tensor Products

Vector spaces: Let us introduce the 3 independent predicates S, M,
P, and the 3 wefts (vector spaces) hereafter:

(S, M), the minor-premisses space
(2.4) {‘IB(M , P), the major-premisses space
W(S, P), the conclusions space
Fundamental definition: A syllogism is a restricted tensor product
between an element of 13(S, M) and an element of (M, P), the result
being an element of (S, P). The composition sign of such a product
will be a star. Thus:

(2.5) XS, M) =YM,P)=27Z(, P)
iff:
(2.6) T o¥% =%

That star-product will be called here a syllogistic product. It is
generally not commutative, with a notable exception, the classical
Baroco-Bocardo, see § 1.6 and 2.6.

Remarks: i) All these elements of the three wefts are NDF, and
never non-NDF in the calculations. ii) In the same calculations the
sign (+) is always the sign of the logical addition, idempotent (recall:
A+A = A).

NB: In the tensor theories, the dimension of the product-space is
the product of the dimensions of the two factor-spaces. Here, the
dimension of our three spaces (2.4) is the same, and equal to 4.
Therefore, our tensor product is a ‘‘restricted’” one. In a Euclidian
vector space f.i., the usual vector product a X b = ¢ is a restricted
tensor product.

§ 2.3.- Basical syllogistic products
A tensor product (restricted or not) is always distributive on the

vector addition, i.e. it is bilinear. Consequently, such a product is
fully determined by the products between the basis vectors of the two
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factor-spaces.

We will give here as an axiom :

(A-B)iff X=Y

2.7) (A'X)g(Y'B)={ 0 iff X+Y

where (A - X) and (Y - B) are basis vectors in two different wefts
respectively, and where A and B are independent.

Jwemoss (3)]

Postulating that the products (") and (*) are jointly associative in
(2.8), we can formulate an axiom equivalent to (2.7):

According to (1.4), we have:

(2.8) Z(S, P) = [(S.Ts“)o.% (g)

2.9) (%") “ (M, M) = ie: (@M Aﬁﬁ—_) N ((1) (1))

Introducing (2.9) in (2.8) we obtain immediatly Z(S, P) as in (1.4).

§ 2.4.- Sorites

A usual tensor product (restricted or not) is associative. Conse-
quently, we can define the sorite :

A sorite of order n (shortly : a n-sorite) is a chain of (n-1) syllogisms,
i.e. an (associative) syllogistic product between n NDF’s:

(2.10) XMy, My XoMy, Mo o X (M, Myyy) = Z(M,,
M,i1)

The product between a n-sorite and a m-sorite is a (m+n)-sorite. A
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2-sorite is a syllogism; a 1-sorite is a mere logical proposition (WFF)
built on two predicates.

§ 2.5.- The Aristotle Group

Since there exist 16° = 256 relation products on 0, there exist also
256 syllogisms in the above admitted sense of the word. But every one
of them admits 4 distinct expressions, corresponding to the 4 Aristotle
figures. Indeed, for a same NDF F(A, B) we have the two equivalent
expressions hereafter:

(2.11) F(B.A) = F(A. B)

The 4 figures are generated by what we can call the Aristotle group
2, which distributes on the symbols Zand % in 4 o % , eitherOor 1 or2
transposition tildes, see (1.10).

That group 2 has 4 elements; consequently, there exist 256 X 4 =
21¢ = 1024 syllogistic expressions.

§ 2.6.- The De Morgan Group

In 1847, Auguste De Morgan introduced a further generalisation of
the syllogism notion: For him, each of the 3 predicates of a syllogism
may be either affirmative or negative,[4].

So we have to consider the effects of the *‘De Morgan group™ D,
which distributes negation bars on the 4 symbols S, M (1% factor), M
(2" factor) and P. Such a group has thus 2* = 16 elements and it
generates 16 syllogistic expressions associated to each of the former
1024 expressions (§ 2.5).

The De Morgan syllogisms are mere “‘expressions’ in our theory.
Indeed, if we let the group & act on a given relation %, we obtain 3
other elements of 0:

(2.12) F'=NoF ,F"=FoN ,F*X=NoFoXN

For instance (Fig. 5): &/" = &, .9/ = Nodo ¥ = &%, etc.
Thus, for F(A, B), we get the 4 equivalent expressions:
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(2.13) F(A,B)= F'(A,B)= F'(A, B) = F*(A, B)

Finally, we have arrived at 256 x 2° x 2* = 21 = 16384 syllogistic
expressions | Of course, very few of them are Greek-classical, and a
lot are without any practical interest.

§ 2.7.- Examples

The practical calculations based on our “‘tensor theory™ are very
easy and rapid: No matrixes calculations, no Euler-Venn graphs, no
complicated rules as in the Greek logic !

Only recall that:

1.- The 2 factors must be normal disjunctive forms (NDF’s).
2.- The first factor is always the minor premiss.

3.- The basical star-products are given in (2.9).

4.- The plus signifies always the idempotent addition.

2.7.1.- Classical examples

a) Barbara, an idempotent composition between two universal pre-
misses, i.e. between 1o orders

(2.14) (SM + SM + SM)= (MP+ MP + MP) =
(SP+ SP+SP)

b) Darii; a composition between a projector and an order:
(SM)# (MP + MP + MP) = (SP)

¢) Baroco-Bocardo, a commutative composition between an ordinary
order and a strict order:

I

Baroco, 2™ figure: (SM)x (PM + PM + PM) (SP)
Idem in 1* figure: (SM)x (MP+ MP+ MP) = (SP)
(2.15)
Bocardo, 3™ figure: (MS+ MS + MS): (MP) = (SP)
{ Idem in 1% figure: (SM+ SM + SM)* (MP) = (SP)
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2.7.2.- Non classical examples:

d) nul (or void) conclusion:
(2.16) (SM)+ (MP) = 0
e) tautologic conclusion:

(2.17) (SM + SM + SM) = (MP + MP + MP) =
(SP+ SP+ SP+ S P)

f) an idempotent composition between two particular premisses, i.e.
between two same projectors|2]:

(2.18) (SM) = (MP) = (SP)

2.7.3.- Important remark: Classically, (2.18) is said ‘‘non-
concluent”, and therefore rejected by the classical logic ; indeed, the
conclusion may be a priori, either void or not. Here, that difficulty
does not exist because our predicates are always independent. So we
shall never have SP = 0, and the syllogism (2.18) is perfectly correct.

2.7.4.- Practical examples of non-classical syllogisms: Let us take a
universe which is the population of a given city. We shall have :

d) Jill is strong and not tall — But Jill is also tall und beautiful — Thus
Jill does not exist!
e) Camille is strong or tall — But Camille is also tall or beautiful —

Thus Camille is anybody !

f) John is strong and tall — But John is also tall and beautiful — Thus

John is strong und beautiful.

The same, in the classical language: Some strong citizens are tall —
Some tall ones are beautiful — Conclusion: Some strong citizens are
beautiful (refer here to the above important remark).

§ 2.8.- To sum up:

The logician disposes thus of three algebraic methods for the
syllogisms calculations:
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i) The relations method, based on the use of relation products

between matrixes (Grosjean, 1972) or between vectors (Grieder,
1983).

ii) The relation graphs method, very easy; it bridges method (i) and
method (iii).

iii) The tensor products method, the most original and the most
powerful of the three.

Pierre V. GROSJEAN
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