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Partial type-shifting automorphisms

Panagiotis Rouvelas

Abstract

We attempt to shed some light on the consistency problem for NF by proving the 
existence of certain partial type-shifting automorphisms of TST4-models.
Keywords: Set Theory, New Foundations, N, Simple Type Theory, TST

1.  Introduction

Since its conception by Quine (see Quine (1937)), the central question for 
the theory of New Foundations (NF) has been its consistency relative to ZF. 
To this day, this question remains unanswered, resisting the attempts of 
many logicians, who over the years produced a variety of important yet 
inconclusive results. In this paper, we examine a weaker version of the 
problem, based on two of these results. The first one, due to Specker, states 
that a model of NF is basically a model of Simple Type Theory (TST) with 
a type-shifting automorphism. The second one, proved by Grišin, states that 
NF is equal to NF4, the subtheory of NF which is axiomatized by Exten-
sionality plus the 4-stratifiable instances of Comprehension axiom. From 
these two results, it follows that the consistency of NF is equivalent to the 
existence of a TST4-model with a type-shifting automorphism, where TST4 
is the restriction of TST to formulas with variables of type less than 4. 
In brief, our approach consists of

  (i) � generalizing the notion of type-shifting automorphism to that of partial 
type-shifting automorphism,

 (ii) � introducing the notion of κ-capturing property of a TST4-model A, which 
is satisfied if certain partial type-shifting automorphisms of A exist,

(iii) � reducing the consistency of NF to the existence of a TST4-model A that 
satisfies the |A|+-capturing property, and

(iv) � proving that there exist models A of TST4 that satisfy the |A|-capturing 
property.

The paper is divided into 3 sections. Section 2 introduces the definitions, 
the notation, and the basic theorems that we will use. In section 3 we 
define the κ-capturing property, and prove our main result. Finally, in 
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section 4 we state some interesting open questions that are relevant to 
our work.

2.  Preliminaries

In this introductory section we provide a brief self-contained exposition of 
TST and NF. For additional information on the subject, we refer the reader 
to Forster (1995).

The language and axioms of Simple Type Theory.  Throughout this paper, 
we assume that we work in ZF with ∈ as the membership relation.

The language LTST of Simple Type Theory is the many-sorted language 
of set theory with one binary relation symbol ε, and countably many types 
indexed by ω. To indicate the type of each variable of LTST, we use a super-
script, i.e., we write xi to signify that variable x has type i. The formulas 
of LTST are built inductively from the atomic formulas xi ε y  i+1 and xi = y  i. 
For n > 0, we define LTSTn to be the language LTST restricted to the first n 
types, i.e., 0, …, n − 1.

Simple Type Theory (TST) consists of the axioms of Extensionality and 
Comprehension. The axiom of Extensionality (Ext) is the set of all the fol-
lowing sentences for each type i ∈ ω,

	 ∀x  i+1 ∀y   i+1 (x   i+1 = y   i+1 ↔ ∀z   i (z   i ε x  i+1 ↔ z   i ε y   i+1)).� (Ext i+1)

The axiom of Comprehension (Co) is the set of all the following sen-
tences for each type i ∈ ω and formula φ of LTST,

	 ∀u¯ ∃y  i+1  ∀x i (x i ε y  i+1 ↔ φ(xi+1, u¯ )),� (Co i +1)

where y i+1 is not free in φ.
For the rest of this section let us assume that n ≥ 2. Restricting the above 

axioms to the language LTSTn yields a new theory, which we denote by 
TSTn. We define TSTn(2) to be the subtheory of TSTn that is axiomatized by 
Extensionality and all the instances of Comprehension that contain varia-
bles of only two consecutive types (i.e., the instances described in (Co i +1) 
in which all variables have type either i or i + 1). Lastly, we let TST ∞

n  and 
TST ∞

n (2) be the theories TSTn + Inf and TSTn(2) + Inf respectively, where (Inf) 
is the set of sentences

	 {∃x0
1 … ∃ x0

k (
i =/ j

 x0
i  ! x0

j) : k  > 0}.� (Inf)

Structures and isomorphisms. A structure A for the language LTSTn is a 
sequence (A0 , A1, …, An−1, εA), where A0, A1, …, An−1 are non-empty sets 
interpreting the n types of LTSTn, and εA ⊆ 'i < n−1 Ai × Ai +1 is a binary relation 
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interpreting the symbol ε. The cardinality of A, denoted by |A|, is defined 
to be the sum |A0 | + |A1| + … + |An −1|.

Note.  The definition of LTSTn-structure above can be perfectly valid even 
if εA is a binary relation for which εA ⊆ 'i < n −1 Ai × Ai +1. In such cases, we 
just assume that ε is interpreted as the restriction of εA on 'i < n−1 Ai × Ai +1.

In this paper, we will mostly be interested in structures of LTSTn that are 
standard and transitive (see Tzouvaras (2007) or Crabbé (1991)).

Definition 1. L et A = (A0, A1, …, An−1, εA) be an LTSTn-structure. We say 
that A is standard if for all 0 ≤ i < n − 1, x ∈ Ai, and y ∈ Ai +1,

	 x εA y ⇔ x ∈ y.

A standard LTSTn-structure A is called transitive if for all 0 ≤ i < n − 1,
	 x ∈ Ai+1 ⇒ x ⊆ Ai .

We usually abbreviate “standard and transitive” to “s.t.”.
A simple example of an s.t. model of TSTn is the LTSTn-structure

	 (X, P(X ), P  2(X ), …, P  n−1(X ), ∈),

where X is any non-empty set. Let us now formulate the notion of iso
morphism for LTSTn-structures, and show that we can always assume that 
our structures are standard and transitive.

Definition 2. L et A = (A0, A1, …, An−1, εA) and B = (B0, B1, …, Bn−1, εB)  
be two LTSTn-structures. We say that f is a partial function (or mapping) 
from A to B, if f is a sequence ( f0, f1, …, fn −1) of functions such that for all  
0 ≤ i < n,

	 dom ( fi ) ⊆ Ai and ran ( fi ) ⊆ Bi .

If every fi is 1-1 (resp. onto), then we say that f is 1-1 (resp. onto). 
If  dom( fi )  =  Ai, for all 0 ≤ i < n − 1, then f is called a (total) function 
(or mapping) from A to B.

We say that f is a partial LTSTn-isomorphism from A to B, if it is 1-1 and 
for all 0 ≤ i < n − 1, x ∈ Ai, and y ∈ Ai +1,

	 x εA y ⇔ fi (x) εB fi +1(y).

An LTSTn-isomorphism from A to B is a partial LTSTn-isomorphism from  
A to B, which is onto and total. When such an LTSTn-isomorphism exists,  
we say that A and B are LTSTn-isomorphic.

Note.  We adopt the notation fi to denote the i-th coordinate function of a 
partial mapping f.
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Collapsing Lemma. E very LTSTn-structure that satisfies Extensionality is 
isomorphic to an s.t. LTSTn-structure.

Proof. Let A = (A0, A1, …, An−1, εA) be an LTSTn-structure that satisfies 
Extensionality. Let B' = (A0, P  (A0), P 2 (A0), …, P  n−1(A0), ∈). We let  
f : A → B' be the function defined by induction on 0 ≤ i < n − 1 such that

f0(a) = a,    for all a ∈ A0, and
	 fi +1(y) = {fi (x) : x ∈ Ai ∧ x εAy},    for all y ∈ Ai +1.

For all 0 ≤ i < n − 1, let Bi = fi “Ai, and let B = (B0, B1, …, ∈). It is easy 
to verify that f is an LTSTn-isomorphism from A to B.� 

We should now make a necessary clarification on the notion of finiteness 
used in this paper. Let A = (A0, A1, …, An−1, εA) be an LTSTn-structure. 
Let also 0 ≤ i < n − 1 and x ∈ Ai+1. When we say that “x is finite”, we will 
always mean that x is finite in the metatheory, i.e., that there exist k ∈ ω 
and x1, …, xk ∈ Ai such that A  ∀z  (z ε x ↔ z = x1 ∨ … ∨z = xk ). Further
more, throughout the paper, we assume that the cardinality |x| of x always 
refers to the cardinality of x in the metatheory. So, if A is an s.t. model of 
TSTn(2), then

	 “x is finite” iff |x| < ω,

and therefore the following lemma holds.

Lemma 1. L et A = (A0, A1, …, An −1, ∈) be an s.t. model of TSTn (2). For all 
0 ≤ i < n − 1,

	 Pfin(Ai) ⊆ Ai +1,

where Pfin(Ai) = {u ⊆ Ai: |u| < ω}. In other words, if x is a finite subset of 
Ai, then x is an element of Ai+1.

Proof. Just notice that for all 0 ≤ i < n − 1 and k > 0, the formula

	 ∀xi
1 … ∀xi

k   ∃y   i+1 ∀x i (x   i ε y  i+1 ↔ x   i = xi
1 ∨ … ∨ x   i = xi

k   ).

is an instance of (Co) included in TSTn (2).� 

New Foundations. The language LNF of New Foundations is the (one-
sorted) language of set theory {ε} with one binary relation symbol. For 
every formula φ of LTST there exists a unique formula φ* of LNF, which can 
be obtained by removing all type superscripts from φ. A formula φ of LNF 
is called stratified if there exists a formula ψ of LTST such that φ = ψ*. For 
any set of formulas Γ of LTST, we define Γ* = {σ* : σ ∈ Γ}. The theory of 
New Foundations NF is defined by the axiom of Extensionality,

	 ∀x∀y  (x = y ↔ ∀z  (z ε x ↔ z ε y)),
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and the axiom of Stratified Comprehension,
	 ∀u¯ ∃ y∀x (x ε y ↔ φ(x, u¯)),

where φ is a stratified formula of LNF and y is not free in φ. Notice that the 
axioms of Extensionality and Stratified Comprehension for the language of 
LNF are exactly (Ext)* and (Co)* respectively. So NF = (TST)*. We define 
NFn to be the theory (TSTn)*. Clearly, NFn is a subtheory of NF.

Type-shifting automorphisms. Using results by Grišin (see Grišin (1972)) 
and Specker (see Specker (1958)) we can establish a direct connection 
between theories NF, NF4, and TST4. We first define the notion of type-
shifting automorphism.

Definition 3. L et A = (A0, A1, …, An−1, εA) be an LTSTn-structure. A (resp. 
partial) LTSTn–1-isomorphism from (A0, …, An−2, εA) to (A1, …, An−1, εA) is 
called a (resp. partial) type-shifting automorphism of A. We abbreviate the 
expression “type-shifting automorphism” to “tsau”.

Theorem 2 (Grišin). NF  = NF4.

Proposition 3 (Specker). I f A is a model of TSTn with a tsau, then there 
exists an M model of NFn such that for every LTST-sentence σ,

	 A  σ ⇔ M  σ*.� (1)

Proof. Let A = (A0, …, An−1, εA) be a model of TSTn, and let f be a tsau of A. 
Let M = (M, εM) such that M = A0 and

	 x εM y ⇔ x εA f0 (y),    for all x, y ∈ M.

It can be easily verified that M satisfies (1).� 

As a consequence we get the following corollary.

Corollary 4. I f there exists a model of TST4 with a tsau, then NF is con- 
sistent.

The consistency problem for NF can therefore be reduced to that of  
the existence of a TST4-model with a tsau. The task of finding such a model 
is not trivial though. For example, let X be any non-empty set and let 
A = (X, P(X), P  2(X), P  3(X), ∈). Obviously, we cannot expect to find a tsau 
of A, since |X | ! |P  (X)|. But what if we let B be a countable elementary 
submodel of A? Is there a tsau of B? The answer follows directly from 
Proposition 3 and the following theorem (proved in Specker (1953)).

Theorem 5 (Specker).  The axiom of Choice fails in NF.
In other words, TST4-models that satisfy choice, i.e., most natural models 

of TST4, are not candidates for having a tsau.
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3.  Partial type-shifting automorphisms

Instead of attacking the consistency problem directly, we will try to tackle a 
weaker version of it. We have already mentioned that finding a TST4-model 
with a tsau is equivalent to proving the consistency of NF. So, constructing 
tsaus is certainly a very difficult if not impossible task.Below, we examine 
if the same is true also for partial tsaus.

Definition 4. L et A = (A0, …, An−1, εA) be an LTSTn-structure, where  
n ≥ 2, and let κ be an infinite cardinal. We say that A satisfies the κ-capturing 
property if for all u0, …, un−1 with

	 ui ⊆ Ai and |ui | < κ,    for 0 ≤ i < n,

there exists p = (p0, …, pn −2) partial tsau of A that captures (u0, …, un−1), 
i.e., that satisfies

	 ui ⊆ dom(pi) and ui+1 ⊆ ran(pi),    for all 0 ≤ i < n − 1,

The next proposition follows directly from the definition.

Proposition 6. I f there exists a TST4-model A that satisfies the |A|+-cap-
turing property, then NF is consistent.

This now raises the question of whether it is equally difficult to find 
TST4-models A that satisfy the |A |-capturing property. It turns out that 
finding such models is quite easy.

Capturing Lemma. A ll models of TST ∞
4 (2) satisfy the ω-capturing property.

Proof. Let A = (A0, A1, A2, A3, εA) be a model of TST ∞
4 (2), and let u0, u1, 

u2, u3 be sets such that
	 ui ⊆ Ai and |ui| < ω,    for 0 ≤ i ≤ 3.

We will show that there exists a partial tsau of A that captures (u0, u1, u2, u3). 
By the Collapsing Lemma, we may assume that A is an s.t. LTST4-structure, 
i.e., that εA is actually ∈. We may also assume that all u0, u1, u2, u3 have 
the same number of elements n, for some n > 0 (if they do not, we may 
just expand them by adding some arbitrary elements). We enumerate each 
one of these sets and let

	 u0 = {a1, …, an},
	 u1 = {x1, …, xn},
	 u2 = {yn+1, …, y2n}, and
	 u3 = {z2n+1, …, z3n}.

We will define elements
	 an+1, …, a3n ∈ A0,
	 xn+1, …, x3n ∈ A1,
	 y1, …, yn, y2n+1, …, y3n ∈ A2, and
	 z1, …, z2n ∈ A3,
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such that the partial function p = (p0, p1, p2) defined as
	 ai 

p0  xi 
p1  yi 

p2  zi,

for 0 < i ≤ 3n, is a partial tsau. The picture below shows p at this point.
	 a1	 x1	 •	 •
	 	 	 	
	 an	 xn	 •	 •
	 •	 •	 yn+1	 •
	 	 	 	
	 •	 •	 y2n	 •
	 •	 •	 •	 z2n+1

	 	 	 	
	 •	 •	 •	 z3n

Each row consists of the elements ai, p0(ai), p1(p0(ai)), p2(p1(p0(ai))). 
We will fill in the missing elements (marked as bullets) by a series of steps.

Step 1.  Finding candidates for an+1, …, a2n and a2n+1, …, a3n. Let
(i, S  )  ai, S

be an 1-1 mapping from {n + 1, …, 2n}× P  ({n+1, …, 2n}) to A0 −{a1, …, 
an}. Such a mapping exists, because A0 is large enough (infinite). We can 
think of ai, S as a candidate for ai, i.e., at some point of our construction we 
will choose a specific ai, S to be ai.

To find candidates for a2n+1, …, a3n, we first need to fix their relation with 
x1, …, xn. Let δ1, …, δn ∈ {−1, 1} be such that

x
δ1
1  ∩ … ∩ xδn

n  is infinite,

where xδi
i  is xi when δk = 1, and A0 − xi when δk = −1. The existence of 

δ1, …, δn follows from the fact that A0 is infinite. For each 2n < i ≤ 3n and 
S ∈ P  ({n + 1, …, 3n)} we choose a distinct ai, S ∈ xδ1

1  ∩ … ∩ xδn
n  ⊆ A0 

such that ai, S " {a1, …, an} ∪ {aj, S : n < j ≤ 2n ∧ S ∈ P  ({n + 1, …, 2n})}. 
Since xδi

i  ∩ … ∩ xδn
n  is infinite and we only need a finite number of such 

elements, this process is well defined. Notice that by definition, for all  
0 < j ≤ n, either

ai, S ∈ xj,    for all 2n < i ≤ 3n and S ∈ P  ({n + 1, …, 3n)},

or
ai, S ∈/ xj,    for all 2n < i ≤ 3n and S ∈ P  ({n + 1, …, 3n)},

We note that our intention is to use each ai, S, defined above, in such a 
way that the following statement is true,

“ai, S is a candidate for ai and belongs to any set xj, for which j ∈ S ”.
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Step 2.  Defining an+1, …, a2n and xn+1, …, x2n. For each n < i ≤ 2n, let
Yi = {x ∈ Pfin (A0) − {x1, …, xn} : ∀j ∈ {1, …, n}(aj ∈ x ↔ xj ∈ yi )
∧ ∀j ∈ {n + 1, …, 2n}∀S ∈ P  ({n + 1, …, 2n}) (aj, S ∈ x ↔ i ∈ S )
∧ ∀j ∈ {2n + 1, …, 3n}∀S ∈ P  ({n + 1, …, 3n}) (aj, S ∈ x ↔ i ∈ S )}.

Since Pfin(A0) is infinite, the sets Yn +1, …, Y2n are also infinite. We may there-
fore choose n distinct elements xn +1 ∈ Yn+1, …, x2n ∈ Y2n. By Lemma 1, we 
have that xn+1, …, x2n ∈ A1. Now, for each n < i ≤ 2n, let

ai = ai, S ,

where S = { j ∈ {n + 1, …, 2n} : xi ∈ yj}.
The definitions of Yn+1, …, Y2n and an +1, …, a2n imply that

	 ai ∈ xj ⇔ xi ∈ y j,  for all 0 < i ≤ 2n and n < j ≤ 2n.� (2)

Step 3.  Finding candidates for x2n+1, …, x3n. For each 2n < i ≤ 3n and S1 ∈ 
P({1, …, n}) let

Y'i, S1
 = {x ∈ Pfin(A0) − {x1, …, x2n} : ∀j ∈ {1, …, n}(aj ∈ x ↔ j ∈ S1)

∧ ∀j ∈ {n + 1, …, 2n}(aj ∈ x ↔ yj ∈ zi)
∧ ∀j ∈ {2n + 1, …, 3n}∀S ∈ P  ({n + 1, …, 3n}) (aj, S ∈ x ↔ i ∈ S)}.

Now, let
(i, S1, S2)  xi, S1, S2

be an 1-1 mapping from {2n + 1, …, 3n} × P({1, …, n}) × P({2n + 1, …, 
3n}) to Pfin(A0) − {x1, …, x2n} such that

xi, S1, S2
 ∈ Y'i, S1

.

Clearly, all sets Y'i, S1
 are infinite, so such a mapping exists. By Lemma 1, 

every xi, S1, S2
 is an element of A1.

Again, our intention is to use xi, S1, S2
 as a candidate for xi. The reason we 

indexed all these sets by S1 and S2 is that we want them to eventually satisfy 
the following,

aj ∈ xi, S1, S2
 ⇔ j ∈ S1,  for 0 < j ≤ n, and

xi, S1, S2
 ∈ yj ⇔ j ∈ S2,  for 2n < j ≤ 3n.

At this point our partially constructed tsau looks like this
	 a1	 x1	 •	 •
	 	 	 	
	 an	 xn	 •	 •
	 an+1	 xn+1	 yn+1	 •
	 	 	 	
	 a2n	 x2n	 y2n	 •
	 a2n+1, S	 x2n+1, S1, S2

	 •	 z2n+1

	 	 	 	
	 a3n,S	 x3n, S1, S2

	 •	 z3n
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(we have not decided yet which elements we should choose for a2n+1, …, 
a3n and x2n+1, …, x3n).

Step 4.  Defining y1, …, yn. For each 0 < i ≤ n, we let
Zi = {y ∈ Pfin(A1) − {yn +1, …, y2n} : ∀j ∈ {1, …, 2n}(xj ∈ y ↔ aj ∈ xi)
∧ ∀j ∈ {2n + 1, …, 3n}∀S1 ∈ P({1, …, n}) ∀S2 ∈ P({2n + 1, …, 3n})
(xj, S1, S2

 ∈ y ↔ ∃S ∈ P({n + 1, …, 3n}) (aj, S ∈ xi))}.

Since, all the sets Z1, …, Zn are infinite, we can choose n distinct elements 
y1 ∈ Z1, …, yn ∈ Zn.

By the definition of Z1, …, Zn, we get that
	 ai ∈ xj ⇔ xi ∈ yj,  for all 0 < i ≤ 2n and 0 < j ≤ n.� (3)

Step 5.  Defining a2n+1, …, a3n, x2n +1, …, x3n, and y2n +1, …, y3n. For each 
2n < i ≤ 3n, we let

Z'i = {y ∈ Pfin(A1) − {y1, …, y2n} : ∀j ∈ {1, …, 2n}(xj ∈ y ↔ yj ∈ zi)
∧ ∀j ∈ {2n + 1, …, 3n}∀S1 ∈ P({1, …, n})∀S2 ∈ P  ({2n + 1, …, 3n})
(xj, S1, S2

 ∈ y ↔ i ∈ S2)}.

Clearly, the sets Z'2n+1, …, Z'3n are infinite, so again we may choose n distinct 
elements y2n+1 ∈ Z'2n+1, …, y3n ∈ Z'3n. By Lemma 1, we know that y2n+1, …, 
y3n are elements of A2.

For each 2n < i ≤ 3n, let
xi = xj, S1, S2 ,

where S1 = { j ∈ {1, …, n} : yj ∈ zi } and S2 = { j ∈ {2n + 1, …, 3n} : yi ∈ zj}.
Also, for each 2n < i ≤ 3n, let

ai = ai, S ,

where S = { j ∈ {n + 1, …, 3n} : xi ∈ yj}.
The definitions of a2n+1, …, a3n, x2n+1, …, x3n, and Z'2n+1, …, Z'3n imply that

	 ai ∈ xj ⇔ xi ∈ yj ⇔ yi ∈ zj,  for all 0 < i ≤ 3n and 2n < j ≤ 3n.� (4)

Furthermore, looking back at the definitions of ai, S and Z1, …, Zn, we get 
that

	 ai ∈ xj ⇔ xi ∈ yj,  for all 2n < i ≤ 3n and 0 < j ≤ n.� (5)

Step 6.  Defining z1, …, z2n. Finally, for each 0 < i ≤ 2n, let
zi = {yj : xj ∈ yi ∧ 1 ≤ j ≤ 3n} ∪ {y'i},

where y'1, …, y'2n are any 2n distinct elements of A2 − {y1, …, y3n}. Lemma 1 
implies that z1, …, z2n are elements of A3.

By the definition of z1, …, z2n, we have that
	 xi ∈ yj ⇔ yi ∈ zj,  for all 0 < i ≤ 3n and 0 < j ≤ 2n.� (6)
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We define p = (p0, p1, p2) to be the mapping

u0 
p0  u1 

p1  u2 
p2  u3

where
ai 

p0  xi 
p1  yi 

p2  zi,

for all 0 < i ≤ 3n. Notice that the construction above ensures that p is well-
defined and 1-1, because we were always careful in choosing distinct new 
elements. Moreover, (2)–(6) imply that

ai ∈ xj ⇔ xi ∈ yj ⇔ yi ∈ zj,

for all 0 < i, j ≤ 3n. We conclude that p captures (u0, u1, u2, u3), and satis-
fies all the requirements for being a partial tsau.� 

Corollary 7. There exist models A of TST4 that satisfy the |A|-capturing 
property.

Proof. Let A = (A0, A1, A2, A3, εA) be any countable model of TST ∞
4 , i.e., 

a model such that |A0| = |A1| = |A2| = |A3| = ω. The corollary follows directly 
from the Capturing Lemma.� 

4.  Conclusion

We believe that our present work reveals an interesting new aspect of the 
consistency problem for NF, namely its connection with the notions of 
partial tsau and the “capturing property”. In addition, we think that our 
results raise important issues that can help us gain a better understanding 
of why it is so hard to construct tsaus of TST ∞

4 -models. Below, we state 
some of these issues, which are probably worth exploring even indepen-
dently from the problem of consistency for NF.
Question 1.  Does Corollary 7 hold for any uncountable cardinality |A|?
Question 2.  Notice that the definition of the “capturing property” refers to 
external cardinality, i.e., cardinality with respect to our metatheory. Can we 
establish some useful result resembling the Capturing Lemma by altering 
the definition of the “capturing property” to refer to internal cardinality, i.e., 
cardinality in the TST4-model?
Question 3.  Can we refine the methods used in the proof of the Capturing 
Lemma to construct tsaus for Fraenkel-Mostowski models of TST ∞

4  ? The 
underlying idea of constructing partial tsaus was to use finite sets to approx-
imate infinite ones. The reason we did this is that unlike infinite sets, finite 
sets are easy to manipulate. By focusing on Fraenkel-Mostowski models, 
we have more control on what kind of infinite sets exist in our universe, 
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and therefore it could be easier to find approximations when constructing a 
tsau.
Question 4. I s there any uncountable model A = (A0, A1, A2, A3, εA) of 
TST ∞

4  , with |A0| = |A1| = |A2| = |A3| = |A|, that fails the κ-capturing property 
for some ω < κ < |A|? These models can be regarded as highly problematic 
with respect to the consistency of NF.
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