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One Dogma of Analyticism 

Christian J. Feldbacher-Escamilla 

Abstract 

According to one view on analyticity in formal languages, a definition of ‘analytic’ 
can be given by semantic notions alone. In this contribution we are going to show 
that a purely semantic conception of analyticity is inadequate. To do so, we provide 
a method for transforming theories with a synthetic empirical basis into logical 
equivalent theories with an analytic “empirical” basis. We draw the conclusion that 
a definition of analyticity is adequate only if it is a pragmatic one. 
Keywords:  empiricism, analytic-synthetic distinction, definability, logicality

1.  Introduction 

Logical positivism was the position in philosophy of science that claimed 
(i) the consequences of empirical theories can be distinguished into analytic 
and synthetic consequences, that (ii) the synthetic ones are reducible to a 
set of observational statements and that (iii) the reduction consists of 
verification in a strong sense. Since the programme of verification in a 
strong sense was recognized very early as unrealistic, the latter claim was 
weakened and logical empiricism arose, consisting mainly of (i) and (ii).  
It was Willard Van Orman Quine who most prominently criticised these 
“two dogmas”, where we may call the first one the ‘dogma of analyticism’ 
and the second ‘dogma of reductionism’. In this paper we are going to 
concentrate on the first dogma. Whereas Quine’s first criticism is regarded 
as a problem of defining the notion of analyticity for natural languages and 
its correct application within artificial languages, we are concerned here 
with a critique of the notion of analyticity for artificial languages only. 
Quine himself excludes in his circularity argument against a definition of 
‘analyticity’ via ‘synonymy’ by ‘definability’ purely formal considerations 
of definitions in artificial languages. He claims that “in formal and informal 
work alike, thus, we find that definition – except in the extreme case of the 
explicitly conventional introduction of new notations – hinges on prior rela-
tions of synonymy” (Quine 1951, p. 27). 

In particular, we are going to criticise the claim that the notion of analy-
ticity for artificial languages can be defined in syntactic and semantic terms 
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alone. The semantic view on analyticity can be found, e.g., already in Gott-
lob Frege’s writings, when he claims: 

“[The task of justifying is] that of finding the proof of the proposition, and of 
following it up right back to the primitive truths. If, in carrying out this process, 
we come only on general logical laws and on definitions, then the truth is an 
analytic one [...] If, however, it is impossible to give the proof without making 
use of truths which are not of a general logical nature, but belong to the sphere of 
some special science, then the proposition is a synthetic one.” (cf. Frege 1960, §3) 

Regarding the semantic status of the adequacy of definitions he states: 
“This much everyone would allow, that any enquiry into the cogency of a 
proof or the justification of a definition must be a matter of logic” (cf. Frege 
1960, p. xxi). Contrary to Frege, Kazimierz Ajdukiewicz, e.g., explicitly 
considered and criticised such a semantic characterisation: 

“We shall say that a sentence S is analytic in the language L in the semantic 
sense if it is a postulate of L or a logical consequence of the postulates of L. 
The concept of a postulate used in this definition is semantic, i.e. its definition 
would be in terms of terminological conventions which have a semantic 
character. The concept of an analytic sentence so defined we shall call the 
semantic concept of an analytic sentence.” (Ajdukiewicz 1978, p. 256) 

Ajdukiewicz criticises on this conception of analyticity, that just referring 
to conventions does not suffice for guaranteeing existential assumptions 
needed in analytical propositions (cf. Ajdukiewicz 1978, p. 258). As we will 
see below, our explication of this conception puts some constraints on con-
ventions such that certain existential assumptions have to be guaranteed by 
setting up a convention. Our aim is to criticise this conception by showing 
that also such constraints on conventions are not sufficient for ruling out 
inadequate results. 

Our ascription of analyticity as a semantic notion to Frege is in accord-
ance with that of Paul Boghossian who even labels a semantic conception 
of analyticity as ‘Frege-analyticity’. However, strictly speaking Boghossian 
ascribes to Frege just the characterisation of ‘analytical truth’ as “trans
formable into a logical truth by the substitution of synonyms for synonyms” 
(cf. Boghossian 1996, p. 366). It is clear that Frege sometimes talks about 
analyticity in this sense. But as can be seen by the citation above, he also 
had this broader notion of analyticity in mind and it is this we are concen-
trating on – and wherein one can skip the whole debate about an adequate 
characterisation of ‘synonymy’ for both, natural as well as artificial lan-
guages. The label ‘Carnap-analyticity’ fits better for the conception we are 
criticising in the sense that analytical truths might be characterised as 
“implicit definitions of their ingredient terms” and inasmuch such a position 
can arguably be ascribed to Carnap (cf. Boghossian 1996, p. 368 and the 
discussion in III). 
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In our investigation we will first present the semantic characterisation 
of analyticity (section 2) and provide an argument in favour of this 
characterisation by hinting at some results on unifying the notion of ana-
lyticity (section 3). Then we will show that such a characterisation of 
analyticity fails since empirical statements can be constructed analytically 
therein (section 4). Finally we will give a short summary of the main line 
of our argumentation (section 5). 

The language we are dealing with is a minimal artificial elementary lan
guage L with—for all n, m ∈ N—: ¬, &, ∀, P 2 2, (,), xn as logical and cn, 
P mn  (for not n = m = 2) as descriptive vocabulary. Note that P 2 2 serves as 
the logical identity symbol here. Terms t are all xn, cn. Formulæ of L are 
all P mn  (t1, ..., tm) (for at least o1, ..., om ∈ N such that t1 equals co1 or xo1, ..., 
tm equals com or xom ). Furthermore, if ϕ, ψ are formulæ of L, then ¬ϕ, (ϕ&ψ), 
and ∀xnϕ are also. The other common connectives ∨, →, ↔ are assumed 
to be meta-linguistic abbreviations:   (ϕ ∨ ψ)¬ for ¬ ¬(¬ϕ&¬ψ)¬, ¬(ϕ → 
ψ)¬ for ¬¬ (ϕ&¬ψ)¬, and ¬(ϕ ↔ ψ)¬ for  ¬       (¬(ϕ&¬ψ)&¬(ψ&¬ϕ))¬. Also 
¬∃xn¬ is used as a meta-linguistic abbreviation for ¬¬∀xn¬¬. We will use 

further meta-linguistic abbreviations within our examples (e.g. ∈ for some 
P n

m
 , not n = 2 = m, and also function-symbols for their complex corre-

sponding relational-formulation). 

2.  Analyticity and Definability 

As is well known, the analytic-synthetic distinction traces back to Immanuel 
Kant and was first formally spelled out by Frege. Without going into much 
historical detail, analyticity is according to the proposal of Frege and the 
discussion initiated later on by Quine, applied to formulæ of an artificial 
language that are derivable by the laws of the logic of the language and 
definitional conventions of the language alone. The expression ‘analytic fal-
sity’ may then be defined as contradicting an analytic truth. And ‘synthetic 
truth’ as being true, but not analytically true; ‘synthetic falsity’ as being 
false, but not analytically false. The latter two categories make up in toto 
the non-definitional contingent truths of the language under consideration: 

Definition 1.
1.1 � ϕ of L is analytically true iff there is a set Ψ of definitions of expres-

sions in L such that Ψ    ϕ. 
1.2 � ϕ of L is analytically false iff there is a ψ of L such that ψ is ana-

lytically true in L and    ϕ ↔ ¬ψ. 
1.3  �ϕ of L is synthetically true iff ϕ is true, but not analytically true in 

L (the former part expresses the condition that for the standard inter-
pretation I of L it holds that    I ϕ). 

¬

╥
╥

╥
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1.4 � ϕ of L is synthetically false iff ϕ is false, but not analytically false 
in L (the former part expresses the condition that for the standard 
interpretation I of L it holds that    I ¬ϕ). 

This distinction can be quite similarly extended to a syntactic considera-
tion of an artificial language: instead of ‘analytic truth’ one may speak 
similarly and for the elementary case equivalently of ‘definitional derivabil-
ity’. Instead of ‘analytic falsity’ one may speak of ‘definitional contradict-
ability’. Only the category of synthetically true or false statements cannot 
be distinguished in a pure syntactic way for obvious reasons (not always 
the standard interpretation I of all formulæ of a language can be “codified” 
by syntactic means alone). 

One can also expand the terminology from the level of formulæ to the 
level of theories—we do so by disregarding truth and falsity of theories and 
defining a theory (logically closed set of some formulæ) to be analytic iff 
all its consequences are analytically true or some are analytically false; and 
to be synthetic otherwise. 

We clearly see now that the notion of analyticity for artificial languages 
is defined via logicality and definability—that is what we called the ‘dogma 
of analyticism’ in the introductory section. Let us first consider the notion 
of definability. Definability is a property of constants of theories with respect 
to some antecedent theories. So, e.g., ‘inclusion’ ⊆ and ‘power set’ ℘ are 
definable with respect to naïve set theory (i.e. extensionality plus naïve com-
prehension) in naïve set theory plus the standard definitions of ⊆ and ℘: 

NST1 ∀x1∀x2(∀x3(x3 ∈ x1 ↔ x3 ∈ x2) → P2
2(x1,x2))� (Extensionality)

NST2 ∃x1∀x2(x2 ∈ x1 ↔ ϕ[x2]) 	�  (Naïve Comprehension)

NST3 ∀x1∀x2(x1 ⊆ x2 ↔ ∀x3(x3 ∈ x1 → x3 ∈ x2)) � (Definition of ⊆)

NST4 ∀x1(P2
2(℘(x2), x1) ↔ ∀x3(x3 ∈ x1 ↔ x3 ⊆ x2))� (Definition of ℘)

Explicit definitions like the one given above satisfy specific conventional 
and formal constraints. For our argument we only need to consider so-
called “equivalence definitions”: 

Definition 2. ϕ is an explicit equivalence definition of a descriptive symbol 
s in a theory T ′ with respect to a theory T iff the following conditions hold: 

2.1  T ′ ╨

╨  T ∪ {ϕ}, i.e.: T ′ is an extension of T by ϕ 

2.2  ϕ is of the form P  nm (t1, ..., tn) ↔ ψ, for some n, m ∈ N and ψ of T

2.3 � t1,...,tn are pairwise disjoint and only individual variables x1,... or s 
and ψ contains exactly the same free variables as those in t1, ..., tn 

2.4  s occurs in no axioms of T and either (i) s = P  nm or (ii) s = t1

╥
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2.5 �I n case of (ii), n = 2 = m and T ╥  ∃x(ψ[t2/x]& ∀y(ψ[t2/y] →  
P2

2(x, y))), for some x, y not occurring in ψ 

P nm (t1,...,tn) is called ¬the definiendum of ϕ¬ and ψ is called ¬the definiens 
of ϕ¬. E.g., NST3 is an explicit equivalence definition of ⊆ in {NST1, 
NST2,NST3} with respect to {NST1,NST2} and NST4 is an explicit 
equivalence definition of ℘ in {NST1,NST2,NST3,NST4} with respect to 
{NST1,NST2,NST3} because existence of a power set of a set follows by 
NST2 and uniqueness of the power set of a set follows by NST1. 

Explicit equivalence definitions have two very important features: 
First, they are conservative in the sense that no new consequences about 
the domain of discourse are introduced. Second, they allow for complete 
eliminability of the new symbol. Here are the details for conservativity: 

Definition 3. s is conservatively introduced into a theory T ′ with respect  
to T iff 

3.1  T ′    T, and: 

3.2 N o axiom of T contains s and T ′ contains at least one axiom with s, and: 

3.3  for all formulæ ϕ not containing s it holds: If T ′    ϕ, then T    ϕ. 

So, conservativity guarantees that no new claims formulated in the for-
mer vocabulary of a theory are derivable by introducing a new expression. 
Eliminability is about statements that use the newly introduced expression. 
Here are the details: 

Definition 4. s is eliminable in a theory T ′ iff 

4.1 � for all formulæ ϕ containing s there is a formula ψ not containing s 
such that T ′ ╥  (ϕ ↔ ψ). 

So, eliminability guarantees that every claim with the eliminable expres-
sion can be stated equivalently with a claim not containing the expression. 
Both criteria are independent of each other and epistemically seen both are 
of equal importance: Eliminability allows one to translate claims with new 
vocabulary equivalently into claims using only the old vocabulary, which 
is already well understood. And conservativity guarantees that the already 
well-known meaning of the old expressions stays unchanged (‘meaning’, 
‘knowing’, and ‘understanding’ is to be understood here extensionally: to 
be about the construction of models). Note that a unary relation/property of 
eliminability and conservativity as defined, e.g., in Kleinknecht (1981) by just 
existentially quantifying over T ′ makes eliminability and conservativety 
depended of each other—such a property of eliminability guarantees also 
such a property of conservativity; but both notions are not taking into 
account and fixing the underlying theory a symbol s is introduced to and 

╥

╥ ╥
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by this the dependence just states that if s is introduced into some theory 
T ′ in an eliminable way, then s is also conservatively introduced into some 
theory T ″; for a further critique of these unary notions of eliminability and 
conservativity cf. Peppinghaus and Schirn (1983). Independently of the 
exact relation betweeen conservativity and eliminability it can be shown 
that the two criteria, i.e. the conditions in definitions 3 and 4, are satisfied 
in introducing new descriptive symbols into a theory exactly if one also 
satisfies the rules for explicit equivalence definitions of the form given 
above (cf. definition 2): 

Observation 5. s is conservatively and eliminable introduced into T ′ with 
respect to T iff there is an explicit equivalence definition ϕ of s in T ′ with 
respect to T . 

Since the motivation for the formal characterisation of definitions hinges 
exactly on these two criteria, this may be regarded as one main result of the 
formal theory of definition. For this reason we are also going to provide a... 

Sketch of the proof. For simplicity reasons take T ′ to be the closure of 
T ∪{ϕ}—it is easy to see that conservativity and eliminability are preserved 
under logical equivalence. (⇐): Induction over the complexity of formulæ 
of T ′ guarantees for the basis case of atomic formulæ eliminability by help 
of an explicit equivalence definition directly (all relevant sub-cases are 
covered by the variable condition 2.3). Since T ′-equivalences can be sub-
stituted in all complex cases (¬ϕ, (ϕ&χ), etc.), also the induction step is 
guaranteed to preserve eliminability. Regarding conservativity, the key idea 
is that every formula in a T ′-proof containing the new symbol can be sub-
stituted (via eliminability) T ′-equivalently by a formula not containing the 
new symbol. Since the only axiom used in such a proof that is not already 
an axiom of T is the explicit equivalence definition itself, the previously 
described substitutions are logically valid formulas (for this reason condi-
tion 2.5 has to be satisfied, otherwise the substitution would not turn out to 
be logically valid) and can be skipped. By this a T ′-proof can be transformed 
into a T -proof. 
(⇒): With conservativity one gets T ′ ╥  T. By eliminability one gets T ′  

╥  P nm (t1,...,tn) ↔ ψ, where n, m ∈ N and conditions 2.2–2.4 are satisfied 
for ψ. Let ϕ be P nm (t1,...,tn) ↔ ψ. So T ′ ╥  T ∪ {ϕ}. With conservativity 
one also gets 2.5 for ϕ. So only T ∪{ϕ} ╥  T ′ has to be shown. Assume  
T ′    χ. If the eliminable symbol does not occur in χ, then by conservativ-
ity we also get T    χ. If it occurs in χ, then we have to distinguish between 
two cases: (i) for the, with respect to T new expression, s in ϕ it holds that 
s = P nm. It is clear that ϕ  ╥  χ ↔ χ[P nm (t1,...,tn)/ψ]. But then, by conservativ-
ity we get T ′ ╥  χ[P nm (t1,...,tn)/ψ] iff T ╥  χ[P nm (t1,...,tn)/ψ] and since T ′ ╥  χ 
we get T ∪{ϕ} ╥  χ. The other case is (ii) s = t1. Then it is clear (by substi-
tutivity of idententicals) that ϕ ╥  ψ → (χ ↔ χ[t1/t2]). Since by conservativity 
T ′ ╥  ψ and T ′ ╥  χ[t1/t2] iff T ╥  χ[t1/t2] and since T ′ ╥  χ we get again  

╥

╥
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T ∪ {ϕ} ╥  χ. Hence 2.1 holds for ϕ. And hence ϕ is an explicit equivalence 
definition of the eliminable symbol of T ′ in T ′ with respect to T. 

Just to mention a historical detail: These criteria are already implicitly 
discussed by Blaise Pascal (cf., e.g., Pascal 2000a, pp.112f). According to 
Patrick Suppes, Stanisław Leśniewski was the first who discussed definitions 
with respect to the two criteria of conservativity and eliminability explicitly 
(cf. the footnote in Suppes 1957, p.153). Although it is clear that Leśniewski 
formulated syntactic rules for definitions (cf. Lesniewski 1967), it is only a 
myth that he made the criteria explicit (cf. Urbaniak and Severi Hämäri 
2012 and Hodges 2008, p.105). 

Back to our application of these results on definability: It is also gener
ally assumed that the notion of analyticity allows for partial eliminability 
of expressions—so, e.g., in mathematics quite often only partial charac-
terisations of expressions are given and accepted (think, e.g., of the division 
operation). In such a case, explicit equivalence definitions are weakened to 
conditional ones: 

Definition 6. ϕ is a partial or conditional equivalence definition of a 
descriptive symbol s in a theory T ′ with respect to a theory T  iff conditions 
2.1–2.5 hold, with the modification: 

ad 2.2 T he form of ϕ is χ → (P nm (t1,...,tn) ↔ ψ) with χ of T 
ad 2.5 � the existence and uniqueness condition is conditioned on  

χ: T ╥  χ → ∃x(ψ[t2/x]& ∀y(ψ[t2/y] → P2 
2(x, y))), for some x, 

y not occurring in ψ 
Since partial equivalence definitions are logically weaker than explicit or 

unconditioned ones, they also guarantee conservativity. However, they 
allow for eliminability only conditioned on χ: If s is introduced into T ′ with 
respect to T by a partial definition (conditioned on χ), then for all formulæ 
ϕ containing s there is a formula ψ not containing s such that T ′   χ →  
(ϕ ↔ ψ). So, assuming χ, s is eliminable in such a theory T ′, but if χ does 
not hold, it is not. 

In the following we will assume that analyticism, i.e. the dogma of 
analyticism, also allows for such weak definability by partial equivalence 
definitions. Furthermore, definitions can be concatenated in order to introduce 
more and more complex notions into theories. One can easily expand the 
notion of a partial or explicit equivalence definition above to such chains: 

Definition 7. s is introduced into T ′ with respect to T by help of partial/
explicit equivalence definitions iff there are T1,...,Tn and ϕ2,...,ϕn and pair-
wise disjoint s2, ..., sn, n ∈ N, such that: 

7.1  T = T1, T ′ = Tn, and s = sn 
7.2 � ϕi is a partial/explicit equivalence definition of si in Ti with respect 

to Ti−1, 1 <  i ≤ n 

╥
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We can now state directly that ℘ is introduced into {NST1, NST2, NST3, 
NST4} with respect to naïve set theory {NST1, NST2} by help of explicit 
equivalence definitions without mentioning the intermediate step NST3. 
Such definitional chains preserve also conservativity and partial/full elimi-
nability, since eliminability passes on to logically stronger theories and 
conservativity passes on to logically weaker theories. 

Finally, the last ingredient we need in our main argument, and which 
seems even more acceptable than the introduction of expressions by means 
of partial equivalence definitions, is the multiple introduction of an expres-
sion by means of partial equivalence definitions. The idea here is the fol-
lowing: The multiple explicit equivalence definition of, e.g., P n

m
  does no 

harm to eliminability, but may be harmful for conservativity. So, e.g., by 
characterising P1

1 as P1
1(x1) ↔ ψ[x1] and P1

1(x1) ↔¬ψ[x1] one reaches the 
worst case of introducing inconsistency into a theory. But what is harmful 
for explicit definitions might be useful for partial definitions inasmuch as 
one might preserve conservativity by increasing eliminability. So, e.g., mul-
tiple partial equivalence definition of P1

1 by χ1 → (P1
1(x1) ↔ ψ1[x1]) and 

χ2 → (P1
1(x2) ↔ ψ2[x2]) with respect to an antecedent theory T does no harm 

to conservativity with respect to T and even increases eliminability of P1
1 in 

the multiple partial definitional extension iff T ╥ χ1&χ2 → (ψ1[x1] ↔ 
ψ2[x2]) and χ1 ∨ χ2 is logically weaker than both, χ1 as well as χ2. The for-
mer guarantees that the possibly creative part of the extension is already a 
consequence of the antecedent theory T. The latter guarantees that elimi-
nability increases since then for all formulæ ϕ1 of the extension there is a 
formula ϕ2 of the antecedent theory T such that (χ1 ∨ χ2) → (ϕ1 ↔ ϕ2) is 
a consequence of the extension. So we can say that: 

Definition 8. s is introduced into T ′ with respect to T by help of possibly 
multiple partial/explicit equivalence definitions iff there are T1, ..., Tn and 
ϕ2, ..., ϕn and (not necessarily pairwise disjoint) s2, ..., sn, n ∈ N, such that: 

8.1 A s condition 7.1 above and 
8.2  As condition 7.2 above with the specification: 
8.3 �F or all 1 < i < j ≤ n: If si−1 = sj, then ϕj is a partial equivalence 

definition of sj in Tj with respect to Ti−1; furthermore, let χi be the 
antecedence of ϕi and χj that of ϕj; let ψi be the definiens of ϕi and 
ψj that of ϕj ; then it holds: 

	 •	 Ti−1 ╥  χi&χj → (ψi ↔ ψj ) 
	 •	 χi ∨ χj is logically weaker than both, χi as well as χj 

The idea of definition 8 is that multiple partial equivalence definitions can 
be brought into a successive order and that the non-creativity constraint 
(8.3) is satisfied pairwise by the multiple partial equivalence definitions. 



	 One Dogma of Analyticism � 437

We are now able to explicitly state the dogma of analyticism under 
consideration: 

Analyticism. Analyticity can be adequately characterised semantically as follows: 
�A theory T is analytic iff either T is inconsistent or there is an s, T ′, T ″ 
such that T ″ ╨

╨ T, T ′ is purely logical (i.e. the closure of 0) and s is 
introduced into T ″ with respect to T ′ by help of possibly multiple partial/
explicit equivalence definitions. 

In other words, a theory T is analytic iff it is inconsistent or all its conse-
quences can be derived by logical and definitional means alone. E.g., it was 
an effort of Frege’s logicistic approach to reconstruct mathematical notions 
by logical (including, e.g., class abstraction) and definitional (including, 
e.g., recursive) means alone. And in fact, it turned out that Frege’s recon-
struction was analytic; the only problem was that it was not analytic in 
the bright way of being at least not proven to be inconsistent. 

So much for definability in the context of analyticity. But what about 
logicality? We will shortly explore this notion in the next section. 

3.  Reducibility of Logicality to Definability 

It is well known that our definitions of logicality depend heavily on our 
distinction of logical from descriptive symbols within a language under 
consideration. In the literature about this topic, three main criteria for such 
a distinction are discussed. It was Quine who prominently proposed a cri-
terion for distinguishing the logical from the descriptive symbols of a lan-
guage by their so-called feature of being substitutable salva congruitate (cf. 
Quine 1986, chpt.2). The idea behind this criterion is that the set of logical 
symbols of a language is the smallest set of symbols that can be substituted 
pairwise in such a way that the substitution result is of the same category 
(formula/non-formula) as the original expression. Of course, the adequacy 
of this definition hinges on a quite arbitrary interpretation of what counts 
as ‘smallest’ and also on our assumptions about categories. Why, e.g., form 
(ϕ&ψ) and (ϕP1

1ψ) expressions of different categories, whereas (ϕ&ψ) and 
(ϕ ∨ ψ) form expressions of the same category, namely formulæ? 

For this reason logicians came up with two further different criteria of 
separating logical from descriptive symbols of a language. Very promising, 
at least at first glance, is the so-called permutation-criterion of Alfred  
Tarski—later on spelled out as criterion of invariance under isomorphisms 
(cf. Sher 1991, chpt.3; Sher recently also expanded the interpretation of the 
invariance under isomorphism criterion to the grounding debate and its 
ontological implications: cf. Sher 2013, pp.174–182). According to Tarski, 
logical operations on a domain are those operations on the domain whose 
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results guarantee invariance under permutation within the domain. As a 
feature of this criterion one may note that it is a nice explication of ‘topic-
neutrality’ in a way that those operations which are absolutely neutral 
regarding any topic or any elements of a domain, are logical operations. 
The main problem with this criterion is its incapability of dealing with dif-
ferent sizes of domains—logical operations do not guarantee invariance under 
domain-size-transformation. Other problems or features of the approach are 
still controversial. So, e.g., Vann McGee showed an adequacy result by 
demonstrating that only the logical operations (including infinite disjunction 
and infinite existential quantification) are invariant under permutations 
(cf. McGee 1996). However, he also gave an example of strange connec-
tives like unicorn negation U—defined as ¬ U  ϕ¬ iff   ¬¬ϕ¬ and there are no 
unicorns—which, due to its coextensionality with the ¬-operation, counts 
according to the permutation-criterion also as logical operation. Whatever 
stance one may take here, it is the following approach on logical symbols 
that fits best into our line of argumentation for considering analyticity to be 
just the conventional definability. 

The third criterion proposed in the literature by, e.g., Nuel Belnap is the 
so-called definability-criterion for separating logical constants (arguably 
also Carnap held such a view—(cf. Boghossian 1996, section III)): Those 
constants whose role in reasoning can be explicated in a definitional way 
alone are assumed to be logical. It is exactly this criterion which indicates 
how the semantic conception of ‘analyticity’ can be reduced to that of 
definability. It can be shown that the usual introduction and elimination rules 
of natural deduction for ¬, &, ∀, and P2

2 satisfy the condition of conservativity 
and also a condition of partial eliminability: Starting with just the structural 
rules of argumentation or logical consequence, i.e. assuming that for all 
formulæ ϕ, ϕ1,...,ϕn, ψ, ψ1,...,ψm, χ, ρ: 

•	R eflexivity: ϕ: ϕ ╥  ϕ 

•	�T ransitivity: If ϕ1, ..., ϕn ╥  χ and ψ1, ..., ψm, χ ╥  ρ,  
then ϕ1, ..., ϕn,  ψ1, ..., ψm ╥  ρ 

•	� Permutation: If ϕ1, ..., ϕn, ψ1, ..., ψm ╥  χ,  
then ϕ1,...,ϕn−1, ψ1, ϕn, ψ2, ..., ψm ╥  χ 

•	 Contraction: If ϕ1, ..., ϕn, ϕn ╥  ψ, then ϕ1, ..., ϕn ╥  ψ 

•	 Weakening: If ϕ1, ..., ϕn ╥  ψ, then ϕ1, ..., ϕn, χ ╥  ψ 

One can introduce by the usual rules of natural deduction all logical 
symbols in a conservative and partial eliminable manner. So, e.g., the intro-
duction rule for conjunction allows for the introduction of & in the follow-
ing way: (&I): ϕ, ψ ╥  ϕ&ψ. On the other side, & can be eliminated by 
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simplification (&E): ϕ&ψ ╥  ϕ and ϕ&ψ ╥  ψ in this specific context. 
More generally, & can be eliminated in all contexts by: 

•	ϕ&ψ ╥  χ iff ϕ, ψ ╥  χ 

•	 χ ╥  ϕ&ψ iff χ ╥  ϕ and χ ╥  ψ 

& can be completely eliminated in an inference, since by (&E), transitivity, 
and permutation one gets rid of it in the consequence, and by (&I), transi-
tivity, and permutation it can be always introduced into the consequence. If 
it occurs in the premises, then one needs to recursively apply (&I), (&E), 
transitivity, and permutation. So, e.g., for the basis case where we have only 
one premise, the premise is ϕ&ψ; and this case is similar to the one above. 
With two &-premises: ϕ1&ψ1, ϕ2&ψ2 ╥  χ one first shows ϕ1, ψ1, ϕ2&ψ2  

╥  χ as in the basis case; then ϕ1, ψ1, ϕ2, ψ2 ╥  χ as in the basis case; for 
further premises just along this line. 

One can also introduce negation with the usual introduction-and elimina
tion rules of reductio; it turns out that such an introduction is a conservative 
extension of the structural rules above. But it also turns out to be not com
pletely eliminable (¬I): If ϕ ╥  ψ and ϕ ╥  ¬ψ, then ╥  ¬ϕ, and similar 
(¬E): If ¬ϕ ╥  ψ and ¬ϕ ╥  ¬ψ, then ╥  ϕ. The problem here is that one 
needs to start with a negation-statement in order to introduce ¬. As the fol-
lowing characterization shows, more generally one might introduce and 
eliminate ¬ in the consequence, but one cannot introduce and eliminate it 
from scratch in the premises (note that this characterisation would also not 
allow for a characterisation of finite proofs): 

•	 ¬ϕ ╥  ψ iff ϕ, ¬ψ ╥  χ for all χ 

•	ϕ ╥  ¬ψ iff ϕ, ψ ╥  χ for all χ 

Similar for the quantifiers: By the ordinary rules (∀I) and (∀E) one can 
eliminate the quantifiers in case the variable condition is satisfied (x does 
not occur in ψ, i.e. ψ[x/y]= ψ for some y ≠ x): 

•	∀xϕ[x] ╥  ψ iff ϕ[x] ╥  ψ 

•	ψ ╥  ∀xϕ[x] iff ψ ╥  ϕ[x] 

But the eliminability is of course only partial, since, e.g., in the context 
¬∀xϕ[x] we cannot easily skip ∀x, for the former means that not every x 
has property ϕ, whereas the latter (¬ϕ[x]) would mean that every x has not 
this property. 

Also the identity-symbol can be introduced and eliminated only in the 
contexts provided by the corresponding rules of natural deduction:  
(P2

2I) ╥  P2
2 (x, x) and (P2

2E): P2
2 (x, y), ϕ[x] ╥  ϕ[x/y]. 
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If one allows a weak form of definability for analyticity in the sense that 
only the conservativity criterion has to be fully satisfied, whereas the elim-
inability criterion may be only partially satisfied, then the discussion above 
shows that the non-structural rules of classical logic can be expanded purely 
conservatively and partially eliminative by introduction-and elimination 
rules for the logical vocabulary. One may wonder then how to argue for the 
structural rules, i.e., how to introduce ╥ ? Here it can be shown that even 
the structural rules can be introduced from scratch by partial definitions, 
except for transitivity which needs a circular characterisation and by this 
does not even allow for partial eliminability (cf. Feldbacher-Escamilla 
2015). So, more generally it holds that all classical logical notions ╥ , ¬, &, 
∀,P2

2 can be introduced from scratch in a way fully satisfying the conserva-
tivity criterion and satisfying the eliminability criterion more or less well. 
In this sense one may claim that analyticity consists mainly in definability. 
Logicality is then just introduced as a special case of definability. 

Note that this does not show, of course, that only the principles of classical 
logic can be introduced by definitional means alone. A consequence relation 
|≈ could be also introduced in a similar way as above by stating reflexivity, 
transitivity, permutation, and contraction, but without stating weakening. 
Such a non-monotonic consequence relation would also satisfy the same 
constraints as above and a logic based on it would therefore also count as 
analytical in the sense of being reducible to definability as indicated here. 

4.  Conventionalism about Empiricality 

In the preceding section we argued for the claim that the dogma of ana-
lyticism, namely that for artificial languages one can provide an adequate 
definition of ‘analyticity’ in syntactic and semantic terms only, is supported 
by the fact that even the notions of logic can be introduced with the help 
of definitional methods alone. In this section we are going to challenge this 
dogma by showing that a purely syntactic and semantic definition fails to 
distinguish analytic from synthetic claims in very important cases. 

For this purpose we begin with splitting up the descriptive vocabulary of 
our language L into two parts, the set of non-logical odd-numbered predi-
cates O = {P1

n,  P3
n , ...} and the set of non-logical and even-numbered pred-

icates E = {P2
n2, P4

n2, ...} (for all n ∈ N). Below we will interpret E as 
the set of empirical or observational predicates. From the set of formulæ of 
L we can also pick out a specific set that will be later on interpreted as the 
set of empirical or observational statements EF. We do so by the classical 
empiricist characterisation of the formal structure of such statements:  
{P n

m
 (cco1

, ..., ccon ): 
m
2 , n ∈ N and at least o1, ..., on ∈ N} as well as their nega-

tions {¬P n
m

 (co1, ..., con ): 
m
2 , n ∈ N and at least o1, ..., on ∈ N} are observational 
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statements, i.e. in EF. Furthermore, if ϕ, ψ are observational statements 
whose conjunction is logically contingent (i.e.: ╥  ¬(ϕ&ψ)), then (ϕ&ψ) is 
an observational statement, i.e. in EF. Nothing else is to be considered as 
an observational statement. 

With the help of this distinction we can characterize empirical bases of 
theories: An empirical or observational basis T ′ of a theory T is a (possibly 
infinite) axiomatisation of those consequences of T which are observational 
statements, i.e.: 

Definition 9. T ′ is the empirical or observational basis of T iff T ′ is the 
logical closure of EF ∩ T. 

Now let us come to our main objection against the dogma of analyticism: 
It can be shown that according to this dogma empirical or observational 
bases are analytic: 

Observation 10. The empirical or observational basis T ′ of a theory T is 
analytic. 

Proof. In the case that T is inconsistent, the empirical basis T ′ of T is also 
inconsistent and by this analytic. If T is consistent, let T ′ be the empirical 
or observational basis of consistent T, i.e. the closure of EF ∩ T. Then, 
since EF contains only observation sentences, i.e. atomic formulæ, nega-
tions of atomic formulæ, and conjunctions of such formulæ, T ′ can be also 
(possibly infinitely) axiomatised by atomic formulæ and negations of 
atomic formulæ. Let AP nm be the set of sequences of individual constants  
co1, ..., con such that T ′ ╥  P nm (co1, ..., con ) and let BPm

n be the set of sequences 
of individual constants co1, ..., con such that T ′ ╥  ¬P nm (co1 ,...,con ) (n, m ∈ N 
and at least o1,...,on ∈ N); so AP nm represents the extension of P nm, whereas 
BPm

n represents the anti-extension of P nm. Since T and by this also T ′ is con-
sistent APm

n and BPm
n are disjunct for every n, m ∈ N. Now it is easy to see 

that T ′ can be constructed by purely definitional means alone: Let T ″ be 
the closure of the following formulæ: 

•	�T he trivial, i.e. purely logical, introduction of all individual constants: 
P2

2(cn, cn), n ∈ N 
•	�T he inclusive possibly multiple partial equivalence definition of the 
P  nm s: For all n, m ∈ N and o1, ..., on ∈ N and co1, ..., con ∈ APm

n : 
(P2

2 (x1, co1 )& ... & P2
2 (xn, con )) → 

(P  nm (x1, ..., xn) ↔ (P2
2 (x1, co1 )& ... &P2

2 (xn, con )))
•	�T he exclusive possibly multiple partial equivalence definition of the 
P  nm s: For all n, m ∈ N and o1, ..., on ∈ N and co1, ..., con ∈ BPm

n : 
(P2

2 (x1, co1 )& ... &P2
2 (xn, con )) → 

(P nm (x1, ..., xn) ↔ (¬P2
2 (x1, co1 )& ... &¬P2

2(xn, con )))
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Then T ″ = T ′ since every such formula is equivalent with the respective 
atomic formula P nm (co1, ..., con,) or the negation ¬P nm (co1, ..., con,). Furthermore, 
all the predicates P nm  are introduced by multiple partial equivalence definitions, 
since all the conditions of definition 6 are satisfied, and the chaining is 
vacuously correct (there is no chaining of expressions); also the multiple defi
nitions preserve conservativity since each conjunction of the definitions’ ante-
cedences logically implies the respective equivalence of the definientia. E.g.: 
P2

2 (x1  c1)& P2
2 (x2, c2) logically implies P2

2 (x1  c1) ↔ P2
2 (x2, c2).	 

Let us illustrate this result by help of an example and an application: 
Take, e.g., an ornithologist claiming that all swans are white. So, assume 
her simple theory to be just the closure of: 

∀x(P2
1(x) → P4

1(x)) 	 P2
1(x) ... x is a swan.

		  P4
1(x) ... x is white. 

Then she might try hard to falsify or undermine her theory by studying 
outdoor swan’s plumage colour. But she could also switch to semantically 
equivalently considering her claims to be partial definitions of ‘white’: 

∀x(P2
1 (x) → P4

1(x) ↔ P2
1(x)))

Of course, nobody seriously interested in empirical claims would make the 
move to such an indoor ornithology. Nevertheless, the semantic criterion 
of distinguishing analytic from synthetic statements alone does not prevent 
such a move. 

For the application let T be an empirical theory (i.e. EF ∩ T ≠ 0). Then 
there are two kinds of tests one can perform: theoretical tests checking, 
e.g., internal consistency, consistency with other established theories, cat-
egorical equivalence with other or parts of other established theories etc.; 
and empirical tests by help of experiments. One main application of an 
analytic-synthetic distinction in classical empiricism would be to figure out 
by help of such a distinction which consequences of T have to be tested 
theoretically, and which ones empirically. According to the second dogma 
of empiricism, all synthetic consequences of T should be somehow reduc-
ible to a posteriori truths of T. So, in the simplest case (i.e. a case of 
complete reduction), according to the second dogma one would expect that 
exactly those consequences of T are synthetic, that are in the empirical 
basis of T. But, as it turns out by distinguishing analytic from synthetic 
consequences of T according to the semantic conception of analyticity, this 
is not the case. One can always construct (semantically by applying an 
expanded version of the so-called Padoa-method or syntactically by pro-
viding definitional chains as characterised above) T in such a way that the 
empirical basis of T , i.e. EF ∩ T , turns out to be analytic. For this reason 
it seems to be necessary to take some further restrictions of the definition 
of ‘analyticity’ into account. Especially, one may prevent the definition of 
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empirical or observational predicates. But then, since a justified distinction 
of the descriptive vocabulary into theoretical and empirical or observational 
predicates is not semantic, but pragmatic, also the dogma of analyticism 
turns out to be incorrect. 

5.  Conclusion

We saw that logical empiricism is considered to contain two dogmas, 
namely the dogma of analyticism, stating that there can be drawn a distinc-
tion between analytic and synthetic statements, and the dogma of reduction-
ism, stating that all synthetic consequences of a theory can be reduced to a 
set of observational statements. It is important to note that the first dogma 
is about such a distinction for artificial languages, and not for natural 
languages (Quine uncovered several theoretical flaws for a definition of 
‘analytic’ in natural languages). Furthermore, the semantic characterisation 
of ‘analytic’ states that the consequences of a theory are analytic which can 
be derived by purely logical and definitional means. 

As was hinted at in section 3, the semantic characterisation can be even 
unified to definitional means alone, since logical principles and rules can be 
justified also by definitional means alone. So analyticity consists, according to 
the semantic characterisation, of being justifyable by definitional means alone. 

However, in the foregoing paragraph we have shown that the empirical 
or observational basis of a theory, which is usually seen as the synthetic 
core of a theory, turns out to be analytic according to the semantic charac-
terisation. This is due to the fact that such a basis of a theory can always 
be constructed by definitional means alone. 

For this reason the semantic characterisation, and by this also the dogma 
of analyticism, is inadequate. There is a need to characterise ‘analyticity’ 
by help of pragmatic notions, as, e.g., the notion of being observable, being 
an observational predicate, and being an observational statement: Thus 
modified a pragmatic characterisation of ‘analytic’ states that a consequence 
of a theory is analytic iff it can be derived by logical and definitional means 
alone, where the definitional means explicitly prohibit a conventional char-
acterisation of observational predicates. 
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