A LITTLE MORE LIKE ENGLISH

John T. KEARNs

1. Quantified Phrases

Logical formal languages can be used as instruments for
studying natural languages. If certain features of a natural lan-
guage are incorporated in a formal language, then an under-
standing of these features in the formal language yields an
understanding of them in the natural language. It is a great
advantage of using formal languages over studying natural lan-
guages directly that formal languages can incorporate a few
features at a time. The respects in which a formal language
is unlike the intended natural language are generally respects
in which the formal language is simpler and more perspicuous
than the natural language. These make the formal language
easier to study, but allow the formal language to constitute a
partial theory of the natural language.

There are many syntactic and semantic respects in which
customary first-order languages are unlike English. One respect
to be considered in this paper concerns what I shall call quan-
tified noun phrases, or, more simply, quantified phrases. These
include such expressions as the following: every man, no
woman, some child, a dog, an apple, the mayor of New York
City. In English and (some) other natural languages, quantified
phrases can occupy the same positions in a sentence that are
occupied by proper nouns. For example,

(1) Tom sees Mary. (2) Tom sees a girl.

are both English sentences. In (2), a quantified phrase is found
in a proper noun's position,

In first-order languages, (1) and (2) receive very different
translations; they might come out this way: (3) S(t, m) and (4)
(3x) [G(x) & S(t, x)]. It has been maintained that the difference
between (3) and (4) brings out the difference between the

354 JOHN T.KEARNS

logical forms of two superficially similar English sentences. On
such a view, a sentence's logical form is a mysterious entity
lurking beneath the sentence’s deceptive surface. I find that
view implausible. The fact that there is a bigger difference
between (3) and (4) than there is between (1) and (2) simply
shows that in this respect the formal language is unlike English.

It has been argued (see [1]) that Lesniewski's system/lan-
guage of Ontology is more like English (or Polish) than are first-
order languages, because in Ontology the category of common
nouns (allegedly) includes proper nouns. So in Ontology com-
mon nouns occupy the same positions in sentences as are oc-
cupied by proper nouns, However, this does not make Ontology
more natural than first-order languages. For Ontology doesn't
contain any proper nouns; the nearest thing to a proper noun is
a common noun that denotes a single individual. Another dif-
ference between Ontology and English is that in Ontology the
definite article is built-in to the «verb». An Ontological sen-
tence ‘A e B' means «The A is a B», but the ‘e’ means «The...is
a...»

In this paper, a language £ will be developed which allows
quantified phrases in the same places where individual con-
stants can go. But # constitutes only a modest departure from
first-order languages with identity. (& shares many features
with the language developed by Montague in [2].)

2. The basic syntax

In developing &, I will depart somewhat from standard ter-
minology. In particular, I will not use the expression ‘formula’
(or ‘well-formed formula’) for labelling expressions obtained
from sentences by substituting (free) individual variables for
individual constants. I am doing this because I do not think
bound variables «behave» like either proper nouns or (most)
pronouns in English. They are simply «place holders», marking
positions affected by quantifiers. (But in English there are
some pronouns that do behave like bound variables; reflexive
pronouns and possessive pronouns do this)

A LITTLE'MORE LIKE ENGLISH 355

The «sentential» expressions of . are predicates. The number
of argument places in a predicate is the number of distinct free
variables it contains. (A sentence is a O-adic predicate.) The
order of the argument places in a predicate is (ordinarily) the
order of the first free occurrences of the individual variables.
If some predicate is written @(ay,..., a,) for n > 0, then ¢ is an
n-adic predicate functor.

& contains the following simple ingredients:

(1) Punctuation: (,), [,], the comma:,

(2) Individual constants (proper names): a, b, ¢, ay,...

(3) Individual variables: x, y, z, xy,...

(4) For every n > 0, n-adic predicate functors: F*, G*, H", F,...

(5) Two logical predicate functors: = (a binary functor), T
(a monadic functor)

(6) Connectives: ~, &, v, D (8) Passive voice symbol: ~

(¥) Quantifiers: V, &/, 1 (9) Abstraction symbol: =

- The connectives, quantifiers, passive voice symbol, and the
abstraction symbol are the operators of %. The predicate
functors listed in (4) and (5) are simple. If ¢ is a simple n-adic
predicate functor other than ‘=, and «y,..., a, are distinct in-
dividual variables, then g(ay,..., o,) is an atomic predicate. If
a4, og are distinct individual variables, then [a; = a;] is an atom-
ic predicate. (The predicate ‘'T(x)’ means x is a thing—i.e., x is
an individual in the domain.)

In describing the syntax of %, I will use transformations to
generate complex expressions from simpler ones. These trans-
formations are not borrowed from any linguistic theory. A
transformation is simply an effective function from certain ex-
pressions to an expression. The semantics of # will be des-
cribed concurrently with the syntax. Given the set (or truth
value) denoted by a predicate A, where A’ is obtained from A
by a transformation, I explain how the value of A' is deter-
mined for this transformation.

& is interpreted in nonempty domains. Let 2 be nonempty.
Then an interpreting function of &£ for 2 is a function f defined
on the individual constants and simple predicate functors of &

356 JOHN T.KEARNS

which assigns an individual in 2 to each individual constant,
and which assigns a set of n-tuples of individuals of & to each
n-adic predicate functor. An interpreting function must assign
{alaeP} = D to'T" and {(0,a) | € D} to ‘="

Let 2 be nonempty and let f be an interpreting function of
& for 2. Let ¢(ay..., 0,) be an atomic predicate of %, and let
f(g) V. Then the value of ¢f j..., o, for f is V; we can
also write this: flg(ay..., @s)] = V. If [s1 = ap] is an atomic
predicate, then floy = o] = {(B,B8) |Be 2}

In describing transormations, I will first explain the syntactic
aspect of a transformation. Then I will give an informal ac-
count of the semantic effect of the transformation. Following
this, for some transformations, will be a precise and careful
statement of the semantic effect of the transformation. The
careful statement will be italicized. (For those transformations
where the precise statement is omitted, the d111gent reader can
easily supply the omission.) :

(1) The reflexive transformation transforms a predicate A
into A’ by replacing free occurrences of a variable « by oc-
currences of a different variable which also occurs free in A.
For example, the atomic predicate ‘[x = y]|' is transformed
into ‘[x = x]' by the reflexive transformation. In this trans-
formation, a free variable cannot be replaced if it occurs within
the scope of an operator binding occurrences of the new
variable. The significance of this transformation should be
clear; it takes a predicate like ‘x hit y' into 'x hit x-self.’

In talking about the distinct individual variables occurring
free in a predicate, I will speak of their canonical order. This is
normally the order of the first free occurrence of each variable
(the exceptions to this normal order are explained with the
quantifier transformations). For transformations (1)-(6),
initial predicate will be A, and the result of the transformation
is A'. The distinct individual variables occurring free in A, in
canonical order, are ay,..., o, The value of A for fis V.

Let A’ be obtained by the reflexive transformation from A
by replacing occurrences of o; by o; (i # j). Then f(AY) =
{(dy....ds_1) | (dy,..., di_1, dj,..., dn_1) € V}. ;

A LITTLE MORE LIKE ENGLISH 357

(2) The constant introduction transformation replaces the
free occurrences of a variable a; by an individual constant f.
Let f(B) = e.Then f(A) =
{(dy..., dp_1) | (..., di-1, €,..., dn_1) e VY. If n = 1, then f(A)
= {(ruth) iffec V.

The quantifiers of & are 'V’ (every), '’ (a, an, some), 1 (the);
these are the universal, indefinite, and definite quantifiers,
respectively, For each quantifier, there are two kinds of
quantified phrase. If ¢ is a monadic predicate functor and « is
an individual variable, then go is an indexed monadic predicate
functor. Let ¢ be either a monadic predicate functor or an in-
dexed monadic predicate functor. Then (i) Vv is a universally
quantified phrase, (ii) &/ is an indefinitely quantified phrase,
and (iii) w is a definitely quantified phrase. For each kind of
quantified phrase, the transformation which consists in ap-
plying that phrase to a predicate is subdivided into three trans-
formations. These are exactly parallel for each quantifier, so
I will explain them in detail only for the universal quantifier.

(3) Let ¢ be a monadic predicate functor which contains no
free individual variables in common with A.

(3a) Then Vgu; A(= A') is obtained by the universal trans-
formation.

(3b) If the first free occurrence of «; in A is within the scope
of no operators in A, then A’ results by replacing the first free
occurrence of o; in A by Yga,.

(3c) If there is only one free occurrence of o; in A, and this
occurrence is within the scope of no operator in A, then A’
results by replacing the free occurrence of a; by V.

The three universal transformations yield equivalent predi-
cates. To illustrate these transformations, I will use capital
letters as if they were predicate functors of &#. Suppose 'P(x)’
means X is a person, and ‘M(x)’ means x is mortal. Then 'Every-
one is mortal’ can be translated by: YPx M(x)—for every per-
son x, x is mortal. But we can also say the same thing by
writing 'M(YPx)'—every person x is mortal. Or (better) ‘M(VP)’
—every person is mortal. If 'L(x, y)' means x loves y, then
'L(VP, VYP)' is «every person loves every person.’ And 'L(YPy,y)'

358 JOHN T.KEARNS

is «every person y loves y»—i.e., every person loves himself/
herself. (If we dropped the index in the quantified phrase of
this last example, we get 'L(VP, y)'; this is a monadic predi-
cate rather than a sentence—it denotes whatever is loved by
everyone.)

The prefixed quantified phrase of a sentence can be «moved
inside» the sentence only if the internal position is not within
the scope of an operator. The sentence 'VPx ~ M(x)' is not
equivalent to '~ M(VP),’ because the single free occurrence of
‘x' in '~M(x)' is within the scope of the operator ‘~." We
cannot obtain ‘~ M(VP)' from ‘'~ M(x)' by the quantifier trans-
formation. But we can obtain this sentence by starting with
‘M(x)," obtaining ‘M(¥P)," and then negating that sentence. (The
sentence ‘~ M(VP)' is equivalent to '~ VPx M(x)' rather than
to 'VPx ~ M(x).") In 2 the scope of an operator cannot always
be a complete expression. Instead we determine when an ar-
gument place is within the scope of an operator. When the
quantified phrase is in front, as in Vgo A, then every argument
place in A is within the scope of the quantifier. But when the
quantified phrase is moved inside A, yielding A’, then only
argument places to the right of the quantified phrase are within
the scope of the quantifier.

The canonical order of the argument places in a predicate
is ordinarily the order of the first free occurrence of the dis-
tinct free variables in the predicate. But monadic predicate
functors may contain free occurrences of individual variables.
When this happens, a transformation yielding a prefixed quan-
tifier could give a different order to the free individual
variables than an equivalent transformation yielding an inter-
nal quantifier. A predicate with a prefixed quantifier will be
canonical for the quantifier transformations. This predicate is
used to determine the order of the argument places. The cano-
nical order of distinct free individual variables in a predicate A
is the order of the first free occurrences of these variables in
the corresponding predicate B in which all quantifiers are in
canonical position,

A universally quantified phrase is understood to have exis-
tential force. In case there aren't any ¢'s, then Vga A is false.

A LITTLE MORE LIKE ENGLISH 359

Let A’ be obtained from A by the universal transformation,
either by prefixing Voo, to A, by inserting VYoo, in place of the
first free occurrence of o; in A, or by inserting Vo in place of
the single free occurrence of u; in A. Let the distinct individual
variables occurring free in ¢, in canonical order, be By,..., pm.
Let f(A) = V, flp(o;)] = X. Then the value of A’ for
f is {{dy..., dm e€i..., €a-1) | there is an r ¢ & such that
(dy..., dy, 1) € X and, for every such r, {ey,..., €1, I,..., €n_1)
e Vi Incasem = 0, n = 1, f(A) = tiff thereisanre 2
such that r ¢ X and, for everyr¢ X, we havere V.

(4) The indefinite quantifier can be read «a,» «an,» or
«some.» So '&/Px L(x, x)" is «For some person x, x loves X.»
And 'L(VP, #P)' is «Every person loves some person.» The in-
definite quantifier is used to say that at least one individual of
the kind indicated has (or does) etc.

(5) The definite quantifier is used to say that the one and
only individual of the indicated kind is etc. So ‘'M(1P)’ is «The
(sole) person is mortal.» And ‘(&P = 1P]' is «Someone is the
sole person.»

(6) The negation transformation takes A into ~ A. The posi-
tions in A are within the scope of '~" The value of ~ A for f
is {{dy,..., ds) | (dy..., da)¢ V}. If n = 0, then f(~A) = t iff
f(A) = L

(9)-(9) If A is an n-adic predicate, and B is an m-adic predi-
cate which has no free variables in common with A, then these
transformations yield [A & B], [A V B], [A D B]. The positions
in A and B are within the scope of the binary operator. These
connectives have their ordinary (logical) meanings.

The sentence ‘VPx &Py L(y, x)' is used to say that everyone
is loved by someone, This sentence is not equivalent to a sen-
tence with both quantified phrases moved inside. The sentence
is equivalent to 'VPx L(#/P, x)." The prefixed quantified phrase
cannot be moved inside, for the free occurrence of ‘x' in
'L(&P, x)' is within the scope of ‘&' In English, this problem is

360 JOHN T.KEARNS

solved by using the passive voice. We will incorporate that
solution in &£,

(10) If v is a binary predicate functor and oy, ap are distinct
individual variables, then the passive voice transformation

takes Y(oy, 0p) into P(ay, o),

If fiy(ay o)) = {(dids) |...} = V, then flp(as, os)]
= {(du ds) | (ds d1) eV}

(11) Let ¢ be a monadic predicate functor, containing free oc-
currences of distinct individual wvariables fy,..., B, and no
others (this is their canonical order). Let A be a predicate which
contains no free individual variables in common with ¢, and
which contains free occurrences of distinct individual variables
04,..., @, and no others (this is their canonical order). Let y be
an individual variable which is either oy or which does not
occur free in either ¢ or A. Then the relative clause transfor-
mation yields the predicate [gpo; © A](y). This transformation is
also called the abstraction transormation. The predicate
[po; > A](y) is read «y is a @u; such that A.» For example,
‘[Px = L(x, &P)](a)’ is «a is a person x such that x loves
someone» —i.e,, o is a person who loves someone. The occur-
rence of o; in gu; and the free occurrences of o; in A are bound
occurrences in [go; = A]. The positions in [ga; = A] are within
the scope of the displayed occurrence of 's.’

The relative clause transformation makes it possible to con-
struct complex functors which can occur in quantified phrases.
Suppose ‘o’ names Anne and ‘K(x, y)' means x knows y. Then
‘L(Y[Px > K(x, @)], a)’ claims that everyone who knows Anne
loves Anne.

Let fle(v)] = X and f(A) = V.

Then f(lpw; @ Al(y)) =
{(dl;---rdm; €11.e0y p -1, f) l (dl,...,dm, I)EX
and (€4, 8j-1; Tissvi G-t} EV)

A LITTLE MORE LIKE ENGLISH 361

3. The first-order fragment of &

In first-order languages, an English sentence of the form
‘Every F is G’ is translated '(Vx)[F(x) D G(x)]." There are (at
least) two respects in which the truth-conditions of the trans-
lation diverge from those of the original: (i) the translation is
vacuously true if there are no F's and (ii) everything in the
domain is an instance of the quantified translation In %, the
English sentence can be translated ‘G(VF)." The translation in
& does not admit of vacuous truth, and only the F's are its
instances. The % translation is also syntactically closer to the
English sentence than is the first-order translation, because the
Z translation does not contain a binary connective.

While £ provides translations of English sentences that are
syntactically superior to the first-order translations, & also
«incorporates» first-order sentences. The quantified phrase
'(Vx)' of a first-order language has the same significance as
‘VTx' in &#. And '(8x)’ amounts to ‘@Tx.' The requirement that
a first-order language be interpreted in a nonempty domain
corresponds to the requirement that VI'x A not admit of
vacuous truth. (But it is easy to change the semantics of a first-
order language to accommodate the empty domain; it is equal-
ly easy to change the semantics of £ so that the universal
quantifier admits of vacuous truth.) Even without vacuous
truth for '¥Tx," a sentence ‘VTx [F(x) D G(x)]' is true if there
areno F's.

The first-order fragment is the sublanguage of % which (1)
contains those predicates in which the only quantifiers are 'V’
and '#/," where these occur in quantified phrases which are in
canonical position, which phrases all contain (only) the predi-
cate functor ‘T, and (2) contains no predicates obtained by the
passive voice transformation or the relative clause transforma-
tion. An ordinary first-order language with identity can be re-
garded as an abbreviated version of the first-order fragment of
#. In the abbreviated version, occurrences of 'T" in quantified
phrases are omitted, and ‘&' is replaced by ‘H.' It is an easy
matter to prove that each sentence (and predicate) in & is
equivalent to a sentence (predicate) in the first-order fragment

362 JOHN T.KEARNS

of & (and so to a sentence in any first-order language with
identity). A first-order language is semantically as powerful
as &, but a first-order language cannot accommodate the syn-
tactic features of &Z.

4, Identity

The symbol ‘=" in & is a counterpart to the ‘is’ of identity in
English. This is" is not very often used to connect two proper
names in English sentences, except in such philosophers’ exam-
ples as ‘Cicero is Tully." However, the 'is’ of identity is very
useful when quantifiers are present, and #'s ‘="' illustrates how
this 'is' works. For any sentence ¢(a), where o is an individual
constant, is equivalent to [a = &¢]. So given the indefinite
quantifier and the identity sign, it is never necessary to use a
monadic predicate functor in a sentence of the form (o). And
in English, many common nouns are not closely related to in-
transitive verbs. Since we can say «Tom is a carpenter,» we
have no need to say «Tom carpents.»

Frege claimed that the ‘is" of identity is quite different from
the ‘is’' of predication. But the language & shows how the 'is’
of identity is used to make predications without changing its
meaning. To insist that English contains two '‘is's is to take
standard first-order languages with identity as «capturing» the
logical forms of the English sentences they translate. But first-
order languages only provide semantic approximations to such
sentences as ‘Arnold is a carpenter,’ ‘Some carpenter is a
woodworker,'’ and ‘Every carpenter is a woodworker.” If 'a’
names Arnold, 'C(x)' means x is a carpenter, and ‘"W(x)' means
x is a woodworker, then % provides translations that are syn-
tactically and semantically appropriate in the following:
[a = &C], [FC = LW], and [VC = LW].

5. Deduction

The natural deduction system & employs tree proofs in
which only sentences can occur as steps.

A LITTLE MORE LIKE ENGLISH 363

The rules for connectives are entirely familiar.

& INTRODUCTION

A B
[A & B]

V. INTRODUCTION

A B
[AV Bl [AV B

V ELIMINATION

[A & B]

& ELIMINATION

[A & B
A B

{A} {B} Occurrences of the pre-
[AV Bl C c misses in braces which
C are over the indicated

> INTRODUCTION

occurrences of C are
cancelled by this rule.

D ELIMINATION

{A} A [A D B
B B
[A D B

CONTRADICTION ELIMINATION

~ ELIMINATION

A ~A {~ A}
B i
A

In writing the rules for quantifiers, it is understood that ¢
is a monadic predicate functor, and that « is an individual
variable. All three quantifiers have similar INSERTION and
EXTRACTION rules. Let Q be 'Y, '&," or "1’

364 JOHN T.KEARNS

Q INSERTION

Qo A o occurs free in A, The first free occurrence of
A oin Ais within the scope of no operators in A.
A’ is obtained from A by replacing the first

free occurrence of « in A by Qga.

Qpa A o has a single free occurrence in A. This free

A’ occurrence is within the scope of no operators
in A A’ is obtained from A by replacing the
free occurrence of a in A by Qq.

Q EXTRACTION

These are obtained by «turning over» the Insertion rules.
The conditions are the same.

INTRODUCTION

a a occurs free in A. § is an individual cons-

9B §_Al m
B tant. The expression § A | denotes the

Hpa A p

result of replacing free occurrences of «
in A by B.

& ELIMINATION

a B is an individual constant
3 B Al & 9B} yhich does not occur in oo A,
o A c in C, or in any uncancelled hy-
C pothesis (other than the one in

braces) of the proof leading to

the occurrence of C on the line.

SUBALTERNATION V ELIMINATION

Voo A Voo A @(B) p is an individual constant.
Lo A o
.41

A LITTLE MORE LIKE ENGLISH 365

V INTRODUCTION

{9(B)} B is an individual constant which does not

L)) A occur in ¢. f does not occur in any uncan-

celled hypothesis except ¢(f) in the proof

Voo S p Al leading to A. f occurs in A but not within
a the scope of an operator binding a.

= INTRODUCTION

For every individual constant §, the sentence [= B] can
be introduced as a conclusion from no premisses (as an
axiom).

= ELIMINATION

l

B ¥l A A’ results from A by replacing some oc-
A’ currences of the constant § by occurren-

ces of the constant v.

1 INTRODUCTION

o a occurs free in A. § is a constant,
Voy [y = B8] § 8 Al

wpa A
1 ELIMINATION

{Voy [y = Bl&s;Al}

o A C
C

fBis an individual constant which does not occur in 1ga A, in C,
or in any uncancelled hypothesis (other than the ome in
braces) in the proof leading to the occurrence of C on the
line.

366 JOHN T.KEARNS

~ INTRODUCTION ~ ELIMINATION

o, B) - a and B are individual
¢l B) constants.

%6, o) 6, «)

> INTRODUCTION = ELIMINATION

[pa = A](B) o occurs free in A.

o B is an individual
loB) & § ﬂAl] constant.

ww)&s;An

[pe = A](B)

T INTRODUCTION

If B is an individual constant, then T(B) can be introducea as
a conclusion from no premisses,

If B is the conclusion of a tree proof whose uncancelled
hypotheses are included among A;,..., A, then A;,..., A./B is
a sequence theorem of &. If /B is a sequence theorem of &,
then B is a sentence theorem of &. The system & is sound, and
it is complete with respect to logically true sentences, with
respect to valid (finite) inference sequences, and with respect
to the logical consequences of sets of sentences. These results
are proved by slightly modifying similar proofs for first-order
systems.

6. Some conclusions

The language & is an improvement over first-order lan-
guages for the purposes of gaining an understanding of and
providing an explanation for some grammatical and logical
features of English. However, it is important to realize that %
does not improve on first-order languages with respect to
what can be said. Every sentence of % is equivalent to a sen-

A LITTLE MORE LIKE ENGLISH 367

tence of the first-order fragment of #. Conversely, & can be
obtained as the definitional extension of a first-order language.
But this last fact does not confer a privileged status on first-
order languages. It is (or should be) obvious by this time that
it is an arbitrary matter which expressions in a formal language
are taken as primitive and which are defined. The fact that an
adequate formal language can be developed from a small set
of primitive symbols tells us next to nothing about the «ulti-
mate units» of thought, language, or reality.

The virtues of % belong to & whether % is adopted as a
primitive language or is obtained as the definitional extension
of a first-order language. These virtues primarily involve the
light that £ sheds on the connection between the syntactical
constructions and logical features of English sentences. Con-
sider what happens when an English sentence is translated in a
first-order language. If the translation is not syntactically
similar to the English sentence, then the translation is justified
solely by our insight into the meanings or truth conditions of
the two sentences. When a translation in .# is provided which
is syntactically similar to the English sentence, the need to ap-
peal to insight is lessened. Once the English sentence is trans-
lated in %, we can move from this translation to the sentence
of £ which corresponds to the first-order translation. But now
this move can be recognized for the inference that it is. And &
provides the resources for analyzing this inference

The behavior of quantified phrases in % approximates their
behavior in English. This is because # possesses the variety
of quantified phrases made possible by incorporating monadic
functors into these phrases, and % permits quantified phrases
in the slots for proper names. The passive voice and the rela-
tive clause transformations make clear the importance of the
analogous English «transformations» with respect to quan-
tifiers. And the identity sign in & illustrates and explains how
the 'is" of identity also serves for predication. The syntactic
features and the logical expressions of .# have roughly the
same semantic force as their English counterparts. Both syntac-
tically and semantically, & provides a model of a portion of
English. The language £ together with the system & consti-

368 JOHN T.KEARNS

tutes a partial theory of the logical features of English. It is an
explanatory theory because it makes clear the connection be-
tween syntactical form and logical force,

Department of Philosophy, John T. KEARNS
State University of New York at Buffalo

REFERENCES

[1] E.C. LuscueL, The Logical Systems of Lesniewski, North-Holland Publis-
hing Company, Amsterdam, 1962.

[2] Richard MoNTAGUE, «English as a Formal Language,» in Formal Philoso-
phy, Selected Papers of Richard Montague, edited by R.H. Thomason,
Yale University Press, New Haven, 1974, 188-221.

