COMPLETENESS PROOFS FOR THE
SYSTEMS RM3 AND BN4

Ross T. BRADY

1. fnrroduction

In [1], on pp. 420-426 (wrilten by Dunn) and on pp. 469470 (wrillen
by Mever]), iwo axiomatizations of M3 are given and both are shown
1o be complete with respect 1o the following 3-valued matrix set M,

i #11 b
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There are two designated values, { and b, The method used in both
of these completeness proofs relies on Dunn’s Extension Theorem
([1]. p. 426): Every consistent proper extension of BM has a finite
charactenistic malrix sel. Thus the given compleleness proofs for
RM3 are specialized proofs which rely on RM3 being a consistent
proper extension of B,

In this paper, | present a completeness proof of an axiomatization of
RM3 with respect to the matrix set My, and this proof docs not depend
on Dunn’s Extension Theorem, nor on any connoction RM3 has with
BM. The method of this proof is fairly general and it is hoped that the
proodl can be modified to enable axiomatizations of other matrix sets
to be obtained.

I also present a completeness proof of the same axiomatization of
RM3 with respect to g 2 set-up model structure, thereby showing that
M. and this 2 set-up model struciure have the same sel of valid
formulae. Again, the methed of proof is Fairly general and it is hoped
that oiher model structures can be axiomatized by appropriate modifi-
cations (o the proof,
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Further, | consider the following 4-valued matrix set M,

- & |t b n T = |1 B n T
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There are two designated values, 1 and b, The mutrix set M, is an
adaptation of the Smiley matrizes, given in [1] on pp. 161-162, which
have only the one designated value, 1, and have the occurrence of ‘b’
in the *—" -matrix of M, replaced by 1", and the cccurrences of ‘v’ in
the "~ -matrix of M, replaced by ‘T". The Smiley mainx set, and
hence M, is characteristic for the svstem E g, of tantological entail-
ments, bul M, is made more suitable for a system with formulae of any
degree.

There is a close relationship between M, and M, i.e. whereas M,
can be understood as an extensional logic of sentences which take one
or both of the values truth and falsity, M, can be undersiood as an
extensional logic of sentences which take one, both or neither of the
values truth and falsity. This can be seen from the respective single
sel-up semantics, given in §2 and §4.

1 will give an axiomatization for a system, which I will call BR4,(%)
and I will show that this axiomatization is complete with respect to the
ahove 4-walued matnx sel. As for BM3, [ will also show that the
axiomatization for BN4 is complete with respect 1o a 2 set-up model
structure. Both of these completeness proofs require refinements on
the methods of proof of the corresponding completeness theorems
given for RM3, and these refinements are then available for use in
proving completeness theorems for other matrix sets and model
structures,

I will also skeich similar completeness proofs for the Lukasiewicz

Fovalued logic and state simple relationships between the axiomatiza-
tions of the three systems.
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§2. Completeness of RM3 with respect to M

Axiomatization of RMI (%)

Pnmitives: ~, &, —s.
Definitions A VB =grd~A&~B);
A B =g (A B)& (B - A).

A i

A A

A&L{A—B)= B

ALB—A

AZB—=B
cA=BI&ASC)—-. A=B&C
ALB YD) —=[ALB)VIA &)
T . |

By B s, B =A

el

~ALB—. A—B

A e A V(A - B)

N T A

Rules

L A,A—-HB=018
A B=A&KH
1L A-B. CoD=BoC—. A=D

Theorents

A= AVEH

ABvA

AN A

A ey

=& = ~[A & B)

=B — (A & B)

~(A &B)— ~A Vv =B,

~B & (A Bl— ~A

AV =BViA—B). (Use Ax. 10.)
B— ~B Vi{A—B). (Use Ax. 11.)

i B e il o Bl o

=1
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1. A&-~B—s ~{A—B).
|:. mﬂ.-&!'{ﬁ—!ﬂ'—!l‘m “.EEI.‘ AN, ||-]'
13, B&~(A = B)—~B. (Use Ax. 11.)

Derived Rules

l. A=B, B=C=A =,

2L ASB A=-C=ARB&C(C,

L AC B C=AVB=C,

4 ALB—-C. A—-CVvB=A—C. (Use Ax. )

Single Ser-up Semantics for RM3

In order 1o facilitate the completeness proof, the 3-valued matrx set
M, is replaced by the following single set-up semantics with values
truth (T) and falsity (F), one or both of which can be assigned o a
formula under mterpretation.

A valuation V assigns a non-empty subset of {T, F} to each
sentential variable. (") Symbolize this as follows:

Vip) = (T}, Vig)= {F}, Vip) = {T, F}, etc.

The valuations % are extended to inferpretations § of all formulae,
inductively, as follows :

(i) lip) = Vip)

(i) Teli~A)=F el(A).
Feli~A)e T el{A)

(i) T elA & B) =T & l{A) and T & l{B).
FellA&HB)e=F cl{A) or F e {E).

(vl TellA—B)=({T¢NA)or T eL{B))
and (F§ [(B) or F ¢ l{A)).
FeliA— B} T el(A) and F I{(B).

A formula A is valid in this semantics ifT T  IA), for all valustions
¥.
[Graham Priest, in [3], has also used this semantics for RM3. |

I procesd 1o show that M, and this semantics have the same valid
formulae, Let ¥y, be the M -valuation commesponding 1o the valuation
¥, as follows: For all sentential variables p,
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Vulp) =1 =T e Vip) and Fe& Vip),
Vulpl=b =T eVip)and F ¢ Vip).
Vulp) =M= T¢ Vip) and F & Vip).

Let Iy, be the extension of Vy, 1o all formulae, using the connectives
=, & and —, as defined by M, A formula A is valid in M, iT 1 {A) =1
or b, for all valuations Vy,, since the valuations V,, are exhaustive,

demma 1. For all formulae A, (T el{A)e2 1 dA) =1 or b) and
(Falia)ex] Ay =1 or b

Proof. The proof is by induction on formulae, The cases for
sentential variables p, and formulae ~A and A & B are clear. The case
for A — B is as follows:

T el(A—B) ss(T¢ I{A) or T el{B))
and (F¢ I(B) or F 2 1{A)).
e (lylA)=Tor 1y (B) =t or b)
and (I {B) =t or I (A} =For b)
erldA)=For [ @B} =t or
(ladA) =0 or b and I4(B) =t or b)
S lylA—B)=tor b (by M,.
FelihA—=Bi=Tel{A)and F cl(B)
erlylA)l=1t or band I, {B)=Forb
el A~ Bl =T or b,

Theorem 1. For all formulae A, A is valid in the single set-up
semantics for RM3 & A is valid in M,

Froof, By Lemma 1. T el{A = (Al =1 or b,
Hence, A is valid in this semantics for RM3 &2 A is valid in M,

Theorem 2, (Soundness), For all formulae A,
i A ©2 A is valid in the single sel-up semantics for RM3.

Froaf. 1 leave this to the reader.
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Completeness Proof-Preliminaries

The following preliminaries are needed for the forthcoming com-
pleteness theorem, the proof of which is modelled on the Routley-
Meyer completeness proof for relevant and para-consistent logics,
which can be found in [5], Chapter 4 and also in [4).

An RMi-theory a is a set of formulae closed under provable
RM3-implication and adjunction, i.e. 5, A—B and Aca=Bea,
and A=aand Bea=2A&Bea

An RM3-theory a is prime ilf, for all formulae A and B.
AVvBeEa=A=aor B #a.

A set b of formulae is disiurctively RM3-derivable from a set a of
formulae, written & *—gyy b, if, for some A, .... An=alm = 1) and
some By, ..., B.Ebin & 1), g, A & ... & A - BV...VE,.

A sct of formulae a is RMI-maximal if a ¥ gy,d.

Lemera 2. 10 the set a is RM3-maximal then a is a prime RM3-
theory.

Ffroof. (1) Let g, A—B and Aca and Bfa, Then ad yoh,
coniradiciing the RM 3-maximality.

(i) Let Aea and Bea and A&B¢a Then, since
Haviy A& B—= A &B, a yy,A, contradicting the RM3-maximality.

(i) Let AvBea. A¢a and Bfa. Then since
Moy A YB— AVE, a »—gy,0, contradicting the RM3 maximality.

Lemme 3. (Extension). If a o gyb then there is a set aof formulae
such that a S all, b= 8" and a" is RM3-maximal.

Proaf, Enumerate the formulae of RM3: A, A, A, ..., A, ...
Define sets of formulac a; and by, for i =0, 1, 2, ..., recursively as
follows:

a =, bﬂ.hn

{i] ]fﬂqu‘lﬁ."-.l'*—.“;. |.'.I|I|'IEI'I :.H..-ﬂla-“dhii-l:hﬂ-l {'A'Hl,'-
"I‘ IrE|U{I"|-|+|! 3:':'“1 h;“'lm It.,,_-ﬂ,LF{AH.II and h|-||_=b.
Let a' = Yo, and b" = Ub, Hence aSa’ and bSh'. By construction, -
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a"Ub" =set of all formulae. We need to show the following:
{+) 3% pags by, for all i,

The proof is by induction on i
L, 4 gy Ba, by assumption,

I-":I i, *I.MJ bl- Jﬂllm. I':l. e ™ maia bl"‘l'

(a) Suppose 8 DA ) s b Then Bisy =1y and
bisy =b U {A,.,}. Hence 80— gy by U I-'i|+|]- Let the formulae of ay
and by in this derivation be respectively By, ... B_and C,, ..., C,,
Then gy, Byde . & B, —C VL VO VA, de B C V Aseg
where B=B&..&8, and Cuwl V.. vC,. Since
8 U {A} > b Tor some conjunction B' of elements of a, and
some disjunction C* of elements of by, ky,, B & Ay, — C". Thus,
putting B"=B&B’ and C*"=CVvC’, N B" &A=+ C" and
Fwy B = C* ¥V A, using Derived Rules 1, 2 and 3, Axioms 3 and 4,
and Theorems 1 and 2, of RM3. By Derived Rule 4, we
have i, B” = C". Hence a; =gy, by, contradicting our assumption.

(b} Suppose a,U{A 4} ¥puybe Then a=a,U{A.,] and
hlﬂ =by. Since EI-H'iH; Bisye 1"1'--"|:-l*1-u|_jI = b.. which is a con-
tradiction.

Hence, a,,, ¥y, by, . a8 required.

By {+), a’Nb’ =4, since, if a' Nb' <4 then, for some A and for
some i, A €3, and A & by, and hence a, gy, b,. Hence, b' = 7",

In addition, a’ ¥ gy, b', since, il a’' g, b° then there is an i such
that &, gy, by, which contradicts (+). Hence. a* is RM3-maximal, as
required.

Lemma 4. (Priming). Let T be the set of theorems of RM3 and let A
be a non-theorem of RM3. Then there is an RM3-theory T'such that
T=T', A€ T and T is pnme.

FProof, Immediate from Lemmas 2 and 3.

Any RM3-theory T' which is prime and contains all RM 3 theorems
induces a valuation V., as in the semantics for RM3 given above, on
the sentential variables as follows :
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TeVipi=peT:.
FeVipi=s=~peT.

We require for such a valuation that, for all sentential variables p,
T & Vip) or F & Vip). Here, this is 50, since gy, A ¥ ~A (Theorem 3},
TET' and hence pV~p €T', and, by primeness of T, pc T" or
~pET".

Thearem 3. (Interpretation), The valuation V induced by T is
extended o an inferprefation 1 of all formulae. such that
(T el{A)er e T) and (F € A) = ~A €T}

Prowef, When (TelA)e2*A&T") and (FellA)er~A&T" are
shown, the interpretation | will have the required propeny, T e LA} oF
F €l{A), since, as above, Av=AeT and, AeT or~AeT".

The proof is by induction on formulae,

i1y T elip)

T e¥ip)

peT.

Fevip

=pEl .

F eliA)

=& T (induction hypothesis)

T eliA)

A eT" (induction hypothesis)
~=AeT' by Axiom 9 and Theorem
4 of EM3. and the fact that T is an RM3. theory,

{iif) TENA&LB) <« Tel{A)and T el{B)
w2 AeT and BeT" (induction
hypothesis)
= A&BeT, by Axioms 3 and 4 of
EM3, and the fact that T is an RM3-theory.

FealA&B) = FealiA)or Fel(B)
e =AeT' of =BeT' (induction
hypothesis)
e ~{A&B)eT", this step being justified

as follows:

F ¢ I(p)
iy Teli=A)

F & l{~A)

3 I R
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By Theorems 5 and ¢ of RM3 and the fact that T' is an EM3-theory,
i ~AeT or ~BeT' then ~(A&B)eT".

By Theorem 7 of BM3 and the fact that T 15 a prime BM3-theory, if
~{A&B)&T then ~AV~B eT and hence ~A e T or~BeT’

(iv) TelA—B) ¢ (T¢l(A)or T el(B)
and (F¢ 1(B) or F e l{A)).
e (AT or BeT') and (~BgT" or
=& ¢ T7) iinduction hypoihesis)
# A=BaT', this step being justified us
Folloas :

First Direction: By Axiom 2, A—-BcT'=, A¢ T'orBeT".
By Theorem B of RM3, A=BeT'=, ~Be T or ~A4 eT".

Second Direction: We need to prove: (A¢ T or B €T and (~Be T'
of ~A T )=2A=BeT"

This is equivalent 1o

(AT and ~B¢T') or iALT or ~A=T') ar (BeT' and
~BeT or{BeT and ~A e T'i=2A=B=T".

Thas is in turn equivalent to:

(A¢T and ~B T'=A—BeT'), and cernal ]
(A<T and ~A«T'=A—=HT'), and surish i)
(BeT and ~B§ T'=A—-BeT"). amd vereal3)
(BeT and ~AeT =A=BeT) -

By Theorem 9of RM3, A T or~B € T' or A — B ¢ T', and hence
ACT and =B T =A =B T, which is ().

By Axiom 11, ~AeT @A eT or A—=BeT'. and hence A¢ T
and ~A €T '=2A—B T, which is (2).

By Theorem IDof RM3I, BT  v=B e T or A== H & T', and hence
BeT and ~Bg T' =+ A — B cT", which iz (3).

By Axiom 10, BeT' and ~A e T' -2 A— B & T, which is (4).

FeliAa==B) «== TeliA)and Fel(B)
= AcT and ~B eT' (induction hypothesis)
e ~{A—B)eT", this step heing justified as
Tiollovas -
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First Direction: By Theorem 11 of RM3, AeT' and
~BEeT' =~(A=B)eT'

Second Direction: We need to prove: ~{A==B)eT = A T and
~B eT".

This 15 equivalent to: (~(A=BlcT'=A cT") R ) )

and (~{A—=HB)eT =~-BaT)L .1

By Theorem |2 of RM3, A cT" and ~{A—B)eT =AcT".
Hence, A= B)eT" »~A¢ T or AcT'. Sincebg, AV~A AcT
or ~& T’ and hence =4 T =& T". Then,
~(A=B)eT =A T, which is (3}

By Theorem 13 of RM3, BeT’ and ~(A=B) ¢ T'=~BcT"
Hence, ~{(A==Bl cT"=BgT or ~BT'. Since BeT" or ~BeT",
Bg¢ T =~B oT', and hence ~(A = B) ¢ T" = ~B e T, which is (6).

Theorem 4, (Completeness). For all formulas A, A is valid in the
single sel-up semantics for RM3 =4, A.

FProof, Let A be a nen-theorem of RM3, By Lemma 4, there is a
prime BM3-theory T', containing all the theorems of RM2 and such
that A¢ T". By Theorem 3, T" induces an interpretation [ on all
formulae B such that TeliByexB e T'. Hence Td lA) and A is

invalid in the semantics, since the induced interpretalion is an
extension of a valuation V of the semantics.

Corollary. For all formulae A, gy, A < A is valid in M,

&3, Completeness of BM3 with respect te the 2 set-up model stree-
fiire for RMI

2 Ser-up Model Siruciure for RM3

The model striictiere for BM3 consists of <T, K, *, R>, where K is
the set [T, T*}. with T==T%, * is the 1-1 funclion on K such that
(T =T*and {T*}* =T, and R is the 3-place relation on K defined as
[ollows:

Babc =gya+ Torh=Torc=T.
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This model structure has been independently determined by Meyer,
and by Mortensen in [5]. Mortensen in [5] has shown that, for all
formulae A, A is valid in this model structure iff A is valid in M, 1
have independently shown this by a semantic translation method, and
the completeness proof here will add a further method.

The valuations v on sentential variables are then given at each
element a, b of K such that, for all sentential variables p, RTab and
wip, al=T=vip, bi=T. The only case where a~+bh and RTab is
a=T*and b=T. Thus. we require only Wijp, T*)=T=wp. Ti=T,
for all p.

The valuations v are extended 1o fnterpretations I of all farmulae A
im the same way as appears in [4] and in [5], Chapter 4,

A formula A is triee on valwation vilf I(A, T)=T.

A formula A is valid in this model sirecture iff A is true on all
valuations v,

Semantic Properiies
a=h=4 RTab

The following semantic properties can easily be seen to hold, for all
a.b.cek:

) T*<T,wherca<b=gya=band a=h.
(iiy RTaa, i.c. a=a.
(iii} a=b and Rbed = Racd,
{iv) Rabe=+Rac*b*, and hence b =c=¢c* =b*,
(v) Raaa.
(vi) Raa*a.

By using the semantic properties (i), (iii) and (iv), and the definition
of “=°, the following two theorems can be proved, as in [5], Chapter 4,
and in [4], p. 208:

(o) For all formulae A, for all a. beK, as=b and A,
aj=T=NA. b)=T.

(F For all lormulae &, B, A =B, T} =T =i¥b e Ki {l{A,
bi=T=I(B. bl =T).
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Truth Conditions for A —B

Lising () and (f), the truth conditions for A = B can be simplified,
as follows

HA=B, T)= T (A, T)=T=IB, TI=T)
and (I(A, T*) = T=1I(B, T*) = T, by (f§) above.

HA=B, T*)=T={¥b, ceK) (HA. B)=T=IB, ¢1=T). since
BET*be.forall b, c e K.
w (A, TV =T=2KB,. Ti=T)
and (I{A, T)=T=I(B, T*) =T}
and (I(A, T*) =T=I(B. T)=T)
and (I(A, T*)=T=KB, T=T
e (A, TI=T=lB, T*I1=T)
and (I{A, T*) = T=1(B, T*)=T)
by property (i) and (a) above.
ex (I{A, TI=T=1UB, T*)=T),
by property (i) and (u) above.

Theorem 5, (Soundness). For all formulae A, by A =2 A is valid in
the 2 sel-up model structure for RM3.

Proof. The proof follows similar lines to that in [5], Chapter 4.

Completeness Proof-Preliminaries

This completeness proof is also modelled on the Routley-Meyer
completeness prool. The definitions of BM3-theory, prime EM3-
theary, disjunctively RM3-derivable and RM3-maximal, given in § 2.
are also required here. Lemmas 2, 3 and 4 are also required.

Consider & prime EM3-theory T, containing all the theorems of
RM3 and such that A¢ T, for some non-theorem A of RM3. Such a
theory T is established by the Priming Lemma,

Define T * as follows:

Ti* =ar(Al~A¢ Ty}

Lemma &, T® has the following properties:
{'j -"i LB T:_"::"""l‘f TI.‘-
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({ii) Ty* is an RM3-theory.
(i) T,*=T,

Proof. 1 leave this 1o ithe reader.
For the model structire for BM3. let the valuation v be determined
as follows

For all sentential vanables p, v{p, T)=TepcT,. and vip.
T*) = TespeT,",

To satisfy the valuation condition on v, we only regquire, for all p.
vip, I*) = T =wfp, Th="T. This is 50 because T* S T, by Lemma 6.

Thearem &, (Interpretation), The valuation v is cxtended o an
interpretation | of all formulae, such that 1A, Ti=TeA T, and
A, T*)=T = A e Ty".

Proof. The proof is by induction on formulae. The proof is clear as
it follows along the lines of a similar proof in [5], Chapter 4, and the
case for A — B can be dealt with as in Theorem 3.

Theorem 7. (Completeness). For all formulae A, A is valid in the
model structure for RM3 =25, - AL

Froaf, Let A be a non-theorem of RM3, By Lemma 4, there is a
prime RM3-theory T\, containing all the theorems of RM3 and such
that A¢ T, By Theorem 6. T\, together with T,* as defined above,
determine & valuation v for the RM3 model structure, which is
cxtended o an interpretation 1 such that. for all formulae B, (B,
Ty=T+=HB T, Hence, (A, T)=F, for this model, and A is invalid
in the EM3 model structure.

B 4. Completeness of BN with respect 1o M,

Axiomafization of BNG

Primitivies: =, &, —,
Definitions: A VB = ~(~A & ~B); A B = (A — B) & (B — A).
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Axioms.

B A

AEB-— A,

A&LB—B,
(A—=HI&A—Cl— A=B&C.
AZBYCh—i{A&B) V(A &C)
A s =B, B—~4,

— A

=AEB - A—BRB,

~f — A& V(A — B,

10, Av=Bvi{A— B

1. A=, A=A =y,

12. AVi=A—. A= B

B Sl T LA ek p

Rules.

I. A,B=2A&BE.

2. A, A=B=B.

3. AmB C=D=B=C—. A-D,
4. CYA CYiA=BI=CVA,

Theorents

A AVE,

(A &B)&C — A LB &C),

L A—=BYA,

L AVIBYC) (A vBY YT,
(AYBI&{AVO)—=AVIB&C)L
AVA=A

(AVBIVC— A v(BvC.

A== =4,

=& — A & B).

I, ~B —~{A & B).

1, A &B)—~A v ~B,

12, A= B =, ~B— ~A,

13. B—=B V(A =B} (Usc Ax. 9.
19, A ~B—. AL ~B < ~{A— HL (Use Ax. 11).
15, A Vi(=~(A — B)—s Al (Use Ax. 12}
16, ~({A — B)— ~(=~B - ~A),

W kB
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Derived Rule,
. A B=2CVvAC VA,

Single Set-iip Semantics for BN

As for RM3, a single set-up semantics is employed 1o facilitate the
completeness proof. It should be noted that the only difference
between this semantics and the corresponding one for RM3 is that this
semantics allows neither, as well as both, of the value truth and falsity
10 be assigned to formulae. This semantics for BN4 is an adaptation of
Dunn's semamics for first-degree entailments in [2], the essential
differences being in the truth and falsity conditon (iv) for A— B and
the definition of validity.

A valuarion V assigns a subset of {T, F) to each sentential variable.
Symbolize this as follows: Vip)= (T}, Vip) = {F}, Vigi={T. F},
Vig) =4, etc.

The valuations ¥V are extended to Interpretations I of all formulae,
inductively as follows

(i) Ip) =Vip

i) Tel(=A)=F eliA).
Fell~A)=T cI{A.

(iii) TellA&B)=»TeIl(A) and T cl(B).
FeliA & B)«+F elA) or F e liB).

{iv) TellA—=B)=(T¢lA)or T cliB))
and (F& B} or F el{A)).
FelfA-=BjeTel(A) and F €1{B).

A formula A is valid in this semantics iff T s I(A), for all valuations
W,
In order 10 show that M, and this semantics have the same valid

formulae, let Vy, be the M -valuation corresponding 1o the valuation
V. as follows:

For all sentential variables p,

Vulp) =t =T e Vip) and F¢ Vip).
Vulpl=b =T é&¥ip) and F & Vip).
Vulp)=ne2T¢ Vip) and F¢ Vip)
Vulp) == T¢ Vip) and F e Vip).
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Let Iy be the extension of Wy, to all formulae, using the connectives
~, 4 and —, as defined by M,

A formuln A 15 valid fn M, T [,{A) =1 or b, for all valuations V.
since the valuations V., are exhaustive.

Lemma 7. For all formulae A, (KA)=T el @A) =1 or b) and
(liA)=F =1 dA) = f or b).

FProaf. The proof is by induction on formulae. 1 leave this for the
ressder.

Fheorem 8. For all formulae A, A is valid in the single set-up
semantics for BMN4 c2 A& §s valid in M,

FProof. By Lemma 7, T e l{A) =2 L, A =1 or b,
Hence, A is valid in this semantics for BN4 e A is valid in M.

FTheorem 9. (Soundness). For all formulae A, 5, A=A is valid in
the single set-up semantics for BN4,

Proaf. 1 leave this for the reader.

Completeness Proof-Preliminaeries

Although the preliminanies are similar to those required for the
completeness proof for RM3, refinements are made 1o the notions of
BN4-theory and BN4-derivability,

A BNd-theory a is a set of formulae closed under the following
closure conditions :

(i) Acaund Beca=sA &H o
i} gy, A—Band A ca=>Bea.
fiiild A=—=Beaaml Aca=Bca.
vl CViA—Bleaand CVvAca=»CVvBea.

A BN4-theory a is prime iff, for all formulae A and B,
AvBeca=Aeaor Hea,

A formula B is BN -derivable from a foromda A, writlen A Farag B
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iff B is derivable froan A by successive applications of the following
rules:

i) A.B=A&R.
(i) A= B, where i, A=B.
(il A, A—B2H
livi C¥A, CViA=B)=2CVBA.

A ser b of formulae is BNd-derivable from a sev o of formmiae,
writlen a kg, b, iff, for some A, ..., A, €a (m = 1) and for some B,
v Baabnzl), A & .. &ALy, B, V... VB,

A set of formulae a is BN macimal il a =gy 3.

Lemma B, If the set a is BN4-maximal then a is a prime BN4-
theory.

Praof:

(i) Let Aca, Bea and A&Bda  Then, since
Hisy AZB-+A&B and A& Br,,, A & B, as,, 0, contradicting the
BM4-maximality.

(ii) Let 5, A—B, Acaand B¢a. Then, since Ak, B,
A by, &, contradicling the BN4-maximality.

(i) Let A= Ba, Aéaand B§a. Since g, A& B— A and
Fine AR B—B, (A= B} & Ay, A and (A— B) & Aty A— B, and
hence (A— B) & Ay, B, by rule Giii). Then ak,, 3. contradicting
the BN4-maximality.

{iv) Let CViA—=Blea, C¥Aea and CVBéa Since
s A& B A and Hag AL B—B, (CVIA=BN&{CvA)
s CVI{A = B) and (CV(A—B)&(C VY A) g, CVA, and hence
{CY({A—B)) &(CVA) 5,,C VB, by rule {iv). Then awg,, 3, con-
trudicting the BMN4-maximality.

(v} LetAvBea, A¢aand Ba. Since g, AVB—AVE,
AVBIg, AVB and hence a ., 3, contradicting the BN4-maxi-
rmality,

Lemnrae 9. (Extension), IF a = ., b then there is a set a’ of formulae
such that aSa°, bSTW and a' is BN4-maximal,
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Froafl, Enumerate the formulae of BN4: A A Ay oo Ay e
Define sets of formulae & and by, for i =0, 1, 2, ..., recursively as
follows :

B, =38, bs=b,

(i) IF a U (A, |J'_mq b; then a;,, =3 and b, , =b U ‘_-"‘l-n]‘-
':”:' IF oy U{Aw o) = pou by then ag,y = a, U A} and by, =B,
Let a’ = [a, and b° —'rII:,. Hence a ©a" and bSb'.

By construction, a' Ub” = set of all formulae. We need to show:
(B} =gy by, Toor all i,

The proof is by induction on 1.
ap ane Beo bY assumption,

Let ay b gy by and let ayy oy Bier

(e} S“W“tﬂiU‘-"hﬂ]'"jmhl-.Ihma-lﬂ=aiﬂ-1'|d-hh-:=b'nui"‘ull~
Hence a; g, by U {A,.,}. Let formulae of & and b, in this derivation
be respectively By, .., B, amd C,, ... C, Then
B & . &B, g GV VO VAL, fe B, CVYAL, where
B=B,&..&B, and C=C, V...V, Since a U[A} 5, b for
some conjunction B® of elements of a; and some duijunc:tmn ' of
elements of b, B &A,,b,C. Pulting B"=B&B' and
cm-clvcl B"'&ﬁ|¢|lh1_c"1 BH".SH..I:HII"'.A".]. and  hence
B” by ©F can be oblained as follows ;

(o) B & Agq gy C

By Theorem 1 of BN4, C' i, OV Cand, since B' & A, g, T
B & A o ©. By Axiom 3, B& (B &A,, ) 5., B' &A,., and
hence B & (B® & Ay, y) g, ©7. By Theorem 2 of BN4, (B & B') &
Ay Fins B & (B & Ay ) and hence B” & AL, I g

(B B g, © VA,

By Axiom 2. B&B 5, Band, sinceBw,, , CV A, , B,  CV
Ager By Theorem 3 of BN4, C V A b5, © VIC V AL, and hence
BY by ©° VIO V A ). By Theorem 4 of BN4, C' v {C v Aj, 1) i,

(C° VO v A, and hence BT g, T Vv Ay
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By Theorem 3 of BN4, B" bk, C"VB" and hence, by (fi),
B" toua C" ¥ B, C"VA, ;. Then B" =  (C"VB")&(C" VA,
and, by Theorem 5 of BN4, (B & A,,,) and then B" iy, C" V (B" &
Aig1). We now need to show that (A by, Bl = (C V A5, CVB),
since. using it, we obtain, by {a), C" ¥ (B" & Aj.,) C" VO and
hence B 'im": ¥ C". By Theorem 6 of BN4, C" V C" 55, C" and
then B" b5, ©". a8 required.

{'5} A 1_“.. By=+(C v A '_I:Hl v ER).

The proef is by induction on the derivation of B from A by using
rules (i}-fiv). We show that °C v° can be placed in from of each step of
this derivation.

(i) The rule D, E = D & E is applied. C¥D, CVE =
(CwD) & (CvE)and, by Theorem 5 of BN4, (CVD) & (CVE) =
Cvi(D & E)and hence CVD, CYE i, CVID&E).

{ii} The rule D= E is applied, where by, D E. By Derived
Rule 1 of BN4, 5, CVD—C VE and hence C VD, CVE.

(iii) The rule D, D E=E is applied. By rule (iv), Cv D,
CV(D—+E) g, CVE.
(iv)] Therule FvD, FYviD—E)=F vE iz applied,

By Theorem 5 of BN4, CVIFviD=EN={CvF)v(D=E) and
CYIFVYD)=»ICvFIvD,

Hence, C VIFYD)L,CV(F V(D= Elry, (CYRAIVDICYF) ¥
(D} = E} and hence, by rule (iv), C v {F ¥ ). By Theorem 7 of BN4,
(CVF VYER,CVY(FYEandhence CV(FvD,CV
{FV(DVE) g, CV(FVE).

Proceeding with the proof of Lemma B, since B b5, €, &y e, b
contradicting our assumption.

b)) Suppose al{Aj. ) guebe Then ag,=8,U0{AL,) and
bisy=b; Since a., e, Biese 8 U (A, ) oy, b which is a con-
tradiction,

Hentce, 8,4 = gus Biog, 35 required.

By (Z).a"Nb’ = @, since, ifa’ Nb" = O then, for some A, for somei.,
Acajand A l.h.and hence a, g, b Hence, b' =—7".

In addition, a’ = gy, b', since, if a' 5., b’ then there is an i such that
85 Fina B which contradicts (E).
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Hence, 2’ is BN4-maximal, as required.

Lemma 10, (Priming). Let T be the set of theorems of BN4 and let A
be a non-theorem of BN4. Then there is a BNd-theory T' such that
TST, A¢ T and T is prime.

Froaf. To prove T gy, (Al let T b5, (A). Then, for some A,
v A €T, AR &ALV, A. Since T is a BN4 theory,
Ad .. &AL eT and, further, A €T, because T is closed under each
of the four rules (i)-0v) that can be used in establishing BN4-deriva-
bility. However. A¢ T and hence T iy, {A). By Lemma 9, there isa
set T' such that TST', A¢T and T is BN4-maximal. Hence, by
Lemma 8, T' is a prime BN4-theory.

Any BN4-theory T' which is prime and contains all BN4 theorems
induces a valuation ¥, as in the semantics for BN4 above, on the
sentential variables, as follows:

TeViplespeT'.
FeVipler=peT".

Theorem 10, (Interpretation). The valuation V oinduced by T' is
extended to an  interpretation 1 of all formulae, such  tha
(TelA)«2A eT") and (F ¢ A) =2 ~A  T'L

Proaf. The proof is by induction on formulae, and follows similar
lines 1o that of Theorem 3. Use is made of Axioms 2, 3, 7, B, %and 10
and Theorems E-16 of BMN4.

Theorem 1. (Completeness). For all formulae A, A is valid in the
single sel-up semantics for BNd = | A,

FProaf. Let A be a non-theorem of BN4. By Lemma 10, there is a
prime BN4-theory T, containing all the theorems of BN4 such that
Ag T, By Theorem 10, T induces an interpretation | on all formulae
B such that T =liB)«*B ¢ T'. Hence TEHA) and A s imvalid in the
semantics, since the induced interpretation is an extension of a
valuation ¥ of the semantics.

Coroffary. For all formulae A, kg, Ac2 A is valid in M,
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& 3. Completeness af BNS with respect fo the 2 set-up model struc-
fure for BN

The model sirverure for BNS(Y) consists of = T, K, *, B =, where K
is the set {T, T*}, with T=T*, * is the 1-1 function on K such that
(T =T*and (T*)* =T, and R is the 3-place relation on K defined as
follows:

Rabe =g da=Torb=c)and (a=T* or (b= T and ¢ =T*)).

The valuations v on sentential variables are then given ar cach
element a, b of K such that, for all sentential variables p, RTab and
¥(p, a)=T=vip. b} = T. Since RTab ¢+a = b, this condition always
applies.

The valuations v are extended to interpretarions § of all formulae A
in the same way as appears in [4] and in [5], Chapter 4,

A formula A is rriee on valuation vilf LA, Ty =T.

A formula A is valid in this moedel struciure T A is true on all
valuations v.

Semantic Properties
aA=hb =af RTﬂh

The following semantic properties can easily be seen to hold, for all a,
b.cck:

) ambsa=h
{il) Rabe <> Kac*h*,

Treth Conditiens for A =8

IA=B. Ti=Ta(A, T)=T=lE. Ti=T)

and (I[A, T*) = T=21(B, T*)=T), since RTab=a = b.

HA—=B. T =T =HA.Ti=T=1B. T* = T. since BRT* ab
exa=Tatdb =T

Thearem 12. (Soundness). For all formulae A, vy, A =# Ais valid in
the 2 set-up model structure for BM4,
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FProaf, The proof follows similar lines 1o that in |5]. Chapter 4.

Completeness Proof-Preliminaries

The definitions of BN4-theory, prime BN4-theory, BN4-derivable
and BN4-maximal, given in § 4, are also required here. Lemmas 8, 9
and 10 are also required.

Consider a prime BN4-theory T, containing all the theorems of
BM4 and such that A€ Ty, for some non-theorem A of BN4, Such o
theory Ty is established by Lemma 10,

Define T* as follows

T(* =g {A|~Ag Ty},
Lewmima T, T™ has the following properties:

) AeT =~A§T,"

(i) Ty* is closed under Adjunction and provable BN4-impli-
cation, i.e. Ty* is closed under the first two closure conditions of a
BN 4-theory.

Frowf. | leave this w the resder,

For the model structure for BMN4, let the valuation v be determined
as follows:

For all sentential variables p, vip, Ti=T<peTL and vip.
T*)=TepeT " The valuation condition on v applies.

Theowem 13, (Interpretation). The valuation v 15 extended 1o an
interpretation | of all formulae, such that WA, T) =T+ A e Ty, and
A, T =T=A T,

Froof. The proof is by induction on formulae. The proof is clear as
it follows along similar lines 1o a proof in [5]), Chapter 4. The case for
A —+ B can be dealt with as in Theorem 3.

Theorem M, (Completeness). For all formulae A, A is valid in the
model structure for BN4 =, A.
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Proof, Let A be a non-theorem of BN4. By Lemma 10, there is a
prime BM4-theory T . containing all the theorems of BN4 and such
that A¢ T,. By Theorem 13, T\, together with T,* as defined above,
determine a valuation v for the BN4 model siructure which is
extended to an interpretation [ such that, for all formulae B, KB,
Ti=T«BeT,

Hence, I(A, T)=F for this model, and A is invalid in the BN4
model structure. (%)

& 6. Concluding Remark
A similar treatment can be given for Lukasiewicz's 3-valued logic as

was given for RM3 and BN4 above, This logic is represented by the
Following matnx set Ly:

Tlhr ot 1

[t can be shown that any formula A is valid in L, iff A is valid in the
following single set-up semantics. The single set-up semantics for L,
15 the same as that for RM3, except that valuations V assign a proper
subser of {T, F} to each sentential variable. The valuations V are
extended 1o interpretations | using the same T- and F- conditions as
for RM3. The valuations correspond as follows:

Vulp) =t =T & V(p) and F¢ Vip).
Vulp) =n ¢ T¢ Vip) and F§ Vip).
Vulp) = f<+T¢ Vip) and F e Vip).

Using a completencss proof similar 1o that for BN4, L, can be
axiomatized as L3: BNE 4+ A & ~A —, A & ~A — B, where A & ~A
—+. A & ~A — B ensures that the prime 13- theory T' cannot contain
both A and ~A, for any formula A, and thus the valuation V induced
by T* is always a proper subset of (T, F).

There is also a 2 set-up model structure for L3, which is the same as
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the ome for BM4 except that Rabe is defined as (a+ T or b T* or
c=T* and (a+T* or (b=T and ¢=T*}). The valuations v musi
satisfy the condition: For all sentential variables p, vip. T) = T = vip,
T*)=T. The axiomatization L3 above can be shown to be complete
with respect to this model structure. in a similar manner to that for
B4,

It is also worth noting that a completeness proof for KM3 can be
carried oul in the same manner as for BNG, resulting in the axiomati-
zation of EM3 as BN + A v ~A,

La Trahe University Ross T, BRADY

aned
Australian National University

NOTES

i1 This name 18 chosen becadne the wystem contains ihe basic system B of [5).
Chispter 4, and has & chameterste 4-valised matrix sei. ome of the valoes heing ',
representing neither truth nor falsity.

") I scknowhalge help fram R, K. MEYER in getting the axiomaiiration isio this fom.

") The iden of allowing otk values T and F 1o be assigned 1o formulse comes from
L M. Dusn. Im [2], Dunn also allows neiiber T nor F 1o be msigned 1o formulsc.

"1 | obtainsd this mexdel strustere for BN4 by using the Moriensen meibod of
cimstructing model structures from mamix sets. a8 described im [5].

1"} 1 acknowledge help from a referee of Logique of Amalyse i putting 18is paper in a
saitable form for publication,
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