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AbstrAct

We refine the interpolation property of classical first-order logic (without identity 
and without function symbols), showing that if Γ / , /  Δ and Γ  Δ then there is 
an interpolant χ, constructed using only non-logical vocabulary common to both 
members of Γ and members of Δ, such that (i) Γ entails χ in the first-order version 
of Kleene’s strong three-valued logic, and (ii) χ entails Δ in the first-order version 
of Priest’s Logic of Paradox. The proof proceeds via a careful analysis of deriva-
tions employing semantic tableaux. Lyndon’s strengthening of the interpolation 
property falls out of an observation regarding such derivations and the steps 
involved in the construction of interpolants.

Through an analysis of tableaux rules for identity, the proof is then extended to 
classical first-order logic with identity (but without function symbols). 

Keywords: Craig–Lyndon Interpolation Theorem (for classical first-order logic), 
Kleene’s strong 3-valued logic, Priest’s Logic of Paradox, Belnap’s four-valued logic, 
block tableaux.

1. Introduction 

In our (2016) we gave a constructive proof of what is there called a 
“non-classical refinement” of the interpolation property for classical 
propositional logic, i.e., a constructive proof that when  ¬f,  ψ and 
f  ψ in the {Ù, Ú, ¬}-fragment of classical propositional logic, there is 
an interpolant χ, constructed using only propositional variables common 
to both f and ψ, such that (i) f entails χ in Kleene’s strong three-valued 
logic (Kleene 1952, §64), here called K3, and (ii) χ entails ψ in Priest’s 
Logic of Paradox (Priest 1979), here called LP. There the proof is seman-
tic; here we employ a modification of what Raymond Smullyan (1968) 
calls Hintikka’s block tableaux. We show how to extend that result to 
classical first-order logic (with neither identity nor  function-symbols) 
and obtain related results for first-order K3 and LP and for Belnap’s four-
valued logic (Belnap 1977), here called B4. A refinement of Lyndon’s 
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strengthening falls out of an elementary observation regarding block 
tableau. 

The results are then extended to encompass identity (but not function 
symbols). We obtain a refinement of Arnold Oberschelp’s sharpening of the 
Craig–Lyndon Interpolation Theorem for classical first-order logic with iden-
tity (Oberschelp 1968). The extension to encompass identity is carried out 
directly, by a case-by-case examination of block tableau rules for  identity. 

Quite what significance should be attached, in general, to a logic’s pos-
sessing an interpolation prop erty is hard to say. As we’ll see, Belnap’s 
four-valued logic has the property that if Γ B4 Δ then there is an interpolant 
χ whose non-logical vocabulary occurs in formulas in Γ and in formulas in 
Δ and such that Γ B4 χ and χ B4 Δ. Kleene’s three-valued logic has the 
property that if Γ K3 Δ and Γ / K3 Ø then there is an interpolant χ whose 
non-logical vocabulary occurs in formulas in Γ and in formulas in Δ and 
such that Γ K3 χ and χ K3 Δ. Similarly, Priest’s Logic of Paradox has the 
property that if Γ LP Δ and Ø  /  LP Δ then there is an interpolant χ whose 
non-logical vocabulary occurs in formulas in Γ and in formulas in Δ and 
such that Γ LP χ and χ LP Δ. 

In between B4 on the one side and K3 and LP on the other there lies a 
fourth logic, the logic whose valid arguments are exactly those pronounced 
valid by both K3 and LP. We’ll call this logic K3    LP. (It goes by various 
names in the literature including Kalman Implication and RM0, the logic of 
R Mingle’s first degree entailments.) Now, Ø / K3 ψ, ¬ψ and f, ¬f / LP Ø 
but f, ¬f K3 ψ, ¬ψ and f, ¬f LP ψ, ¬ψ and so f, ¬f K3  LP ψ, ¬ψ for 
any f and ψ. Consequently the logic K3    LP does not have an interpolation 
property (or at least none anything like those possessed by B4, K3, and LP). 

Possession of an interpolation property is, then, neither preserved 
upwards to stronger logics nor downwards to weaker logics, making it 
unclear what, in general, is the value in possession of such a property. In 
the present context there are, however, specific lessons to be learned. For 
example, that classically valid inferences in a first order language, possibly 
with identity, are of one of three kinds. If Γ  Δ then either (i) Γ K3 Ø, or 
(ii) Ø LP Δ, or (iii) Γ /  Ø and Ø / Δ and there is a formula χ which con-
tains only non-logical vocabulary common to both Γ and Δ such that Γ K3 
χ and χ LP Δ. We may look on this as telling us that there’s a proof proce-
dure for classically valid first-order inferences such that all proofs can go 
in two separate phases, first one that uses the Principle of Non-Contradiction 
(no proposition is both true and false), but not the Principle of Bivalence 
(every proposition is true or — inclusive ‘or’ — false) and then one that 
uses the second but not the first.1

1 This is reminiscent of, but importantly different from, David Makinson’s observation 
regarding the logic we’re calling K3   LP: ‘We can look on it as a logic that abandons either 
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What we present here is a strengthening of the standard Craig–Lyndon–
Oberschelp Interpolation Theorem for first-order classical logic (with iden-
tity). We put upper bounds on the amount of logic needed to get from the 
premise(s) to the interpolant and to obtain the conclusion(s) from the inter-
polant. In both cases familiar three-valued logics suffice — but different 
logics. To the best of our knowledge, this is a refinement of the Inter-
polation  Theorem for first-order classical logic that has not been broached 
previously. 

The paper proceeds thus. In the second section we present block- 
tab leaux rules which are sound and complete for first-order logic. There 
are four kinds of terminal nodes, nodes whose occurrence closes a branch. 
We distinguish K3-sound, LP-sound, and B4-sound tableaux derivations 
by which of these terminal nodes occur. In the third section we provide 
enough detail to establish the K3-soundness, LP-soundness, and B4-sound-
ness of the various kinds of tableaux derivations. Classical completeness 
of the overall system of rules follows from standard results. In the fourth 
section we state and prove our refinement of the Craig–Lyndon Interpola-
tion Theorem for classical first-order logic  without iden tity. The proof pro-
ceeds by spelling out the steps for  construction of an interpolant with the 
desired properties through  careful examination of the tableaux rules. The 
fifth section provides semantics for the first-order extensions of Belnap’s 
“useful four-valued logic”; with this in hand, the sixth draws out some 
related results from the details of the construction in the fourth section. 
Introducing identity raises some issues of detail. These are addressed in 
the seventh where tableaux rules are introduced. Again we divide these so 
as to yield K3-sound and LP-sound tableaux, the semantics with respect to 
which they are sound being given in the eighth section. The ninth and final 
section states and proves our refinement of the Craig–Lyndon–Oberschelp 
Interpolation Theorem for first-order logic with identity, this time spelling 
out the steps in the construction of an interpolant relating to the identity 
rules.

one, but not both, of the laws of contradiction and excluded third’ (Makinson 1973, p. 39). 
To repeat what was just said in the text, in a classical inference one need at most keep the 
law of contradiction, but not the law of excluded third, in mind until reaching an interpolant 
then swap and work from the interpolant to the conclusion keeping the law of excluded third 
but not the law of contradiction in mind. In the case of a valid K3   LP inference, one can 
derive it keeping the law of contradiction, but not the law of excluded third, in mind 
throughout; then one can derive it again, this time keeping the law of excluded third, but 
not the law of contradiction, in mind throughout.
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2.  Block tableaux for first-order classical logic (without identity) 

We begin with block tableaux for first-order classical logic (without iden-
tity and function-symbols). We have the following rules in which finite, 
possibly empty sets of (closed) formulas flank the colon.2

Conjunction

 Γ : f Ù ψ, Δ  Γ, ¬(f Ù ψ) : Δ  Γ : ¬(f Ù ψ), Δ 

 Γ : ¬f, ¬ψ, Δ  Γ : f, Δ Γ, ¬f : Δ  Γ : ψ, Δ  Γ, ¬ψ : Δ 

Γ, f Ù ψ : Δ 

 Γ, f, ψ : Δ 

Disjunction 

 Γ, f Ú ψ : Δ  Γ : ¬(f Ú ψ), Δ  Γ, ¬(f Ú ψ) : Δ 

 Γ, ¬f, ¬ψ : Δ  Γ, f : Δ  Γ : ¬f, Δ  Γ, ψ : Δ  Γ : ¬ψ, Δ 

 Γ : f Ú ψ, Δ 

 Γ: f, ψ, Δ 

Implication 

 Γ, f → ψ : Δ  Γ : ¬(f → ψ), Δ  Γ, ¬(f → ψ) : Δ 

 Γ, f, ¬ψ : Δ  Γ, ¬f : Δ Γ : f, Δ  Γ, ψ : Δ  Γ : ¬ψ, Δ 

 Γ : f → ψ, Δ 

 Γ : ¬f, ψ, Δ 

(Double) Negation 

 Γ, ¬ ¬f : Δ  Γ : ¬ ¬f, Δ 

 Γ, f : Δ  Γ : f, Δ 

Universal Quantification 

 Γ, xf : Δ 

Γ, xf, f t/x : Δ 

Γ : xf, Δ 

 Γ : f a/x, Δ 

 Γ, ¬xf : Δ 

 Γ, ¬f a/x : Δ 

 Γ : ¬xf, Δ 

 Γ : ¬f t/x, ¬xf, Δ 

where t is an 
individual 
constant

where the  
individual  

constant a is new

where the 
individual 

constant a is new

where t is an 
individual 
constant

2 We make no provision for free-variable formulas; all formulas are closed formulas.
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Existential Quantification 

 Γ, xf : Δ 

 Γ, f a/x : Δ 

 Γ : xf, Δ 

 Γ : f t/x, xf, Δ  

 Γ, ¬xf : Δ 

 Γ, ¬xf, ¬f t/x : Δ 

 Γ : ¬xf, Δ 

Γ : ¬f a/x, Δ 

where the 
individual 

constant a is new

where t is an 
individual 
constant

where t is an 
individual 
constant

where the 
individual 

constant a is new

Branches close immediately when nodes of any of the following four forms 
are reached (f atomic): 

 Γ, f : f, Δ  Γ: f, ¬f, Δ Γ, f, ¬f : Δ  Γ, ¬f : ¬f, Δ 

A tableau is complete when no rule can be applied. We write Γ  Δ if all 
branches close in some completed tableau headed by the node  Γ : Δ . In 
this case, we say that a closed tableau exists for Γ : Δ. 

All rules are applied to pairs of (possibly empty) sets of formulas. 
We’ll call the pair to which a rule is applied the input pair. Rules yield one 
or two pairs of (possibly empty) sets of formulas. We’ll call these the out-
put pair or pairs. 

Definition 1 (PArity). Add the number of negations within whose scope 
an occurrence of a predicate in a formula occurs to the number of condi-
tional subformula in whose antecedent the occurrence lies. The occurrence 
has even or odd parity in the formula according as to whether this number 
is even or odd.3 

remArk 1. As case by case examination of the tableau rules reveals, if, in 
the application of a rule, one or more predicates occur in a formula in an 
output pair, they must also occur in some formula in the input pair on the 
same side of the colon with the same parity. Consequently, if there’s a 
closed tableau for Γ : Δ in which a branch closes at a node of one of the 
forms  Θ, ψ : ψ, E  and  Θ, ¬ψ : ¬ψ, E  all predicates occurring in ψ occur 
in some member of Γ and also in some member of Δ with the same parity 
as in ψ in the case of a  Θ, ψ : ψ, E -node and with the opposite parity in 
the case of a  Θ, ¬ψ : ¬ψ, E  -node. 

remArk 2. Two feature of the tableaux rules are easily confirmed by inspec-
tion. Firstly, in applications of any of the rules, there is change on exactly 

3 This definition extends Henkin’s neat reformulation of Lyndon’s definition (Henkin 1963, 
p. 201, n. 7). Neither Lyndon nor Henkin consider a language containing → as primitive; 
Lyndon (1959, pp. 129 & 131) treats f → ψ as an abbreviation for ¬f Ú ψ (which has the 
same effect as, but is not the letter of, what we do here). The predicate F has an occurrence 
with even and an occurrence with odd parity in the formula ¬x(¬Fx Ù (¬Fb → Gb)).
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one side of the colon: on the other side there is no change between the input 
pair and the output pair(s). (We call a rule a left-hand rule or a right-hand 
rule depend ing on which side changes.) Secondly, if in the application of a 
rule one side of an input pair is empty, the same side of the output pair or 
pairs must be empty too. Likewise, if in the application of a rule one side 
of an output pair is empty, the same side of the input pair (and so the same 
side of the other output pair, if there is one) must be empty too. Thus only 
left-hand rules are used in a tableau headed by a node  Γ : Ø  and only right-
hand rules in a tableau headed by a node  Ø : Δ .

LemmA 1. If there’s a closed tableau for Γ : Δ in which no branch reaches 
a node of either of the forms  Θ, ψ : ψ, E  and  Θ, ¬ψ : ¬ψ, E , it must be 
the case that Γ  Ø or Ø  Δ. 

Proof. Suppose that in a closed tableau for Γ : Δ no branch reaches a node 
of either of the forms  Θ, ψ : ψ, E  and  Θ, ¬ψ : ¬ψ, E . By remArk 2, no 
rule applies to  Ø : Ø , nor is it terminal, so there cannot be a closed tableau 
for Ø : Ø; consequently, at least one of Γ and Δ is non-empty. And if the other 
is empty, we are done, so suppose that neither Γ nor Δ is empty and consider 
the closed tableau for Γ : Δ. Since left-hand rules take note of and change 
only what’s on the left of the colon and right-hand rules only what’s on the 
right, we can re-order the applications of rules in every branch, applying first, 
say, the left-hand rules; order of application, and so the branch-structure of 
the tableau apart, at most some “new names” may have to be changed to 
preserve their novelty but given the autonomy of the left and right sides, this 
can affect nothing essential when the new and all subsequent occurrences 
on that same side of the colon are uniformly substituted. Of the four types 
of terminal nodes, only those of the forms  Θ, ψ : ψ, E  and  Θ,¬ψ : ¬ψ, E , 
the two forms which, by hypothesis, are not present in the original tableau, 
pay attention to what’s on both sides of the colon, the other two pay attention 
only to one side. Having re-ordered the application of rules, either all branches 
close at nodes of the form  Θ, ψ, ¬ψ : E  before we get to apply the right-
hand rules — in which case, by deleting the occurrences of Δ on the right-
hand side of nodes, we obtain a closed tableau for Γ : Ø — or at least one 
branch includes applications of right-hand rules and only right-hand rules 
after a certain point, working downwards from a node with Δ on the right-
hand side, and all branches passing through that node close at nodes of the 
form Θ : ψ, ¬ψ, E . In the latter case, pick one such branch, ignore every-
thing above the node to which that first application of a right-hand rule is 
made, and delete what’s on the left-hand side in every node from that node 
downwards. (It doesn’t change.) We obtain a closed tableau for Ø : Δ. 

Definition 2 (K3-, LP-, AnD B4-tAbLeAux). We write Γ K3 Δ if no branch 
terminates in a node of the form  Θ : χ, ¬χ, E  in some closed tableau for 
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Γ : Δ; we call such a tableau a closed K3-tableau. Likewise, we write Γ LP 
Δ if no branch terminates in a node of the form Θ, χ, ¬χ : Ε  in some closed 
tableau for Γ : Δ; we call such a tableau a closed LP-tableau. We write Γ B4 
Δ if no branch ends in a node of either of the forms Θ : χ, ¬χ, E  and 
  Θ, χ, ¬χ : Ε  in some closed tableau for Γ : Δ; we call such a tableau a 
closed B4-tableau. 

LemmA 2. If Γ  Ø then Γ K3 Ø. Likewise, if Ø  Δ then Ø LP Δ. 

Proof. If a closed tableau for Γ : Ø exists, then, since the right-hand side 
of Γ : Ø is empty, the right-hand side of every node in the tableau must also 
be empty (remArk 2), and so no branch terminates in a node of the form 
 Θ : χ, ¬χ, E  .

If Ø  Δ then, since the left-hand side of Ø : Δ is empty, the left-hand 
side of every node in the tableau must also be empty (remArk 2), and so 
no branch terminates in a node of the form  Θ, χ, ¬χ : E . 
Definition 3 (contrAries). Given a formula f not of the form ¬ψ, its con-
trary is ¬f; if f is of the form ¬ψ, ψ is its contrary. Given a set of  formulas 
Δ, –Δ is a set containing contraries of every member of Δ (and nothing more).4

The Duality Principle (Syntax).  It is obvious, by inspection coupled with 
judicious use of the rules for double negation, that a closed K3-tableau 
exists for  Γ : –Δ  if, and only if, a closed LP-tableau exists for  Δ : –Γ  . 
Likewise, a closed B4-tableau exists for  Γ : –Δ  if, and only if, a closed 
B4-tableau exists for Δ : –Γ  . 

3.  Semantics for first-order K3, LP, K3  LP, and classical logic (with out 
identity) 

An interpretation A for a first-order language with neither function-symbols 
nor identity comprises a non-empty domain D and a function ; to each 
individual constant c,  assigns an element of D; to each n-place predicate 
F,  assigns two disjoint subsets, + (F ) and −(F ), of Dn. 

We extend the language by adding a new constant, d, for each element 
d in D. We extend  by the obvious stipulation: for all d  D, (d) = d. 
We assign values to atomic formulas of the extended language like this: 

In an interpretation A = áD, ñ, v A (F (c1, c2, ..., cn)) = 1 if á(c1), 
(c2), ...,  (cn)ñ  +(F ); v A (F(c1, c2, ..., cn)) = 0 if  (c1), (c2), ...,  
(cn)ñ  − (F ); vA (F(c1, c2,..., cn )) = ½ otherwise.

4 The contrary of a contrary differs, if at all, from the original formula at most in having 
lost a double negation from the head.
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An interpretation A = áD, ñ is classical iff, for all n  N+, for all 
n-place predicates F, +(F )  −(F ) = Dn.

We evaluate formulas with negation, conjunction, disjunction, or (material) 
implication dominant in accordance with these truth-tables (Kleene 1952, 
Asenjo 1966, Priest 1979): 

ψ ψ ψ

f ¬f f Ù ψ 1 1/2 0 f Ú ψ 1 1/2 0 f → ψ 1 1/2 0
1 0 1 1 1/2 0 1 1 1 1 1 1 1/2 0

1/2 1/2 f 1/2 1/2 1/2 0 f 1/2 1 1/2 1/2 f 1/2 1 1/2 1/2
0 1 0 0 0 0 0 1 1/2 0 0 1 1 1

v A(vf) = min{v A(f[d/v]) : d  D}; v A(vf) = max{v  A(f[d/v]) : d  D}.

In a classical interpretation  A, v A takes only the values 0 and 1.

Definition 4 (K3-sAtisfAction). A K3 Γ iff, for all f  Γ, v A(f) = 1.

Definition 5 (LP-sAtisfAction). A LP Γ iff, for all f  Γ, v A(f) ¹ 0.

Definition 6 (K3-consequence). Γ K3 Δ iff for no interpretation  A is it 
the case that A K3 Γ and A LP -Δ.

Definition 7 (LP-consequence). Γ LP Δ iff for no interpretation A is it 
the case that A LP Γ and A K3 -Δ.

Definition 8 (K3    LP-consequence). Γ K3   LP Δ iff for no  interpretation  
A is it the case that A K3 Γ and  A LP -Δ and for no interpretation B is 
it the case that B LP Γ and  B K3 -Δ. 

The Duality Principle (Semantics).  It falls out of these definitions and the 
evaluation rule for negation that for any — possibly empty — sets Γ and Δ 
of formulas in a first-order language with neither function-symbols nor 
 identity, 

Γ K3 -Δ iff Δ LP -Γ 

and 
Γ K3   LP -Δ iff Δ K3   LP -Γ.

Definition 9 ((in)correctness). Say that a node  Γ : Δ  (where Γ and Δ are 
finite, possibly empty sets of formulas in a first-order language without iden-
tity or function-symbols) is K3-incorrect with respect to the interpretation  
A = áD, ñ iff A K3 Γ and  A LP -Δ, i.e., iff, for all f  Γ, v A(f) = 1 and, 
for all ψ  Δ, v A(ψ) ¹ 1. 
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Say, likewise, that a node  Γ : Δ  is LP-incorrect with respect to the 
interpretation  A = áD, ñ iff  A LP Γ and  A K3 -Δ, i.e., iff, for all ψ   Δ, 
v  A(ψ) = 0 and, for all f   Γ, v  A (f) ¹ 0. 

Say too that a node  Γ : Δ  is K3   LP-incorrect with respect to the inter-
pretation  A = áD, ñ iff  A K3 Γ and  A LP -Δ or  A LP Γ and  A K3 -Δ, 
i.e., iff min{v  A(f) : f     Γ} > max{v  A(ψ) : ψ  Δ}. 

Say that a node  Γ : Δ  is classically incorrect with respect to the 
interpretation  A = áD, ñ iff it is both K3-incorrect and LP-incorrect. 

Say, lastly, that a node  Γ : Δ  is correct in the relevant sense (K3, LP, 
K3   LP, classical) if there is no interpretation with respect to which it is 
incorrect in the same sense. If  Γ : Δ  is correct in one or more of these 
senses, so too is  Γ, Γʹ : Δ, Δʹ  in the same sense(s), for any sets of formulas 
Γʹ and Δʹ. (The node  Γ : Δ  is correct in one or more of these senses just 
in case Δ is a consequence of Γ in the same sense(s).) 

Given the aim of the present investigation, we need soundness and com-
pleteness of the whole set of rules and, in particular, all the closure condi-
tions for branches for classical first-order logic, but only need soundness of 
the rules and the designated closure conditions for what we have called closed 
K3-, LP-, and, when we get to them, B4-tableaux. Completeness proofs 
could be adapted from, e.g., (Bloesch 1993) and (Priest 2008, Chs. 22 & 23) 
but we have in fact no need of them.5

Soundness. The tableaux rules preserve K3-, LP-, and K3    LP-incorrect-
ness with respect to any in terpretation áD, ñ downwards, hence preserve 
classical incorrectness with respect to a (classical) inter pretation down-
wards, in the sense that if the input pair in the application of a rule is incor-
rect (in the relevant sense) with respect to an interpretation, so too is the 
output pair, if there is only one, and so too is at least one of the output pairs, 
if there are two. (In the case of the rules where a new name is introduced, 
the function  must be extended to supply an appropriate interpretation of 
that name; it is guaranteed that there will be such when the input pair is 
incorrect with respect to the interpretation in play.) Nodes of the forms 

5 Should completeness fail for any of the sets of rules, the claims about failure of 
upwards and downwards transmission of possession of an interpolation property made in 
the Introduction would still stand even if one or more of the logics would then be slightly 
misidentified there.

Of course, the question of completeness is of independent interest. A referee remarks that 
Bloesch’s results cover only propo sitional LP and B4. Syntactic and semantic duality extend 
his results to propositional K3. As for first-order, I take Bloesch at his word when he says, 
‘While coupled tree proof systems exist for both logics [i.e., LP and B4] the tableau proof 
system described has several advantages over them. First, it is easier to use and second, it 
lends itself to first-order and modal extensions of the above logics’ (p. 295). Also, one may 
refer to (Priest 2008, Chs. 22 & 23). 
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Γ, f : f, Δ , Γ, ¬f : ¬f, Δ , and Γ, f, ¬f : Δ  are all K3-correct; nodes of 
the forms Γ, f : f, Δ , Γ, ¬f : ¬f, Δ , and Γ : f, ¬f, Δ  are all LP-correct; 
all four forms are classically correct. 

Correctness is preserved upwards. Thus 

Γ K3 Δ only if  Γ K3 Δ 
and 

Γ LP Δ only if  Γ LP Δ.

Completeness.  It is obvious, by inspection, that with judicious use of the 
rules for double negation a closed tableau exists for Γ : Δ if, and only if, 
a closed tableau exists for Γ  -Δ : Ø.6 In drawing up a closed tableau for  
Γ  -Δ : Ø, only left-hand rules are used (remArk 2). But the left-hand 
rules are in effect just the familiar rules for tableaux employed to test clas-
sical consistency in a first-order language without identity. Borrowing from 
any number of classical or textbook sources, we have that if there is no 
closed tableau for Γ  -Δ : Ø, equivalently, no closed standard tableau for 
the set Γ  -Δ, there is a classical interpretation in which all members 
of Γ  -Δ take the value 1. Equivalently, there is a classical interpretation 
with respect to which  Γ : Δ  is classically incorrect.

K3   LP presents an interesting case. Nodes of the forms Γ, f, ¬f : Δ  
and  Γ : f, ¬f, Δ  are not K3   LP-correct, but nodes of the form 
 Γ, f, ¬f : ψ, ¬ψ, Δ  are. Thus a block tableau presentation of this logic has 
all the rules for connectives and quantifiers that we have in play and exactly 
these three forms of terminal nodes (f, ψ atomic):

 Γ, f : f, Δ   Γ, ¬ψ : ¬ψ, Δ  Γ, f, ¬f : ψ, ¬ψ, Δ

Naturally, we write Γ K3  LP Δ if all branches terminate at nodes of these 
three forms in a block tableaux headed by the node  Γ : Δ . With that in 
hand we have 

Γ K3   LP Δ only if Γ K3   LP Δ. 

4.  A refinement of the Craig–Lyndon Interpolation Theorem 

theorem 1. If Γ  Δ and Γ / Ø and Ø / Δ then there is an interpolant χ, con-
structed using only non-logical vocabulary common to both Γ and Δ, such that 

Γ K3 χ and χ LP Δ 

6 That Γ  -Δ may be non-empty slightly upsets the parallelism between the tableaux 
in some cases but does not undermine the claim just made.
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and every predicate which occurs with even parity in χ occurs with even 
parity in some member of Γ and also in some member of Δ and, likewise, 
every predicate which occurs with odd parity in χ occurs with odd parity in 
some member of Γ and also in some member of Δ. 

proof. Given a closed tableau for Γ : Δ we associate interpolants with some, 
not necessarily all, nodes, working upwards from the terminal nodes. The 
aim is to associate interpolants with all nodes Θ : E  such that Θ / Ø and 
Ø / E. At the same time we “reverse engineer” a closed K3-tableau for Γ : χ 
and a closed LP-tableau for χ : Δ where χ is the interpolant associated 
with Γ : Δ . By design, in the first of these no terminal node of the 
form Θ : ψ, ¬ψ, E  occurs; in the second, no terminal node of the form 
Θ, ψ, ¬ψ : E .

Terminal nodes.  With a node of the form Θ, ψ : ψ, E , we take ψ itself to 
be the interpolant. Simi larly, with a node of the form Θ, ¬ψ : ¬ψ, E , we 
take ¬ψ to be the interpolant. Trivially, Θ, ψ K3 ψ and Θ, ¬ψ K3 ¬ψ and, 
likewise, ψ LP ψ, E and ¬ψ LP ¬ψ, E. With terminal nodes of the other 
two forms we do not associate any interpolant. With nodes of the form 
Θ, ψ, ¬ψ : E  we have that Θ, ψ, ¬ψ K3 Ø; with nodes of the form 
Θ : ψ, ¬ψ, E  we have that Ø LP ψ, ¬ψ, E.

No change rules.  In the case of these rules — 

 Γ, f Ù ψ : Δ 

 Γ, f, ψ : Δ 

Γ : ¬(f Ù ψ), Δ

 Γ : ¬f, ¬ψ, Δ 

 Γ : f Ú ψ, Δ 

 Γ : f, ψ, Δ 

Γ, ¬(f Ú ψ) : Δ 

 Γ, ¬f, ¬ψ : Δ 

 Γ : f → ψ, Δ 

 Γ : ¬f, ψ, Δ 

Γ, ¬(f → ψ) : Δ

 Γ, f, ¬ψ : Δ 

 Γ, ¬ ¬f : Δ 

 Γ, f : Δ 

Γ : ¬ ¬f, Δ 

 Γ : f, Δ 

— the interpolant, if any, associated with the output pair is associated with 
the input pair (and no inter polant is associated with the input pair if none 
is associated with the output pair). In each case, where Γ : Δ  is the output 
pair, Γ′ : Δ′  the input pair, and ψ the interpolant associated with the output 
pair, we have that one of the two steps, from Γ′ : ψ  to Γ : ψ  or from 
ψ : Δ′  to ψ : Δ , consists of mere repetition and the other of an application 

of the very rule under examination. Thus Γ′ K3 ψ when Γ K3 ψ and ψ LP 
Δ′ when ψ LP Δ.

By assumption, if no interpolant is associated with the output pair  
Γ : Δ  , then either Γ K3 Ø or Ø LP Δ or both. If Γ′ = Γ and Γ K3 Ø we 

are done. Likewise if Δ′ = Δ and Ø LP Δ. In the case of all the rules, if  
Γ′ ≠ Γ then 
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Γ′ : Ø

Γ : Ø

by an application of the very rule under investigation and hence Γ′ K3 Ø 
when Γ K3 Ø. Similarly, in the case of all the rules, if Δ′ ≠ Δ then 

Ø : Δ′

Ø : Δ

by an application of the very rule under investigation and hence Ø LP Δ′ 
when Ø LP Δ. 

Conjunction 

Γ : f Ù ψ, Δ

Γ : f, Δ Γ : ψ, Δ 

Suppose first that the interpolant associated with Γ : f, Δ  is χ, hence  
Γ K3 χ and χ LP f, Δ, and that the interpolant associated with Γ : ψ, Δ  is 
η, hence Γ K3 η, and η LP ψ, Δ. The steps

andΓ : χ Ù η

Γ : χ Γ : η χ, η : f, Δ χ, η : ψ, Δ

χ, η : f Ù ψ, Δ

χ Ù η : f Ù ψ, Δ

are in accordance with the tableaux rules. The left-hand one allows us 
to turn closed K3-tableaux for Γ : χ and Γ : η into a closed K3-tableau for  
Γ : χ Ù η. By adding η on the left of the colon in all nodes in a closed LP-
tableau for χ : f, Δ  and χ on the left of the colon in all nodes in a closed 
LP-tableau for  χ : ψ, Δ  — which may require change of “new names” but 
nothing more — and uniting them under χ, η : f Ù ψ, Δ , we obtain from 
the right-hand tableau fragment a closed LP-tableau for χ Ù η : f Ù ψ, Δ.

If no interpolant is associated with Γ : f, Δ  but η is associated with 
Γ : ψ, Δ  we proceed as follows. By assumption, Γ K3 η and η K3 ψ, Δ; 
by assumption, too, either Γ K3 Ø or Ø LP f, Δ. If Γ K3 Ø, no interpolant 
is associated with Γ : f Ù ψ, Δ . If, on the other hand, Ø LP f, Δ then η is 
associated with Γ : f Ù ψ, Δ , for we can add η on the left in all nodes of 
a closed LP-tableau for Ø : f, Δ to obtain a closed LP-tableau for η : f, 
Δ and, by an application of the rule in question — 

η : f Ù ψ, Δ

η : f, Δ η : ψ, Δ 
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— we unite the closed LP-tableaux for η : f, Δ and η : ψ, Δ in a closed LP-
tableau for η : f Ù ψ, Δ.

Likewise, mutatis mutandis, if no interpolant is associated with Γ : ψ, Δ  
but there is an interpolant associated with Γ : f, Δ

If no interpolant is associated with Γ : f, Δ  and none is associated with 
Γ : ψ, Δ , none is associated with Γ : f Ù ψ, Δ . By assumption, either  

Γ K3 Ø or both Ø LP f, Δ and Ø LP ψ, Δ. If Γ K3 Ø, nothing changes 
travelling north, and if Ø LP f, Δ and Ø LP ψ, Δ, we can, using the rule 
under investigation, entirely properly unite closed LP-tableaux for Ø : f, Δ 
and Ø : ψ, Δ under the node Ø : f Ù ψ, Δ  to obtain a closed LP-tableau for  
Ø LP f Ù ψ, Δ.

Γ, ¬(f Ù ψ) : Δ

Γ, ¬f : Δ Γ, ¬ψ : Δ

Suppose first that the interpolant associated with Γ, ¬f : Δ  is χ, hence  
Γ, f K3 χ and χ LP Δ, and that the interpolant associated with Γ, ¬ψ : Δ  
is η, hence Γ, ¬ψ K3 η and η LP Δ. The steps 

and
χ Ú η : Δ

χ : Δ η : Δ Γ, ¬f : χ, η Γ, ¬ψ : χ, η

Γ, ¬(f Ù ψ) : χ, η

Γ, ¬(f Ù ψ) : χ Ú η

are in accordance with the tableaux rules. By adding η on the right of the 
colon in all nodes in a closed K3-tableau for Γ, ¬f : χ and χ on the right of 
the colon in all nodes in a closed K3-tableau for Γ, ¬ψ : η — which may 
require change of “new names” but nothing more — and uniting them under  
Γ, ¬(f Ù ψ) : χ, η , we obtain from the left-hand tableau fragment a closed 
K3-tableau for Γ, ¬(f Ù ψ) : χ Ú η. The right-hand fragment allows us to 
turn closed LP-tableaux for χ : Δ and η : Δ into a closed LP-tableau for  
χ Ú η : Δ. 

If no interpolant is associated with Γ, ¬f : Δ  but η is associated with 
Γ, ¬ψ : Δ  we proceed as follows. By assumption, Γ, ¬ψ K3 η and η LP 

Δ; by assumption, too, either Γ, ¬f K3 Ø or Ø LP Δ. If Ø LP Δ, no inter-
polant is associated with Γ, ¬(f Ù ψ) : Δ . If, on the other hand, Γ, f K3 Ø 
then η is associated with Γ, ¬(f Ù ψ) : Δ , for we can add η on the right in 
all nodes of a closed K3-tableau for Γ, ¬f : Ø to obtain a closed K3-tableau 
for Γ, ¬f : η and, by an application of the rule in question — 

Γ, ¬(f Ù ψ) : η

Γ, ¬f : η Γ, ¬ψ : η
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— we unite the closed K3-tableaux for Γ, ¬f : η and Γ, ¬ψ : η in a closed 
K3-tableau for Γ, ¬(f Ù ψ) : η. 

Likewise, mutatis mutandis, if none is associated with Γ, ¬ψ : Δ  but 
there is an interpolant associ ated with Γ, ¬f : Δ .

If no interpolant is associated with Γ, ¬f : Δ  and none is associated with 
Γ, ¬ψ : Δ , none is asso ciated with Γ, ¬(f Ù ψ) : η . By assumption, either 

Ø LP Δ or both Γ, ¬f K3 Ø and Γ, ¬ψ K3 Ø. If Ø LP Δ, again nothing 
changes travelling north, and if Γ, ¬f K3 Ø and Γ, ¬ψ K3 Ø, we can, using 
the rule under investigation, entirely properly unite closed tableaux for  
Γ, ¬f : Ø and Γ, ¬ψ : Ø under the node Γ, ¬(f Ù ψ) : Ø  to to obtain a closed 
K3-tableau for Γ, ¬(f Ù ψ) K3 Ø. 

Disjunction and Implication. The rules governing disjunction and impli-
cation are treated similarly.

Universal quantification 

 Γ, xf : Δ 

 Γ, xf, f [t/x] : Δ 

Suppose first that the interpolant associated with  Γ, xf, f [t/x] : Δ   is χ, 
so that Γ, xf, f [t/x]K3 χ and χ LP Δ. By an application of the rule in 
question, we have that Γ, xf K3 χ. If the individual constant t occurs in 
Γ or does not occur in χ, only non-logical vocabulary common to Γ  {xf} 
and Δ occurs in χ and so we retain χ as interpolant. If, on the other hand, 
t doesn’t occur in Γ but does occur in χ then 

 Γ, xf : χ 

Γ, xf, f [t/x] : χ 

Γ, xf : vχ [v/t]

  and  
 vχ [v/t]: Δ

 vχ [v/t], χ : Δ

are produced by correct applications of the tableaux rules, v being some 
variable foreign to χ and t being new in the context in which it is intro-
duced in place of v in χ [v/t] on the right-hand side in the left-hand 
 tableau fragment. Appending a closed K3-tableaux for Γ, xf, f [t/x] : χ, 
we obtain a closed K3-tableau for Γ, xf : vχ [v/t]. Appending a closed 
LP-tableau for χ : Δ and inserting vχ [v/t] on the left of the colon in all 
its nodes, we obtain a closed LP-tableau for vχ [v/t]: Δ. Thus vχ [v/t] 
serves as interpolant, containing only non-logical vocabulary common to 
Γ  {xf} and Δ. 

If no interpolant is associated with  Γ, xf, f [t/x] : Δ , none is associated 
with  Γ, xf : Δ , for if Ø LP Δ, nothing changes and if Γ, xf, f [t/x]K3 
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Ø, a closed K3-tableau for Γ, xf, f [t/x] : Ø can be expanded to one for  
Γ, xf : Ø (and starts with an application of the very rule examined here). 

 Γ: xf, Δ 

 Γ : f [a/x], Δ 
where the individual  

constant a is new 

Suppose first that the interpolant associated with  Γ : f [a/x], Δ  is χ, so that 
Γ K3 χ and χ LP f [a/x], Δ, and that the name a does not occur in any 
member of Γ  Δ  {xf}. Since only non-logical vocabulary common to 
both Γ and Δ  {f [a/x]} and Δ occurs in χ, a does not occur in χ; hence 
the step with input pair χ : xf, Δ and output pair χ : f [a/x], Δ proceeds 
in accordance with the rules and allows us to turn a closed LP-tableau for 
χ : f [a/x], Δ into a closed LP-tableau for χ : xf, Δ. 

If no interpolant is associated with  Γ : f [a/x], Δ , none is associated with 
 Γ : xf, Δ , for if Γ K3 Ø, nothing changes, and a closed LP-tableau for 
Ø : f [a/x], Δ, a new, extends to one for Ø : xf, Δ by an application of the 
very rule in question here. 

 Γ, ¬xf : Δ 

 Γ, ¬f [a/x] : Δ 
where the individual  

constant a is new 

Suppose first that the interpolant associated with  Γ, ¬f [a/x] : Δ  is χ, so 
that Γ, ¬f [a/x] K3 χ and χ LP Δ, and the name a does not occur in any 
member of Γ  Δ  {¬xf }. Since only non-logical vocabulary common 
to both Γ  {¬f [a/x]} and Δ occurs in χ, a does not occur in χ; hence 
the step with input pair Γ, ¬xf : χ and output pair Γ, ¬f [a/x] : χ proceeds 
in accordance with the rules and allows us to turn a closed K3-tableau for  
Γ, ¬f  [a/x] : χ into a closed K3-tableau for Γ, ¬xf : χ.

If no interpolant is associated with  Γ, ¬f [a/x] : Δ  , none is associated 
with  Γ, ¬xf : Δ  for if Ø LP Δ, nothing changes, and a closed K3-tableau 
for Γ, ¬f[a/x] : Ø, a new, extends to one for Γ, ¬xf : Ø by an application 
of the very rule in question here. 

Γ : ¬xf, Δ 

Γ : ¬f [t/x], ¬xf, Δ

Suppose first that the interpolant associated with Γ : ¬f [t/x], ¬xf, Δ  is 
χ, so that Γ K3 χ and χ LP ¬f  [t/x], ¬xf, Δ. By an application of the rule 
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in question, we have that χ LP ¬xf, Δ. If t occurs in Δ or does not occur 
in χ then only non-logical vocabulary common to Γ and Δ  {¬xf} occurs 
in χ and we retain χ as interpolant. If, on the other hand, t doesn’t occur in 
Δ but does occur in χ then

Γ : vχ [v/t]

Γ : χ, vχ [v/t]   

and

   

 vχ [v/t] : ¬xf, Δ

 χ : ¬f[t/x], ¬xf, Δ

 χ : ¬xf, Δ

are produced by correct applications of the tableaux rules, v being some 
variable foreign to χ and t being new in the context in which it is introduced 
in place of v in χ [v/t] on the left-hand side. Appending a closed LP-tableaux 
for χ : ¬f [t/x], ¬xf, Δ, we obtain a closed LP-tableau for vχ [v/t] : 
¬xf, Δ. Appending a closed K3-tableau for Γ : χ and inserting vχ [v/t] on 
the right of the colon in all its nodes, we obtain a closed K3-tableau for  
Γ : vχ [v/t]. Thus vχ [v/t] serves as interpolant, containing only non-logical 
vocabulary common to Γ and Δ È {¬xf}. 

If no interpolant is associated with  Γ : ¬f [t/x], Δ , none is associated with 
 χ : ¬xf, Δ , for if Γ K3 Ø, nothing changes, and if Ø LP ¬f [t/x], ¬xf, 
Δ a closed LP-tableau for Ø : ¬f[t/x], ¬xf, Δ can be expanded to one for  
Ø : ¬xf, Δ (and starts with an application of the very rule examined here). 

Existential quantification. The rules governing the existential quantifier 
are dealt with similarly. 

Interpolants percolate upwards from terminal nodes of the forms 
 Θ, ψ : ψ, E  and  Θ, ¬ψ : ¬ψ, E , ψ atomic, possibly undergoing change, 
possibly being eliminated. By LemmA 1, when Γ / Ø and Ø / Δ, there must 
be at least one such node. Moreover, as no rule increases the stock of 
predicates in play on either side of the colon, every predicate occurring in 
each such node must occur in both Γ and Δ. remArk 1 shows that such 
predicates must occur with the same parity in the node at the head of the 
tableau. As inspection of the instructions for the formation of interpolants, 
if any, associated with input pairs from interpolants associated with output 
pairs confirms, predicates occurring in the interpolant, if any, associated 
with an input pair occur with the same parity as they occur in the interpo-
lant associated with the output pair or pairs, if there’s just one such inter-
polant, or as in one or other of the interpolants associated with the output 
pairs, when there are two such interpolants. Consequently, every predicate 
which occurs in the interpolant associated with Γ : Δ occurs with the same 
parity in some member of Γ and also in some member of Δ. Lastly, the 
parity of the occurrence of a predicate in an interpolant is singularly easy 
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to determine for, from the instructions for the formation of interpolants, 
interpolants contain no occurrence of the conditional and negations occur 
only in subformulas of the form ¬f, f atomic. 

If we have a closed tableau for Γ : Δ with which no interpolant is asso-
ciated, then, in virtue of our procedure, we have that either Γ K3 Ø, so  
Γ  Ø, or Ø LP Δ, so Ø  Δ, or both. 

remArk 3. Let us say that a formula is responsible for terminating a branch 
if it plays the role of f in any of the four forms of terminal node given on 
p. 393. In our “reverse engineering” of the K3-and LP-tableaux involving 
the interpolant in the proof of theorem 1, when an interpolant exists, the 
ter minal nodes may not be identical to terminal nodes in the original closed 
tableau but the construction employed ensures that this much does carry 
over: the formulas responsible for terminating branches are responsible in 
the closed tableau on which the construction is based and they terminate 
them in terminal nodes of the same form as in in the original tableau. 

exAmPLe 1. The classically valid ¬x ¬Fx, x (Fx → Gx)  y (Gy Ù Hy), 
¬yHy is neither K3-correct nor LP-correct. Here’s a tableau derivation, 
where A abbreviates ¬x¬Fx, B abbreviates x(Fx → Gx) and C abbreviates 
¬yHy: 

 ¬x ¬Fx,x(Fx → Gx) : y(Gy Ù Hy),¬yHy

 A, B : Ga Ù Ha, C

 A, B : Ga Ù Ha, ¬Ha, C

 A, B, Fa → Ga : Ga, ¬Ha, C

 A, B : Ga, ¬Ha, C

A, B, Ga : Ga, ¬Ha, C



A, B : Ha, ¬Ha, C



A, B, ¬Fa : Ga, ¬Ha, C

A, ¬ ¬Fa, B, ¬Fa : Ga, ¬Ha, C

A, Fa, B, ¬Fa : Ga, ¬Ha, C
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Here’s the derivation decorated with interpolants: 

 ¬x ¬Fx, x(Fx → Gx) :zGz y(Gy Ù Hy), ¬yHy

 A, B :zGz Ga Ù Ha, C

 A, B :zGz Ga Ù Ha, ¬Ha, C

 A, B, Fa → Ga :Ga Ga, ¬Ha, C

 A, B : Ha, ¬Ha, C

A, B, ¬Fa : Ga, ¬Ha, C

 A, ¬ ¬Fa, B, ¬Fa : Ga, ¬Ha, C

 A, Fa, B, ¬Fa : Ga, ¬Ha, C

 A, B, Ga :Ga Ga, ¬Ha, C

 A, B :zGz Ga, ¬Ha, C







where we can use any variable in place of z. 

The instructions accompanying the proof of theorem 1 give us the left-
hand closed K3-tableau and the right-hand closed LP-tableau:

 A, ¬ ¬Fa, B, ¬Fa : Ga 

 A, B, Ga : Ga

 A, Fa, B, ¬Fa : Ga

 A, B, ¬Fa : Ga

 ¬x ¬Fx, x(Fx → gx) : zgz

 A, B : Ga

 A, B, Fa → Ga : Ga





 zGz, Ga : Ga, ¬Ha, C

zgz : Ha, ¬Ha, C zGz : Ga, ¬Ha, C

 zgz : y (Gy Ù Hy), ¬ yHy

 zgz : Ga Ù Ha, C

 zgz : Ga Ù Ha, ¬Ha, C
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The predicate G occurs with even parity in the interpolant zGz 
and in x(Fx → Gx), to the left of the colon in 
 ¬ x ¬ Fx, x (Fx → Gx) : y (Gy Ù Hy), ¬yHy , and in y (Gy Ù Hy), 
to the right.

exAmPLe 2
( x Fx Ù ¬ x Fx) Ú xGx : ( x Fx Ú ¬  x Fx) Ú  x Hx

( x Fx Ù ¬  x Fx) Ú xGx :  x Fx Ú ¬  x Fx,  x Hx 

( x Fx Ù ¬  x Fx) Ú xGx :  x Fx, ¬  x Fx,  x Hx 

( x Fx Ù ¬  x Fx) Ú xGx :  x Fx, ¬Fa,  x Hx

( x Fx Ù ¬  x Fx) Ú xGx : Fa,  x Fx, ¬Fa,  x Hx



is a derivation fully decorated with interpolants — there are none. But as  
deleting everything on the left-hand side shows, Ø  ( x Fx  ¬  x Fx)  
 x H x.

remArk 4. What this example shows is that we cannot weaken the anteced-
ent of theorem 1 merely to the requirement that Γ and Δ share non-logical 
vocabulary and keep the same method of construction for interpolants. But 
the method is appropriate to the task at hand, for as an interpretation D,  
in which +(F ) = 

_ (F ) = Ø and +(G) = D makes clear, no formula con-
taining F as sole predicate is a K3-consequence of (x Fx Ù ¬ x Fx)  x Gx.

5.  Semantics for the first-order extension of Belnap’s four-valued logic 

A B4-interpretation  A for a first-order language with neither function- symbols 
nor identity comprises a non-empty domain D and a function ; to each 
individual constant c,  assigns an element of D; to each n-place predicate 
F,  assigns a function (F) mapping elements of Dn into the set {0, n, b,1}. 

As before we extend the language by adding a new constant, d, for each 
element d in D. Again we extend  by the stipulation: for all d  D, (d ) = 
d. Relative to the interpretation  A = D, , we assign values to atomic 
formulas of the extended language by the constraint: 

vA(F(c1, c2, …, cn)) = (F) ((c1), (c2), …, (cn)).
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We evaluate formulas with negation, conjunction, disjunction, or (material) 
implication dominant in accordance with these truth-tables: 

ψ ψ ψ

f ¬ f f Ù ψ 1 b n 0 f Ú ψ 1 b n 0 f → ψ 1 b n 0

1 0 1 1 b n 0 1 1 1 1 1 1 1 b n 0

b b f b b b 0 0 f b 1 b 1 b f b 1 b 1 b

n n n n 0 n 0 n 1 1 n n n 1 1 n n

0 1 0 0 0 0 0 0 1 b n 0 0 1 1 1 1

 ° vA (vf ) = 1 if, for all d  D, vA (f [d / v]) = 1;
 °  vA (vf ) = b if, for all d  D, vA (f [d / v])  {1, b} and, for at least one 
d  D, vA (f [d / v]) = b; 

 °  vA (vf ) = n if, for all d  D, vA (f [d / v])  {1, n} and, for at least one 
d  D, vA (f [d / v]) = n; 

 °  vA (vf ) = 0 if, for some d  D, vA (f [d / v]) = 0 or if, for some pair 
d1, d2 in D, vA (f [d1 / v]) = b and vA (f [d2 / v]) = n.

 °  vA (vf ) = 1 if, for some d  D, vA (f [d / v]) = 1 or if, for some pair 
d1, d2 in D, vA(f [d1 / v]) = b and vA (f [d2 / v]) = n;

 °  vA (vf ) = b if, for all d  D, vA (f [d / v])  {b, 0} and, for at least one 
d  D, vA (f [d / v]) = b; 

 °  vA (vf ) = n if, for all d  D, vA (f [d/ v])  {n, 0} and, for at least one 
d  D, vA (f [d / v]) = n; 

 ° vA (vf ) = 0 if, for all d  D, vA (f [d / v]) = 0. 

Definition 10 (B4 (joint) sAtisfAction).  A B4 Γ iff, for all f  Γ, vA(f)  
{1, b}. 

Definition 11 (B4 (joint) refutAtion).  A  B4 Γ iff, for all f  Γ, vA(f)    
{n, 0}. 

Definition 12 (B4-consequence). Γ B4 Δ iff for no interpretation A is it 
the case that A B4 Γ and  A 



B4 Δ. 

Definition 13 (B4-(in)correctness). Say that a node   Γ : Δ  (where Γ and 
Δ are finite, possibly empty sets of of formulas in a first-order language 
without identity or function-symbols) is B4-incorrect with respect to the 
B4-interpretation  A = D,  iff  A B4 Γ and  A 



 B4 Δ. 
Say that a node  Γ : Δ  is B4-correct if there is no B4-interpretation with 

respect to which it is incorrect. If  Γ : Δ  is B4-correct, so too is  Γ, Γʹ : Δ, Δʹ . 
(The node  Γ : Δ  is B4-correct just in case Δ is a B4-consequence of Γ.) 
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Soundness.  The tableaux rules preserve B4-incorrectness with respect to 
any B4-interpretation D,  downwards in the sense that if the input pair 
in the application of a rule is B4-incorrect with respect to a B4-interpreta-
tion, so too is the output pair, if there is only one, and so too is at least one 
of the output pairs, if there are two. (In the case of the rules where a new 
name is introduced, the function  must be extended to supply an appropri-
ate interpretation of that name; it is guaranteed that there will be such 
when the input pair is incorrect with respect to the interpretation in play.) 
Nodes of the forms  Γ, f : f, Δ  and  Γ, ¬f : ¬f, Δ  are B4-correct.

6.  Further lessons from the proof technique 

coroLLAry 1.
(a) If Γ K3 Δ and Γ /  K3 Ø then there is an interpolant χ, constructed using 

only non-logical vocabulary common to both Γ and Δ, such that 
Γ K3 χ and χ B4 Δ 

and every predicate which occurs with even parity in χ occurs with 
even parity in some member of Γ and also in some member of Δ and, 
likewise, every predicate which occurs with odd parity in χ occurs with 
odd parity in some member of Γ and also in some member of Δ. 

(b) If Γ LP Δ and Ø /  LP Δ then there is an interpolant χ, constructed using 
only non-logical vocabulary common to both Γ and Δ, such that 

Γ B4 χ and χ LP Δ 

and every predicate which occurs with even parity in χ occurs with 
even parity in some member of Γ and also in some member of Δ and, 
likewise, every predicate which occurs with odd parity in χ occurs with 
odd parity in some member of Γ and also in some member of Δ. 

(c) If Γ B4 Δ then there is an interpolant χ, constructed using only non-
logical vocabulary common to both Γ and Δ, such that 

Γ B4 χ and χ B4 Δ 

and every predicate which occurs with even parity in χ occurs with 
even parity in some member of Γ and also in some member of Δ and, 
likewise, every predicate which occurs with odd parity in χ occurs with 
odd parity in some member of Γ and also in some member of Δ. 

Proof. A closed K3-tableau for Γ : Δ contains no terminal nodes of the 
form Θ : ψ, ¬ ψ, E, so when we carry out the construction of the interpolant χ,  
exactly as instructed above, we obtain a closed K3-tableaux for Γ : χ in 
which no terminal nodes of the form  Θ : ψ, ¬ ψ, E  occurs and a closed  
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LP-tableaux for χ : Δ in which no terminal nodes of either of the forms 
 Θ : ψ, ¬ ψ, E  and  Θ, ψ, ¬ ψ : E  occurs (RemArk 3). 

Parts (b) and (c) are demonstrated analogously. 
In light of the Duality Principle and rather obvious facts about use of the 
double negation rules, (a) and (b) entail each other. 

remArk 5. The presence of terminal nodes of the form  Γ, f, ¬ f : ψ, ¬ ψ , Δ  
in K3  LP-tableaux renders the technique inapplicable to that logic, nor is 
it obvious how it could be adapted. 

7.  Block tableaux for first-order classical logic with identity 

As a = b  Fa → Fb and Fa Ù ¬ Fb  ¬ (a = b) but none of the formulas is 
logically true or logically false, a = b, which contains no non-logical predicate, 
must be the interpolant in the first case, ¬ (a = b) in the second, if we are to 
broaden the scope of the Craig–Lyndon Interpolation Theorem to encompass 
first-order logic with identity (cf. Oberschelp 1968, p. 271). With that aim 
in mind, we must add rules for identity. What we call the LP rules follow 
the treatment of identity in (Priest 2006, §§5.3 & 6.7).7 We add these rules 
for identity where ϕ(s/t) results from f by substitution of the individual 
constant s for one or more occurrences of the individual constant t in f:8

K3 rules 

Γ, ϕ, t = s : Δ  

Γ, ϕ, ϕ (s/t), t = s : Δ 

Γ, ϕ, s = t : Δ  

Γ, ϕ, ϕ(s/t), s = t : Δ 

Γ, ϕ : ¬ (t = s), Δ

Γ, ϕ, ϕ(s/t) : ¬ (t = s), Δ

 Γ, ϕ : ¬ (s = t), Δ

Γ, ϕ, ϕ(s/t) : ¬ (s = t), Δ

LP rules 

Γ, t = s : ϕ, Δ  

Γ, t = s : ϕ, ϕ (s/t), Δ 

Γ, s = t : ϕ, Δ  

Γ, s = t : ϕ, ϕ (s/t), Δ 

Γ : ¬ (t = s ), ϕ , Δ

Γ : ¬ (t = s), ϕ, ϕ (s/t), Δ

Γ : ¬ (s = t ), ϕ, Δ

Γ : ¬ (s = t), ϕ, ϕ(s/t), Δ

7 As a referee points out, the treatment of identity in (Priest 2010) is rather different.
8 Should t not occur in ϕ, attempted application of any of these rules yields mere repetition 

which is redundant.
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and add these terminal nodes: 

 Γ, ¬(t = t) : Δ          Γ : t = t, Δ

Again, a tableau is complete when no rule can be applied. We write  
Γ = Δ if all branches close in some completed tableau employing identity 
rules and /or involving identity terminal nodes and headed by the node 
Γ : Δ . Again we then say that a closed tableau exists for Γ : Δ.

We must expand upon the definitions of K3-and LP-tableaux. 

Definition 14 (K3=-AnD LP=-tAbLeAux with iDentity). We now write  
Γ K3= Δ if no branch terminates in a node of the forms Γ : χ, ¬χ, Δ  or 
 Γ : t = t, Δ  and there is at most application of K3 rules for identity in some 
closed tableau for Γ : Δ; we call such a tableau a closed K3=-tableau. Likewise, 
we now write Γ LP= Δ if no branch ends in a node of the forms Γ, χ, ¬ χ : Δ  
or  Γ, ¬(t = t) : Δ  and there is at most application of LP rules for identity in 
some closed tableau for Γ : Δ; we call such a tableau a closed LP=-tableau. 

The division of rules into K3 and LP rules may require some explanation. 
It is undertaken with four aims in view: (i) the overall system must be 
(sound and) complete for classical first-order logic with identity; (ii) we 
respect the fact that classically Ø  t = t and ¬ (t = t)  Ø are really just two 
ways of saying the same thing, that t = t is always true, never false; (iii) K3 
should suffice for demonstrating classical inconsistency but need do little 
more, likewise LP should suffice for demonstrating classical logical truth 
but need do little more, so we may retain K3’s lack of theorems and LP’s 
lack of “antitheorems” (formulas which entail everything); (iv) we wish to 
maintain the syntactic duality between K3 and LP when identity is added. 
However unnatural they may appear from other perspectives, the semantics 
given below reflects these aims. 

remArks 1 and 2 still apply in this extended context and the Duality 
Principle (Syntax) still holds. But although remArk 2 holds in the letter, it 
fails in spirit, for an occurrence of an identity on the left or of a negated 
identity on the right can provide the basis for changes on the other side of 
the colon. And LemmA 1 now fails. E.g., 

 a = b : b = a  

 a = b : a = a  
and

 Fa, ¬Fb : ¬ (a = b)

 Fa, ¬Fa : ¬ (a = b)

Nevertheless we can extend our refinement of the Craig–Lyndon 
 Interpolation Theorem to first-order logic with identity in a fairly straight-
forward way. In place of LemmA 1 we have 
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LemmA 3. If there’s a closed tableau for Γ : Δ in which no branch reaches 
a node of either of the forms Θ, ψ  : ψ, E  and Θ, ¬ψ : ¬ψ, E  , and none of 
the four rules 

Γ, t = s : ϕ, Δ  

Γ, t = s : ϕ, ϕ (s/t), Δ  

Γ, ϕ : ¬ (t = s), Δ 

Γ, ϕ, ϕ (s/t) : ¬ (t = s), Δ 

Γ, s = t : ϕ, Δ

Γ, s = t : ϕ, ϕ (s/t), Δ

Γ, ϕ : ¬ (s = t ), Δ

Γ, ϕ, ϕ(s/t) : ¬ (s = t), Δ

is used, we have that Γ = Ø or Ø = Δ. 

Proof mimics the proof of LemmA 1.
Likewise, proof of the next lemma mimics proof of LemmA 2, noting that 

LP rules for identity, being right-hand rules, have no purchase when the 
right side of a node is empty and, similarly, K3 rules for identity, being 
left-hand rules, have no purchase when the left side is empty. 

LemmA 4. If Γ = Ø then Γ K3= Ø. Likewise, if Ø = Δ then Ø LP= Δ. 

8.  Semantics for first-order K3, LP, and classical logic with identity 

We add these semantic evaluation clauses for identity: in an interpretation  
A = D,  +(=)  {   d, d  : d  D} and ¯ (=) = D2 _ {   d, d  : d  D}. 
Consequently, v A (¬ (t = s)) < 1 if, and only if, v A (t = s) > 0 if, and only if 
(t) = (s).

In a classical interpretation, +( = ) = {   d, d  : d  D}.
The notions of K3- and LP-satisfaction, consequence, incorrectness, 

and correctness are expanded to accommodate identity. 

Soundness.  The K3 identity rules preserve K3-incorrectness with respect to 
an interpretation A =  D,  downwards. Nodes of the form  Γ, ¬ (t = t) : Δ
are K3-correct but not LP-correct. 

The LP identity rules preserve LP-incorrectness with respect to an 
 interpretation A =  D,  down wards. Nodes of the form Γ : t = t, Δ  are 
LP-correct but not K3-correct.

Classical incorrectness with respect to a classical interpretation is pre-
served downwards. Nodes of the forms  Γ, ¬ (t = t ) : Δ  and  Γ : t = t, Δ  
are classically correct.

(In point of fact, the K3 and the LP identity rules both preserve both 
K3- and LP-incorrectness. It’s of interest to note, then, that in the definitions 
of K3- and LP-tableaux, and so in our proof of our interpolation theorem 
below, we make use only of the K3 rules’ preservation of K3-incorrectness 
and the LP rules’ preservation of LP-incorrectness. Recalling the remark 
on p. 397 regarding the aim of the present investigation, we require only 
soundness. Moreover, this is a step in the direction of delineating how much 
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classical logic is needed to demonstrate classical inconsistency, how much 
to demonstrate classical logic truth.) 

Completeness.  Again, with judicious use of the rules for double negation 
a closed tableau exists for Γ : Δ if, and only if, a closed tableau exists for  
Γ  -Δ : Ø. In a closed tableau for Γ  -Δ : Ø, only left-hand rules are used 
(remArk 2). But the left-hand rules are in effect just the familiar rules for 
tableaux employed to test classical consistency in a first-order language 
with identity. Borrowing again from any number of classical or textbook 
sources, we have that if there is no closed tableau for Γ  -Δ : Ø, equiva-
lently, no closed standard tableau for the set Γ  -Δ, there is a classical 
interpretation in which all members of Γ  -Δ, take the value 1. Equivalently, 
there is a classical interpretation with respect to which Γ : Δ  is classically 
incorrect.

9.  A refinement of the Craig–Lyndon Interpolation Theorem with iden tity 

theorem 2. If Γ  = Δ and Γ /  = Ø and Ø /  = Δ then there is an interpolant 
χ, constructed using only non-logical vocabulary common to both Γ and Δ 
and, if present in Γ  Δ, possibly the identity-predicate such that 

Γ K3 = χ  and  χ LP= Δ 

and every non-logical predicate which occurs with even parity in χ occurs 
with even parity in some member of Γ and also in some member of Δ and, 
likewise, every predicate which occurs with odd parity in χ occurs with odd 
parity in some member of Γ and also in some member of Δ. 

Proof. The steps we need, supplementary to those in the proof of Theo-
rem 1, are these: 

Terminal nodes.  No interpolants are associated with terminal nodes of the 
forms  Γ, ¬ (t = t ) : Δ  and  Γ : t = t, Δ . For any Γ, Δ and t, we have that  
Γ, ¬ (t = t) K3= Ø and Ø LP= t = t, Δ.

No change rules.  In the case of these rules — 

 Γ, f, t = s : Δ  

Γ, f, f (s/t), t = s : Δ 

Γ, f, s = t : Δ  

Γ, f, f (s/t), s = t : Δ 

Γ : ¬(t = s), f, Δ

Γ : ¬(t = s), f, f (s/t), Δ

Γ : ¬(s = t), f, Δ

Γ : ¬(s = t), f, f (s/t), Δ

— the interpolant, if any, associated with the output pair is associated with 
the input pair (and no inter polant is associated with the input pair if none 
is associated with the output pair). In each case, where  Γ : Δ  is the output 
pair,  Γ  ́: Δʹ  the input pair, and ψ the interpolant, we have that one of the 
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two steps, from  Γ  ́: ψ  to  Γ : ψ  or from  ψ : Δʹ  to  ψ : Δ , consists of 
redundant repetition and the other of an application of the very rule under 
examination. So Γʹ K3 ψ when Γ K3 ψ and ψ LP Δʹ when ψ LP Δ. 

By assumption, if no interpolant is associated with the output pair  
 Γ : Δ , then either Γ K3 Ø or Ø LP Δ or both. If Γʹ = Γ and Γ K3 Ø we are 
done. Likewise if Δʹ = Δ and Ø LP Δ. In the case of all the rules, if Γʹ ≠ Γ then 

 Γʹ : Ø

 Γ : Ø

by an application of the very rule under investigation and hence Γʹ K3 Ø. 
Similarly, in the case of all the rules, if Δʹ ≠ Δ then 

 Ø : Δʹ

 Ø : Δ

by an application of the very rule under investigation and hence Ø LP Δʹ. 

The other identity rules 

Γ, t = s : f, Δ

Γ, t = s : f, f (s/t), Δ

Suppose first that the interpolant associated with  Γ, t = s : f, f (s/t), Δ  is 
χ, so that Γ, t = s K3= χ and χ LP= f, f (s/t), Δ, and only non-logical 
vocabulary common to Γ È {t = s} and Δ È {f, f (s/t)} occurs in χ.

 Γ, t = s : χ Ù (t = s)

 Γ, t = s : χ  Γ, t = s : t = s
  

and

  

χ Ù (t = s) : f, Δ

χ, t = s : f, Δ 

χ, t = s : f, f (s/t), Δ

proceed in accordance with the rules. Appending a closed K3=-tableau 
for Γ, t = s : χ at Γ, t = s : χ in the left-hand tableau, we obtain a closed 
K3=-tableau for Γ, t = s : χ Ù (t = s). Adding t = s on the left at all nodes in 
a closed LP=-tableau for χ : f, f (s/t), Δ, the right-hand tableau fragment lets 
us construct a closed LP=-tableau for χ Ù (t = s) : f, Δ. If s occurs in Δ  {f} 
we are done. If not, let v be a variable foreign to χ Ù (t = s). We may extend 
the tableau for Γ, t = s : χ Ù (t = s) and χ, t = s : f, f (s/t), Δ upwards by 
adding at the tops, respectively, these steps which comply with the rules, 
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the latter exactly because s does not occur in Δ  {f}, thereby obtaining  
a closed K3=-tableau for Γ, t = s : v( χ [v/s] Ù (t = v)) and a closed LP=- 
tableau for v ( χ [v/s] Ù (t = v)) : f, Δ. 

 Γ, t = s : v ( χ [v/s] Ù (t = v))

 Γ, t = s : χ Ù (t = s)
  and  

v  ( χ [v/s] Ù (t = v)) : f, Δ

χ Ù (t = s) : f, Δ

Only non-logical vocabulary common to Γ  {t = s} and Δ  {f} occurs in 
v ( χ [v/s] Ù (t = v)) so the latter serves as interpolant for Γ, t = s : f, Δ. 

If no interpolant is associated with  Γ, t = s : f, f (s/t), Δ , then, by assump  -
tion, Γ, t = s K3= Ø or Ø LP= f, f (s/t), Δ.

 ° If Γ, t = s K3= Ø then we associate no interpolant with  Γ, t = s : f, Δ .

 °  If Ø LP= f, f (s/t), Δ and s does not occur in Δ  {f} we again asso-
ciate no interpolant with  Γ, t = s : f, Δ  , for, s being new to Δ  {f},  
deleting f (s/t) and its progeny from all branches in a closed  
LP=-tableau for Ø : f, f (s/t), Δ leaves us with a closed LP=-tableau for 
Ø LP= f, Δ. (There is never choice about which rule to apply to a 
formula, at most there is choice regarding individual constants that  
substitute for variables; f’s progeny can differ from f (s/t)’s at most by 
having t where f (s/t)’s have s, something that cannot put off the  
closing of branches.)9 

 °  If Ø LP= f, f (s/t), Δ and s occurs in Δ  {f} then, by an application 
of the rule under examination, we obtain 

 t = s : f, Δ

 t = s : f, f (s/t), Δ

and can append a closed LP-tableau for  Ø : f, f (s/t), Δ  below 
 t = s : f, f (s/t), Δ  then add t = s on the left-hand side there and at 
every node downwards from there. As Γ, t = s K3= t = s, the formula 
t = s has the properties required of an interpolant; in particular, it con-
tains only non-logical vocabulary common to both Γ  {t = s} and 
Δ  {f}. 

9 Semantically, were there an interpretation  A =  D,  under which  Ø : f, Δ  is LP-
incorrect, then, given that s does not occur in Δ  {f}, the interpretation which differs 
from  A at most in assigning to s what  assigns to t would render  Ø : f, f (s/t), Δ   
LP-incorrect, contrary to hypothesis.
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Γ, f : ¬(t = s), Δ

Γ, f, f (s/t) : ¬(t = s), Δ

Suppose first that the interpolant associated with  Γ, f, f (s/t) : ¬(t = s), Δ  
is χ so that Γ, f, f (s/t) K3= χ and χ LP= ¬ (t = s), Δ, and only non-logical 
vocabulary common to Γ  {f, f (s/t)} and Δ  {¬ (t = s)} occurs in χ.

 Γ, f : χ Ú ¬ (t = s)

 Γ, f : χ, ¬ (t = s)

 Γ, f, f (s/t) : χ, ¬ (t = s)

 and 
χ Ú ¬ (t = s) : ¬ (t = s), Δ

 χ : ¬ (t = s), Δ ¬ (t = s) : ¬ (t = s), Δ

proceed in accordance with the rules. Appending a closed LP=-tableau for  
χ : ¬ (t = s), Δ at χ : ¬ (t = s), Δ in the right-hand tableau, we obtain a closed 
LP=-tableau for χ Ú ¬ (t = s) : ¬ (t = s), Δ. Adding ¬ (t = s) on the right at all 
nodes in a closed K3=-tableau for Γ, f, f (s/t) : χ, the left-hand tableau frag-
ment lets us construct a closed K3=-tableau for Γ, f : χ Ú ¬ (t = s). If s occurs 
in Γ  {f} we are done. If not, let v be a variable foreign to χ Ú ¬ (t = s). We 
may extend the tableau for Γ, f : χ Ú ¬ (t = s) and χ Ú ¬ (t = s) : ¬ (t = s), Δ 
upwards by adding at the tops, respectively, these steps which comply with 
the rules, the first exactly because s does not occur in Γ  {f}, thereby  
obtaining a closed K3=-tableau for Γ, f : v( χ [v/s] Ú ¬ (t = v)) and a closed 
LP=-tableau for v(χ [v/s] Ú ¬ (t = v)) : ¬ (t = s), Δ.

Γ, f : v(χ[v/s] Ú ¬ (t = v))

Γ, f : χ Ú ¬ (t = s)  
and

  χ Ú ¬ (t = s) : ¬ (t = s), Δ

 v( χ [v/s] Ú ¬ (t = v)) : ¬ (t = s), Δ

Only non-logical vocabulary common to Γ  {f} and Δ  {¬ (t = s)} occurs 
in v(χ [v/s] Ú ¬ (t = v)) so the latter serves as interpolant for Γ, f : ¬ (t = s), Δ.

If no interpolant is associated with  Γ, f, f (s/t) : ¬ (t = s), Δ  then, by 
assumption, Γ, f, f(s/t) K3= Ø or Ø LP= ¬ (t = s), Δ.

 °  If Ø LP= ¬ (t = s), Δ then we associate no interpolant with 
 Γ, f : ¬ (t = s), Δ

 °  If Γ, f, f(s/t) K3= Ø and s does not occur in Γ  {f}, we again associate 
no interpolant with  Γ, f : ¬ (t = s), Δ , for, s being new to Γ  {f}, 
deleting f(s/t) and its progeny from all branches in a closed K3=-tableau 
for Γ, f, f(s/t) : Ø leaves us with a closed LP =-tableau for Γ, f : Ø (for 
the reasons adduced above). 
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 °  If Γ, f, f(s/t) K3= Ø and s occurs in Γ  {f} then, by an application 
of the rule under examina tion, we obtain 

 Γ, f : ¬ (t = s)

 Γ, f, f (s/t) : ¬ (t = s)

 and can append a closed K3-tableau for Γ, f, f (s/t) : Ø  below 
Γ, f, f (s/t) : Ø  then add ¬ (t = s) on the right-hand side there and at 

every node downwards from there. As ¬ (t = s) LP = ¬ (t = s), Δ, the 
formula ¬ (t = s) has the properties required of an interpolant; in particu-
lar, it contains only non-logical vocabulary common to both Γ  {f} and  
Δ  {¬ (t = s)}.

The remaining two rules for identity are treated as the preceding two. 
Again interpolants percolate upwards but this time it may be from  terminal 

nodes of the forms Θ, ψ : ψ, E  and Θ, ¬ψ : ¬ψ, E , ψ atomic, or it may be 
from the input pair at applications of the rules 

Γ, t = s : f, Δ

Γ, t = s : f, f (s/t), Δ 

Γ, s = t : f, Δ

Γ, s = t : f, f (s/t), Δ 

Γ, f : ¬ (t = s), Δ

Γ, f, f (s/t) : ¬ (t = s), Δ

Γ, f : ¬ (s = t), Δ

Γ, f, f (s/t) : ¬ (s = t), Δ

Again possibly they undergo change, possibly they are eliminated. By 
LemmA 3, when Γ /  Ø and Ø /  Δ, there must be at least one such node or 
one such application of a rule — and if there is no such terminal node, the 
construction is such that one such application of a rule must result in the 
introduc tion of an interpolant that is an identity or the negation of an iden-
tity. Moreover, as no rule increases the stock of predicates in play on either 
side of the colon, every predicate occurring in each such terminal node 
must occur in both Γ and Δ. remArk 1 shows that such predicates must 
occur with the same par ity in the node at the head of the tableau. Inspection 
of the instructions for the formation of interpolants shows that non-logical 
predicates enter interpolants only from terminal nodes. And as inspection 
of the instructions for the formation of interpolants, if any, associated with 
input pairs from interpolants asso ciated with output pairs confirms, non-
logical predicates occurring in the interpolant, if any, associated with an 
input pair occur with the same parity as they occur in the interpolant asso-
ciated with the out put pair or pairs, if there’s just one such interpolant, or 
as in one or other of the interpolants associated with the output pairs, when 
there are two such interpolants. Consequently, every non-logical predicate 
which occurs in the interpolant associated with the node at the head of the 
tableau occurs with the same parity in some member of Γ and also in some 
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member of Δ. Lastly, it remains the case that interpolants contain no 
 occurrence of the conditional and negations occur only in subformulas of 
the form ¬ f, f atomic. 

If we have a closed tableau for Γ : Δ with which no interpolant is associ-
ated, then, in virtue of our procedure, we have that either Γ  Ø or Ø  Δ 
or both. 

Examination of the instructions for constructing the interpolant χ from a 
closed tableau for Γ : Δ show 

theorem 3 (Oberschelp 1968, Theorem 2). If ‘=’ occurs with even parity 
in χ, then it occurs with even parity in some formula in Γ. And if ‘=’ occurs 
with odd parity in χ, then it occurs with odd parity in some formula in Δ. 

From this it follows immediately, 

coroLLAry 2 (Oberschelp 1968, Corollary). If Γ  Δ and ‘=’ occurs only 
with odd polarity in Γ and only with even polarity in Δ then any interpolant 
contains no occurrence of ‘=’.

exAmPLe 3. An example we have encountered already, namely, 
Fa, ¬ Fb : ¬ (a = b)

Fa, ¬ Fb, ¬ Fa : ¬(a = b)



is a case in which we associate no interpolant with the terminal node but 
the node above it acquires ¬ (a = b) as interpolant.

exAmPLe 4. Here are two different closed tableaux with the same initial node.

a = b, Fb : ¬ (a = c), Fc, Fa 

a = b, Fb, Fa : ¬ (a = c), Fc, Fa 



a = b, Fb : ¬ (a = c), Fc

a = b, Fb, Fa : ¬ (a = c), Fc 

a = b, Fb, Fa, Fc : ¬ (a = c), Fc



a = b, Fb : ¬ (a = c), Fc

Decorating with interpolants, we obtain 

 a = b, Fb : Fa ¬ (a = c), Fc, Fa 

 a = b, Fb, Fa : Fa ¬ (a = c), Fc, Fa 



 a = b, Fb : Fa ¬ (a = c), Fc

 a = b, Fb, Fa : x(Fx  ¬ (a = x)) ¬ (a = c), Fc

 a = b, Fb, Fa, Fc : Fc ¬ (a = c), Fc



 a = b, Fb : x(Fx  ¬ (a = x)) ¬ (a = c), Fc
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From these we extract these pairs of derivations, K3-derivations on the left, 
LP-derivations on the right. For the left-hand derivation: 

a = b, Fb : Fa

a = b, Fb, Fa : Fa



Fa : ¬ (a = c), Fc

Fa : ¬ (a = c), Fc, Fa



and

For the right-hand derivation, where D abbreviates x (Fx Ú ¬ (a = x)):

 a = b, Fb, Fa : D

 a = b, Fb, Fa : Fc  ¬ (a = c)



a = b, Fb : x (Fx  ¬ (a = x))

 a = b, Fb, Fa : Fc, ¬ (a = c)

 a = b, Fb, Fa, Fc : Fc, ¬ (a = c) 

and

 x (Fx  ¬ (a = x)) : ¬ (a = c), Fc

 D, Fc  ¬ (a = c) : ¬ (a = c), Fc

 D, Fc : ¬ (a = c), Fc



 D, ¬ (a = c) : ¬ (a = c), Fc



Coupled with LemmA 4, the syntactic Principle of Duality gives us these 
two principles of “classical recapture”: 

K3 Γ  = Δ only if (i) Γ K3= Ø, or (ii) –Δ K3= Ø, or (iii) there is a formula 
χ which contains only non-logical vocabulary common to both Γ and 
Δ such that Γ K3= χ and –Δ K3= –χ. 

LP  Γ  = Δ only if (i) Ø LP= –Γ, or (ii) Ø LP= Δ, or (iii) there is a formula 
χ which contains only non-logical vocabulary common to both Γ and 
Δ such that –χ LP= – Γ and χ LP= Δ. 
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Corrections added in proof

Nodes of the form Γ, f, ¬f : f, ¬f, Δ  , f atomic, as arise in the closed tableau for 
f Ù ¬f : f Ú ¬f, are four ways classically, triply K3- and LP-, and doubly B4- 
terminal. Other nodes such as Γ, f, ¬f : f, Δ  and Γ, ¬f : f, ¬f, Δ  are equally open 
to more than one “reading”. In such cases, the rubric on p. 399 for starting the con-
struction of interpolants at terminal nodes yields conflicting instructions. To avoid con-
flict, simply choose one of the available readings; nothing goes amiss in obtaining 
theorems 1 & 2. The definitions of K3-, LP- and B4-tableaux in Definition 2 and the 
statements and proofs of LemmAs 1 & 3 need to be recast to speak of absence of appeal 
to readings rather than absence of nodes tout court. Again, nothing goes amiss.

On pp. 414-5, v ( χ [v/s] Ù (t = v)) should be added on the right in Γ, t  =  s  :   χ   Ù       (t  =  s)  
and in all nodes appended below when obtaining a closed K3=-tableau for Γ, t  =  s   : 
v ( χ [v/s] Ù (t = v)). Likewise, mutatis mutandis, on p. 416 when obtaining a closed 
LP=-tableau for v ( χ [v/s] Ú ¬ (t = v)) : ¬ (t = s), Δ.


