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On distinguishing proof-theoretic 
consequence from derivability

Nissim Francez*

1.  Introduction

According to the common conception of logical consequence (see, for exam-
ple, the recent book [20]), it can be defined1 in two main ways:

Model-theoretically: For a suitable notion of a model, consequence is 
taken, following Tarski’s definition [32], to be preservation (also called 
propagation2 or transmission) of truth over all models. After defining 
M  ϕ, namely truth (or satisfaction) of a formula ϕ in a model M (usually 
by recursion on the structure of ϕ), and after naturally extending to 
collections3 (most often sets, as in classical logic) of formulas Γ by

	 M  Γ iff M  ϕ for every ϕ ∈ Γ� (1)

one defines logical consequence, also denoted ‘’, by

	 Γ  ϕ iff for every model M, if M  Γ then M  ϕ� (2)

This propagation of truth is taken to be endowed with the following char-
acteristics:

necessity:   � Here manifested by the universal quantification over all 
models.

formality: � The truth in models is in virtue of (logical) form, depending4 
on the logical constants and their arrangement.

*  A talk based on this paper was presented at the conference General Proof Theory: Cel-
ebrating 50 Years of Dag Prawitz’s “Natural Deduction”, Tuebingen, Germany, November 
2015.

1 F or simplicity, I will not consider here multiple-conclusion (Scott) consequence.
2 I  will ignore here for simplicity dual definitions as backward transmission of falsity, 

though in certain cases it gives rise to different conceptions of logical consequence (cf. [34]).
3 I  consider only finite Γs here.
4 T he idea may be applied also to more general notions of consequence, that do not depend 

on the logicality of terms. See [30] for an argument to this effect in a model-theoretic setting.
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Proof-Theoretically: For a suitable proof-system N (which I will take here 
as a natural-deduction proof-system), consequence is taken as derivability 
in N, denoted ‘N’; after defining derivations D in N, one defines

Γ N ϕ iff there exists an N − derivation D of ϕ 
	 from (open) assumptions Γ� (3)

Typically, (strong) soundness and completeness theorems, that is
	 Γ N   ϕ  iff Γ  ϕ� (4)

establish the coextensiveness of those two notions of consequence. For 
example, this relation holds in classical 1st-order logic, where N is taken 
as Gentzen’s NK system, and for Intuitionistic logic (say, with Kripke 
models), where N is taken as Gentzen’s NJ system. According to this view, 
logical consequence is closely related5 to the validity of the argument from 
the assumptions Γ to the conclusion ϕ.

The idea that logical consequence involves preservation of something, 
not necessarily of truth, has been suggested by many. Some examples:

Information: For example, in [19] and [1], propagation of the information 
(in a situation) is underlying consequence of Relevant Logic. Also, in 
[2], propagation of structural features of information underlies logical 
consequence.

Ambiguity: This notion6 is due to [3], suggesting to treat a proposition p 
ambiguously as two different propositions, pt and pf . A  measure of 
ambiguity of an inconsistent Γ is defined as the minimal number of prop-
osition in Γ the treatment of which as ambiguous renders Γ consistent. 
In [3], propagation of ambiguity is used for defining consequence for 
paraconsistent logics. In [6], consequence for Relevant Logics is defined 
by preservation of ambiguity.

Precisification: In the context of vagueness, there is an appeal to super-truth 
(i.e., truth in all precisifications) in defining logical consequence (see [34]). 
One formulation of logical consequence is by preservation7 (or propaga-
tion) of super-truth.

A natural question arising is, what is common to all the “things” being sug-
gested as preserved, or propagated, by the various consequence relations 

5  A notable exception is [31].
6  Note that ‘ambiguity’ here a technical term, different in meaning from the usual use of 

this word, namely having two (or more) meanings in some theory of meaning. Thus, ambi-
guity of p here is not an intrinsic attribute of p.

7  As shown in [34], there are several natural variants for the meaning of preservation in 
this context.
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mentioned above. I want to argue that they all serve (either explicitly or 
implicitly) as central concepts on which theories of meaning are based.

Two of the main theories of meaning are the following.

Model-Theoretic Semantics (MTS): The central concept of MTS is truth 
(in arbitrary models). Meaning is defined8 as truth-conditions.

Proof-Theoretic Semantics (PTS): The central concept of PTS is proof, 
or more generally, canonical derivation (explained below) in appropriate 
meaning-conferring proof-systems. Meaning is defined as determined 
by the rules of the meaning-conferring system. The definition is either 
implicit, or explicit as in [8]. For a detailed account of PTS see [12].

The other propagated “things” mentioned above have a similar role in 
theories of meaning for Relevant Logic, general paraconsistent logics and 
for languages with vagueness. Other kinds of theories of meanings include, 
for example, Game-Theoretic semantics and Category-Theoretic semantics, 
which I will not consider here.

Consequently, I suggest the following informal principle.

meaning-based logical consequence: In a theory of meaning T, logical 
consequence is based on the propagation of the central concept of T.

By being faithful to a theory of meaning I mean relating the notion of ϕ 
being a logical consequence (logically following from) Γ on the meanings 
of ϕ and Γ as determined by that theory of meaning.

In this paper I want to argue that, in spite of the coextensiveness for 1st-
order logic (and many other logics) of derivability and preservation of truth 
in models (as in (4)), if one adheres to the proof-theoretic semantics theory 
of meaning then (3) is not the right definition of proof-theoretic conse-
quence. While (2) is faithful to the usual model-theoretic conception of 
meaning, (3) is not faithful to the PTS conception of meaning.

I suggest another definition of proof-theoretic consequence that is faithful 
to PS, sometimes (i.e., for some logics) coextensive with derivability, and 
sometimes – not.

2.  Meaning according to proof-theoretic semantics

Ever since Gentzen’s casual remark in [17], p. 80)
... The introductions represent, as it were, the ‘definitions’ of the symbol 
concerned, and the eliminations are no more, in the final analysis, than the 
consequences of these definitions. …

8 I  will not distinguish here general model theoretic meaning and truth-conditional meaning.
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(where ‘introduction’ and ‘elimination’ refer to rules of a natural-deduction 
proof-system, to be abbreviated as I-rules and E-rules, respectively), the 
meaning of a logical constant (connective, quantifier, etc.) is taken to be 
determined (or fixed) solely in proof-theoretic terms, which is the essence 
of PTS. According to Gentzen, it is the I-rules that determine the proof-
theoretic meanings, an approach adhered to by mainstream PTS, e.g. 
Dummett (for  example, [4]), Prawitz (for example, [25]), Tennant (for 
example, [33]) and many others. Call this the I-view of PTS. There is also 
a dual approach, basing meaning on E-rules; see [8] for a more detailed 
discussion of those different views. I will retain the I-view in this paper.

In the PTS literature, meaning is conceived as implicitly defined 9 by the 
I-rules, not appealing to any proof-theoretic semantic value as an explicit 
definition. However, for several purposes, for example the construction of 
a grammar, such an explicit definition is needed. In model-theoretic 
semantics (MTS), where meaning is taken as truth-conditions (in arbitrary 
models), the explicit definition of meaning is usually taken as the following 
semantic value.
	 ϕ  = {M | M  ϕ}� (5)

Note that MTS is not interested in assigning semantic values to the logical 
constants themselves, so no definitions of ∧ ,  ∀   and the like are 
considered.

But what exactly can be taken as an explicitly defined proof-theoretic 
semantic value within PTS as the result of the determination of meaning 
via the meaning-conferring I-rules?

In [13], and subsequently in [8], such a proof-theoretic semantic value is 
proposed as an explicit definition of meaning. I recapitulate this proposal below.

An important concept in PTS is that of a canonical proof in N, where a 
proof of some compound ϕ is a derivation of ϕ from no open assumptions 
(an empty Γ). I take here derivations to have the Prawitz-style [24] tree-
structure.

Definition 1 (canonical proof).  A proof D in N is canonical iff the last rule 
applied in D is an I-rule.

To define proof-theoretic consequence, there is a need to extend cano- 
nicity to arbitrary N-derivations, including ones with open assumptions. 

9 T here are approaches, though, like Engel [5], Hjortland [18] and Garson [15, 16] 
according to which the goal of PTS is viewed as the ability to reconstruct (or recover) the 
truth-tables (also for multi-valued logics) from the ND-rules. It is claimed by these authors 
that PTS achieves its goal of determining meaning in virtue of this ability to recover truth-
conditions. Thus, we are back to truth in a model as the meaning determined. While seeing 
this feature of proof-system as interesting on its own, I consider this approach to the goal 
of PTS as beating the purpose of PTS and am not going to relate to it any further.
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Following [7] and [10], I suggest the following definition. Its justification 
is discussed in detail in [10].

Definition 2 (canonical derivation from open assumptions).  A N-deri-
vation D for Γ    ψ (for a compound ψ) is canonical iff it satisfies one of 
the following two conditions.

• � The last rule applied in D is an I-rule (for the main operator of ψ).
• � The last rule applied in D is an assumption-discharging E-rule, the 

major premise of which is some ϕ in Γ, and its encompassed sub-
derivations D1, …, Dn are all canonical derivations of ψ.

Denote by c
N canonical derivability in N. Let ϕ

c
Γ  the (possibly empty) 

collection of canonical derivations of ϕ from Γ, and ϕ ∗
Γ the (also possibly 

empty) collection of all derivations of ϕ from Γ.

For Γ empty, the definition reduces to Definition 1 of a canonical proof. 
Note the recursion involved in this definition. The important observation 
regarding this recursion is that it always terminates via the first clause, 
namely by an application of an I-rule. I refer to such an application of an 
I-rule as an essential application, the outcome of which is propagated 
throughout the canonical derivation. Note that each sub-derivation Di may 
end with an essential application of an I-rule, thus having “parallel” essen-
tial applications of that rule.

Note also that, similarly to the case of canonical proofs, there are no 
canonical derivations for an atomic sentence, which by definition has no 
introducible operators. Traditionally, the PTS programme views the meaning 
of an atomic sentence to be given, possibly from outside the meaning-
conferring proof system. To overcome this non-specificity, I take10 here the 
rule of assumption Γ, p   p to constitute the canonical way an atomic sen-
tence is introduced into a derivation.

To realize the role of canonicity in the forthcoming definition of reified 
proof-theoretic meanings (according to the I-view), consider the following 
example derivation in, say, intuitionistic propositional logic (see Figure 1).

	 α  (α → (ϕ∧ψ))
ϕ∧ψ  (→ E )� (6)

This is a derivation of a conjunction – but not a canonical one, as it does 
not end with an application of (∧  I ), nor does it have an essential application 
of it. Thus, the conjunction here was not derived according to its meaning!  
As far as this derivation is concerned, it could mean anything, e.g., disjunction. 

10 T his possibility was suggested to me by Andreas Fjellstad (p.c.).
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On the other hand, the following example derivation is according to the 
conjunction’s meaning, being canonical.

	
α  (α → ϕ)

ϕ
 (→E )  β  ( β → ψ)

ψ
 (→E )

ϕ∧ψ
 (∧I ) � (7)

I now turn to the definition of what I take to be the reified proof-theoretic 
meaning determined by a meaning-conferring ND-system (see [8] for a 
more detailed discussion). The definition of meaning presented below 
corroborates, and makes precise, a common observation about PTS (cf. for 
example, [21, 23] for recent discussions): sentential meanings, while being 
compositional, are not directly compositional. The reason here is, that on 
the I-based approach, an I-canonical N-derivation may have as immediate 
sub-derivations, premises of the essential application of the I-rule, arbitrary 
N-derivations, not just canonical derivations. Due to the recursive nature 
of L, where sentences may be constituents of other sentences, there is an 
“interfacing” function applied to the meaning of a sentence, a collection of 
I-canonical derivations, yielding the collection of all the derivations (from 
the same context Γ) of that sentence. However, this does not mean that 
sentential meanings do not depend on their component phrases: only that 
the dependence is somewhat indirect. This is reflected here by having the 
ND-rules determining two semantic values, matching Dummett’s distinction 
([4], p. 48) between (assertoric) contents and ingredient sense. The content 
of ϕ is the meaning of ϕ “in isolation”, on its own. The ingredient sense of 
ϕ is what ϕ contributes to the meaning of an ψ, in which ϕ occurs as a sub-
expression, a component. See [9] for a more detailed discussion of this 
issue.

For a formula ϕ, the one semantic value, corresponding to Dummett’s 
content, is its contributed value ϕ  , serving also as its meaning; the other, 
auxiliary, semantic value, corresponding to Dummett’s ingredient sense, is 
its contributing semantic value ϕ  ∗, used when ϕ is part of some larger 
expression ψ. As shown below, ϕ  ∗ can be recovered from ϕ  , but the 
presentation seems clearer if the two are thought of as if independent.

I take the I-based sentential meanings (i.e., contributed sentential 
semantic values) of compound sentences in L to originate from canonical 
N-derivations. On the other hand, the contributing semantic sentential value 
(for both atomic and compound sentences) is taken as the collection of all 
(not just canonical) N-derivations. I emphasize once again, that it is sen-
tential meanings that are directly explicitly defined by the ND-system, 
whereas meanings of connectives are extracted from compound sentential 
meanings as shown in [14]. In the sequel, I refer to functions from contexts 
to collections of ND-derivations as contextualized functions. To avoid 
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cluttering the notation, I overload the meaning of …  , leaving it to context 
to determine the variant meant. The notation used is λΓ. …  , meaning the 
appropriate (possibly empty) collection of derivations from an argument 
context Γ.

Definition 3 (sentential semantic values).  For a compound ϕ   L, its 
meaning (contributed semantic value) ϕ  , is given as follows.

	 ϕ  = λΓ. ϕ c
Γ � (8)

For an arbitrary (atomic or compound) ϕ   L, its contributing semantic 
value is given as follows.

	 ϕ ∗ = λΓ. ϕ ∗
Γ� (9)

In order to relate the auxiliary contributing semantic value to the con-
tributed semantic value, the meaning, the following auxiliary function, 
ex (for ‘exportation’) is defined, retrieving the collection of all derivations 
of ϕ from Γ (if any) from the canonical ones.

Definition 4 (exportation function).

	 ex (  ϕ  )  = df.  λΓ.    ρ (  ϕ  ) ∗
Γ � (10)

Here11 ρ([[ϕ]]) = ϕ.

The following immediately holds, relating the auxiliary semantic value 
to meanings.

	 ϕ ∗ = ex(  ϕ  )� (11)

By abuse of notation for convenience, I use ρ(  ϕ  ) also for atomic ϕ, 
even though ϕ  is not based on application of I-rules. Note that the deno-
tational meaning of ϕ is a proof-theoretic object, a contextualized function 
from contexts to the collection of (I/E-canonical) derivations of ϕ from that 
context, not to be confused with model-theoretic denotations (of truth- 
values, in the propositional logic case).

3.  Proof-theoretic consequence

The definition of proof-theoretic consequence (pt-consequence) rests on 
the notion of grounds for assertion for ϕ, closely related to ϕ , the reified 
meaning of ϕ.

11 I  assume here that there is at most one ϕ s.t. ϕ  = λΓ.∅
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Definition 5 (grounds for assertion).

	 GA ϕ   = {Γ | Γ c ϕ}� (12)

Thus, any Γ that canonically derives ϕ serves as grounds for assertion of ϕ. 
For the methodological role of this concept in the theory of meaning adhered 
to by PTS, see [4]. The notion of grounds considered here is different than, 
though in the same spirit as, the grounds considered by Prawitz in [26]. The 
grounds here are formal constructs, collections of sentences (assumptions) 
canonically deriving a sentence (conclusion). On the other hand Prawitz 
considers grounds as mental counterparts, associated with possession of the 
formal grounds and justifying the epistemic acts of inference, assertion (and 
in the bilateral case [29], also denial).

Definition 3 yields a very fine-grained notion of meaning. One may 
wish to coarsen it on certain occasions, still retaining its spirit. This is dis-
cussed in detail in [11], where a relaxation by means of an equivalence 
relation induced by sameness of grounds is suggested. If we let ϕ ≡GA ψ iff 
GA   ϕ  = GA   ϕ  , we have for example ϕ   ψ ≡GA ψ   ϕ, and ϕ   (ψ   χ) ≡GA 
(ϕ   ψ)   χ. Still, ϕ     ψ _GA ϕ   ψ, for example, So sameness of mean-
ing does not collapse to boolean equivalence.

Next, I need an extension of the definition of the grounds for assertion 
of a single sentence to grounds for the collective assertion of a finite, non-
empty collection of sentences, say ∆. There are two12, 13 natural possibilities 
here, distinguished by the way assumptions are combined.

common grounds:
	 GAc   ∆  =df. ∩ψ∈∆ GA  ϕ � (13)

This is a conjunctive combination of the grounds of the individual 
assumptions in Γ, the same as the one in (1) in the MTS case.

joint grounds:

	 GAj   ∆  =df. ○ψ∈∆ GA  ϕ � (14)

where ‘○’ is fusion, known also as intensional conjunction. Since fusion 
is known to be commutative and associative, it is well-defined to apply 
it to a set of formulas, yielding the fusion of all formulas in the 
set; if the set is empty, the unit elemen  results. In the formulation of 

12 I n contrast to (1) in MTS, being traditionally the only way, the conjunctive way, of 
combining assumptions.

13 A  similar distinction between ways of combining assumptions can be found in [22], 
in the interpretation of a (multiple-conclusions) sequent as an object-language formula.
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multiplicative rules below, in order to avoid notational clutter I keep 
the context as Γ, but interpreted as ○Γ = df.  ○ψ ∈ Γ ψ.

In both cases, GA  {ϕ}   = df.  GA  ϕ .
The difference between conjunction and fusion originates in the I-rules 

for conjunction being additive (or shared context), while the I-rules for 
fusion are multiplicative (context free), as evident from their I-rules.

	 Γϕ  Γψ
Γϕ∧ψ

 (∧I )    Γ1ϕ  Γ2ψ
Γ1○Γ2ϕ○ψ

 (○I )� (15)

By the above remark on the interpretation of the context, it is the fusion of 
all the formulas in the context, and a unity formula T if the context is empty.

Recall that conjunction has two general-elimination rules (GE-rules), 
given by

	 Γϕ∧ψ  Γ,ϕχ
Γ χ

 (∧GE1)    Γϕ∧ψ  Γ,ψχ
Γ χ

 (∧GE2 )� (16)

that can be simplified (assuming the structural rule of weakening) to the more 
familiar

	 Γϕ∧ψ
Γ ϕ

 (∧E1)    Γϕ∧ψ
Γ ψ  (∧E2)� (17)

Thus, conjunction projects each conjunct separately.
On the other hand, fusion has a single GE-rule, given by

	 Γϕ○ψ  Γ,ϕ,ψχ
Γχ  (○GE )� (18)

which does not simplify, hence projecting both conjuncts simultaneously. 
When I want to remain neutral regarding this difference in combining grounds, 
I will speak generically of “collective grounds”, with a generic notation 
GA  ∆  (without a qualifying superscript).

Based on the definitions of grounds combination, I define two notions of 
proof-theoretic consequence (pt-consequence).

Definition 6 (proof-theoretic consequences).  Let Γ, ψ ∈ L.

conjunctive pt-consequence: ψ is a conjunctive proof-theoretic consequence 
of Γ(Γ c ψ) iff GAc    Γ   GA  ψ  .

fused pt-consequence: ψ is a fused proof-theoretic consequence of  
Γ(Γ j ψ) iff GAj  Γ  ⊆ GA  ψ  .

Thus, both pt-consequences are based on grounds propagation: every 
collective grounds for collectively asserting all of Γ (depending on the 
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mode of combination of grounds employed) are already grounds for assert-
ing ψ.

By this definition, ψ is a pt-consequence of Γ according to ψ’s meaning 
as pt-consequence involves canonical derivability.

A difference between the two ways of combining grounds is that the 
second captures a notion of “relevant grounds”, while the first does not. 
Thus, the pt-consequence ‘c’, resting on common grounds, leads to a 
classical-like consequence relation, whereby a contradicting ∆ (with empty 
common grounds) has every ϕ as its consequence (explosion), and a valid 
ψ is a pt-consequence of every ∆. On the other hand, pt-consequence ‘j’, 
resting on joint grounds, leads to a relevant-like consequence relation. For 
a detailed discussion of this point in MTS see [28]. I personally prefer the 
second definition. However, this point is orthogonal to the main purpose of 
this paper, the separation of pt-consequence from derivability.

Proposition 1 (properties of conjunctive pt-consequence). pt-consequence 
satisfies the following expected properties.

1.  ϕ c ϕ
2.  If Γ c ϕ and ϕ, Γ' c ψ then Γ, Γ' c ψ.
3.  For every Γ', if Γ c ϕ then also Γ, Γ' c ϕ.

In other words, conjunctive pc-consequence is reflexive and transitive 
since inclusion is14. In addition, conjunctive pt-consequence is monotonic.

As for the fused pt-consequence, while also being reflexive and transi-
tive, it is not monotonic. For example, ϕ j ϕ, but ϕ, ϕGj ϕ, since ‘◦’ is 
known not to be idempotent.

As is expected from a notion of consequence, pt-consequence has a 
modal force of necessity, as manifested by the universal quantification on 
grounds, the counterpart of the universal quantification over models in the 
MTS definition of consequence.

Example 1 (pt-consequence:).  I show that in intuitionistic propositional logic 
(specified below)

	 ϕ → (ψ → χ)  ϕ ∧ ψ → χ� (19)

As we are dealing with a single assumption, the mode of combining 
assumptions does not matter here.

14 N ote that the reflexivity is in virtue of the reflexivity of inclusion, and not in virtue 
of axioms of the form ϕ N ϕ which are not canonical derivations (except for atomic ϕ).
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Suppose that Γ ∈ GA  ϕ → (ψ → χ)  . A canonical derivation of ϕ → (ψ → χ) 
from Γ ends with (→ I ). Therefore 

	 Γ, ϕ  ψ → χ� (20)

which, in turn, implies
	 Γ, ϕ, ψ  χ� (21)

But then, Γ, ϕ   ψ   χ too, by which Γ c   ϕ   ψ →  χ, implying Γ ∈ GA  ϕ   
ψ →  χ   ; i.e. the grounds Γ have been propagated from assumption to con-
clusion, establishing pt-consequence.

A simple example of fused pt-consequence is the following.

Example 2 (fused pt-consequence):

	 ϕ, ψ j ϕ ◦ ψ� (22)

If Γ1  ∈  GA  ϕ  and Γ2 ∈ GA  ψ  , then Γ1 ◦ Γ2 ∈ GA  ϕ, ψ  . But Γ1 ◦ Γ2 ∈ 
GA  ϕ ◦ ψ  by one application of (◦I ) above.

Definition 7 (smoothness). An ND-system N is proof-theoretically smooth 
iff for every Γ and every compound ϕ:

	 Γ N ϕ iff Γ c
N  ϕ� (23)

That is, a compound ϕ is N-derivable from Γ iff it is canonically derivable. 
In other words, in a smooth N, derivability is coextensive with pt-conse-
quence. This is another formulation of Dummett’s Fundamental Assumption 
(FA) [4], extended from proofs to derivations from open assumptions. It is 
also yet another view of harmony and stability [4], the properties seen by 
PTS as required for the ND-system qualifying as meaning conferring.

Proposition 2 (smoothness of NJ).  The ND-system NJ (for propositional 
intuitionistic logic, Figure 1) is proof-theoretically smooth.

Proof. Suppose Γ NJ ϕ for a compound ϕ. I show Γ c
NJ ϕ by induction on 

the derivation.
The basis of the induction are identity derivations Γ, ϕ NJ ϕ. Here it is 

known15 that every such derivation can be expanded to a canonical deriva-
tion, eliminating ϕ by E-rules and reconstructing it via I-rules.

For the induction step, only derivations ending with an application of an 
E-rule need to be considered.

15 T his is the η-expansion in the simply-typed λ-calculus.
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Γ, ϕNJ ϕ 
(Ax)

Γ, ϕ NJ ψ
ΓNJ (ϕ→ψ) (→I)

ΓNJ ψ  ΓNJ (ψ→ϕ)
ΓNJ ϕ (→E)

ΓNJ ϕ
ΓNJ (ϕψ) (1I)

ΓNJ ψ
ΓNJ (ϕψ) (2I)

ΓNJ (ϕψ)  Γ, ϕNJ χ  Γ, ψNJ χ
ΓNJ χ (E )

ΓNJ 
ΓNJ ϕ (E )

ΓNJ ϕ  ΓNJ ψ
ΓNJ (ϕψ) (I)

ΓNJ (ϕψ)
ΓNJ ϕ (1E )

ΓNJ (ϕψ)
ΓNJ ψ (2E )

Figure 1: T he propositional intuitionistic NJ-system

conjunction: Suppose

	
ΓNJ ϕψ

ΓNJ ϕ (E1)

By the induction hypothesis on the premise, there is a canonical derivation

	
ΓNJ ϕ  ΓNJ ψ

ΓNJ ϕψ (I)

and by the induction hypothesis on ΓNJ ϕ also Γ c
NJ ϕ.

The proof for (∧E2) is similar.

implication: Suppose

	 ΓNJ ψ  ΓNJ ψ→ϕ
Γ NJ ϕ (→E)

By the induction hypothesis on the minor premise, we get Γ c
NJ ψ.  

By the induction hypothesis on the major premise, there is a canonical 
derivation Γ c

NJ ψ →   ϕ. Therefore, there is a canonical derivation 
Γ, ψ c

NJ ϕ. By composing the canonical derivations Γ  c
NJ ψ and Γ, 

ψ   c
NJ ϕ we get a canonical derivation Γc

NJ ϕ.

disjunction: Suppose16

ΓNJ ψχ  Γ, ψNJ ϕ  Γ, χNJ ϕ
Γ NJ ϕ (E )

16 I  thank the anonymous referee for suggesting this proof, simpler than my original one.
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By the induction hypotheses on the major premise, there is a canonical 
derivation Γ c

NJ ψ ∨  χ. Thus, either there is a canonical derivation (∗)  
Γc

NJ ψ or there exists a canonical derivation (∗∗) Γ c
NJ χ. Suppose w.l.o.g. 

that the former is the case. By the induction hypothesis on the first minor 
premise, there is a canonical derivation (∗∗∗) Γ, ψ c

NJ ϕ. Composing 
(∗) with (∗∗∗) yields the required canonical derivation Γ c

NJ ϕ.

⊥: Suppose that
ΓNJ 
ΓNJ ϕ (E )

The proof proceeds by case analysis on ϕ.

ϕ = ψ ∧ χ:  The canonical derivation of ϕ is
ΓNJ 
ΓNJ ψ (E )

ΓNJ 
ΓNJ χ (E )

ΓNJ ψ∧χ
(∧I )

ϕ = ψ →  χ:  The canonical derivation of ϕ is
Γ,ψ   NJ
Γ,ψ  NJχ

(E )

ΓNJ ψχ
(I )

ϕ = ψ ∨ χ:  The canonical derivation of ϕ is

ΓNJ
ΓNJ ψ

(E )

ΓNJ ψ∨χ
(∨I )

Recall that for NJ negation is not primitive. It is defined by ϕ =df. ϕ. 
So the case of negation is covered by the the general case of implication.�
� 

As for classical logic, suppose we consider the version of NK obtained by 
adding to NJ the rule for double-negation elimination.

ΓNK ϕ
ΓNK ϕ (DNE )

Proposition 3 (non-smoothness of NK).  The ND-system NK (for proposi-
tional classical logic) is not proof-theoretically smooth.

Proof.  If Γ NK ϕ was obtained by an application of (DNE) as the last rule, 
there need not exists a canonical derivation Γ c

NK ϕ.� 
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As there are harmonious and stable presentations of classical logic, for 
example [27] using multiple-conclusion ND, and [29], using bilateral ND, 
those systems are smooth too, once pt-consequence is naturally extended to 
multiple-conclusion and to bilateralism.

4.  Conclusions

The paper argues that proof-theoretic consequence should be separated 
from derivability, in spite of the fact that those two notions occasionally 
extensionally coincide, as is the case for intuitionistic logic. The argument 
is based on a general principle according to which a consequence relation 
is associated with a theory of meaning, and is defined by preservation 
(or propagation) of the central concept of that theory. The standard model-
theoretic notion of consequence is based on propagation truth in a model, the 
central concept of model-theoretic semantics. In analogy, proof-theoretic 
consequence should be based of canonical derivations (or grounds for 
assertion), the central concept of (one variant of) proof-theoretic semantics. 
This consequence relation may coincide with derivability for logics I called 
smooth, but need not coincide with derivability in general.

As I see matters, it remains a challenge to find a model-theoretic conse-
quence that is sound and complete for those cases that the standard model 
theoretic consequence, even if coinciding with derivability, does not coincide 
with proof-theoretic consequence as defined here.
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