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When Sleeping Beauty FirSt aWakeS
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Abstract

ever since its introduction, the Sleeping Beauty problem has been fought over by 
the halfers against the thirders. We distinguish three interpretations of the original 
problem as described in adam elga’s seminal paper on the subject. elga’s intended 
interpretation leads to the position of the thirders; but the other readings result 
in that of the halfers. We show that all three of these results can be obtained by 
making use of objective probabilities in a four-dimensional rather than a three-
dimensional space. Our reasoning avoids various problems, not only of Dutch 
Book and other subjectivist approaches, but also of earlier treatments in terms of 
objective probabilities.
Keywords:  Sleeping Beauty, probability, credence, hypothetical relative frequency.

1. Introduction

the story is well known: on Sunday evening, Sleeping Beauty, who is 
mathematically well schooled, is informed that a fair coin has just been 
tossed. She is further told that she will shortly be put to sleep for two days. 
If the coin landed heads, she will be briefly awakened on Monday, and put 
to sleep again; if it landed tails, she will be briefly woken up on Monday 
and on Tuesday. Moreover, all her memories of the Monday awakening 
will be erased from her brain. in the event that she is awakened on tuesday, 
she will be unaware that this is her second awakening: for all she knows, 
it might be Monday. She will however remember the rules of the game. 
after Beauty has received this information on Sunday evening, and before 
she is put to sleep, she is asked

“When you are first awakened, to what degree ought you to believe that the 
outcome of the coin toss is heads?” (elga 2000, 143).

the question has spurred an ongoing debate between thirders and halfers, 
with no agreement in sight.1

1 thirders are for example arntzenius 2003, Bovens 2010, Bovens and Ferreira 2010, 
Bradley 2003, Dieks 2007, Dorr 2002, Draper and pust 2008, elga 2000, groisman et al. 
2013, Hitchcock 2004, The Oscar Seminar 2008, Horgan and Mahtani 2013, Monton 2002, 
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in this paper we argue that the thirder position constitutes the answer to 
the question as elga intended it. There are however at least two different 
interpretations of elga’s question, and under both the answer of the halfers 
is correct. Moreover, all three of these answers can be obtained by reason-
ing based on objective probabilities or chances.

elga describes the Beauty scenario in terms of centred propositions, 
defined as sets of centred worlds. He arrives at his thirder position by using 
the subjectivist approach, based on credences rather than on objective prob-
abilities or chances. But while it may be true that many centred propositions 
cannot be assigned an objective probability, the Sleeping Beauty scenario 
is rather different. For it can be repeated, either in fact or in thought, thus 
opening the door to an objective treatment in terms of hypothetical relative 
frequencies. the key to this treatment is simply an application of David 
lewis’s principal principle (lewis 1980), according to which Sleeping 
Beauty’s rational credences match the calculated chances. the objective 
approach is also applicable to two different interpretations of elga’s question, 
both of which yield one half as an answer.

We will start our discussion of the Sleeping Beauty problem in subjectiv-
ist terms, notably in terms of Dutch Book considerations. this culminates 
in a particularly interesting contribution to the debate, namely that by peter 
lewis (lewis 2010). as lewis sees it, the problem springs from the unques-
tioned assumption that Beauty’s degree of belief that the coin came up 
heads is the same as her degree of belief that the coin came up heads and 
that it is Monday. both Adam elga and David Lewis, founding fathers of 
thirders and halfers respectively, endorsed this assumption (elga 2000; 
lewis 2001), and practically all participants in the debate have followed 
suit. peter lewis however claims that the assumption is false: Beauty’s 
credence in the uncentred ‘heads came up’ differs from her credence in the 
centred ‘heads came up and it is Monday’.

We discuss the Dutch book arguments, as well as peter lewis’s claim 
that beauty’s credence in ‘heads’ differs from her credence in ‘heads and it 
is Monday’, in Sect. 2. In Sect. 3 we describe a problem that Lewis has 
identified in his own approach: the conclusion he wants to defend seems to 
spark a counterintuitive reaction. lewis himself tries to solve this problem 
by taking further recourse to Dutch books. however, as we point out,  
Dutch book reasonings sometimes fail to give the final word, due to a lack 
of clarity about which fair betting odds determine which credences. thus 
we tend to agree with peter lewis when he concludes by saying that per-
haps “no Dutch book can be constructed” for Beauty’s credence in ‘heads’ 

titelbaum 2008, titelbaum 2012, Wilson 2013. among the halfers are Bradley and leitgeb 
2006, Cozic 2011, hawley 2013, D. lewis 2001, p. lewis 2007, p. lewis 2010, pust 2012, 
pust 2013, ross 2010, White 2006.
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which indubitably shows that it differs from her credence in ‘heads and it 
is Monday’ (Lewis 2010, 377).

We then propose a more satisfactory way to handle the problem than by 
using Dutch books, namely by using objective probabilities, based on the 
method of hypothetical relative frequencies. this objectivist argument is 
first described informally in Sect. 4 and then spelled out formally in Sect. 5. 
at the heart of the argument is the idea that the Beauty scenario involves 
a probability space of four rather than three dimensions. Consequently, as 
we will see, there are at least three ways in which elga’s question can be 
interpreted: we informally explain the three readings in Sect. 4, and give a 
more formal treatment in Sect. 5.

Our reasoning concerning the first of these interpretations resembles that 
of Terry Horgan (2004, 2007, 2008), but in Sect. 6 we explain how it differs: 
where horgan relies on what he calls ‘preliminary probabilities’, we use 
relative frequencies. As a result, Joel Pust’s objections to Horgan’s argu-
ment are not relevant to our approach (pust 2008, 2011, 2012). Sect. 7 is 
devoted to OSCar’s objectivist argument in favour of thirders. We identify 
a questionable assumption that is intrinsic to the OSCar approach, and 
explain how we can circumvent it.

in the debate about Sleeping Beauty it is customary to make use of the 
following abbreviations:

H : the coin landed heads.
T : the coin landed tails.
MOn : It is Monday.
tueS : it is tuesday.
H1 : The coin landed heads and it is Monday.
T1 : The coin landed tails and it is Monday.
T2 : the coin landed tails and it is tuesday.

here H and T are uncentred propositions, and MOn, TueS, H1, T1, and 
T2 are all centred ones. in the sequel we will adopt these abbreviations. 
In Sect. 5, where we explain our argument in formal detail and argue that 
we need a probability space of four rather than three dimensions, we will 
introduce two more propositions and we will make further distinctions in 
the class of centred propositions.

2. Dutch Books

Soon after Sleeping Beauty’s plight became known to the philosophical 
world, attempts were made to palliate it by making use of Dutch book 
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arguments. the basic idea here is that, since Beauty is a perfectly rational 
agent, she will not be liable to a (synchronic or diachronic) Dutch book. 
Her credences, reflected in the odds at which she considers a bet on H to 
be fair, are such that no bookie will ever be able to turn her into a money 
pump. hence any answer to the original question that does transform 
Beauty into a money pump does not reveal her credences. Conversely, any 
answer that demonstrably protects her from such a monetary mishap is 
prima facie a reply to elga’s question “When you are first awakened, to 
what degree ought you to believe that the outcome of the coin toss is 
heads?”. The problem however is that people have different ideas about 
what constitutes a fair bet for Beauty, and thus disagree about what her 
credences are. We shall illustrate this difficulty by sketching very briefly a 
number of Dutch book arguments.

everyone in the Sleeping Beauty debate agrees that on Sunday, before 
she is put to sleep, Beauty’s credence in H is one half, P−(H) = 12.2 the ques-
tion is whether her credence on Monday after her first awakening, P(H), is 
still one half. the following Dutch book argument suggests that it is.

Imagine that beauty is offered a bet on H on Sunday, before she is put 
to sleep. given that P−(H) = 1

2, Beauty will consider odds of 1:1 to be fair. 
now imagine that she is offered a second bet on H on Monday, after her 
awakening. then the only way for her to avoid a Dutch book is by again 
adopting odds of 1:1. that is, P(H) must still be one half, for otherwise she 
could be turned into a money pump (lewis 2010, 374).

Christopher hitchcock (2004) disagrees. he notes that the above argu-
ment is not a genuine Dutch book. the bookie can only make the second 
book if he knows that it is Monday, and not Tuesday. Sleeping beauty 
however cannot distinguish between those days, so there is an epistemic 
asymmetry which in Dutch book arguments is not allowed. in order to make 
it a legitimate Dutch book argument, the bookie should be subjected to the 
same routine of sleeping, waking, and amnesia as Sleeping Beauty. But if 
that is done, Beauty will consider the second bet to be fair only at odds of 
2:1 on heads, and not 1:1. For the bookie will now offer beauty a bet each 
time that he is woken up. if the coin lands tails, he is woken up twice 
(on Monday and on Tuesday) and so he twice offers the bet; if the coin 
lands heads, he offers the bet only once (on Monday). Since he does not 
know whether it is Monday or Tuesday, the bets he offers on those days 
will be the same. if Beauty on awakening were to accept these bets at odds 
of 1:1, she would be Dutch booked. hitchcock concludes that the only way 
for Beauty to avoid a Dutch book is by adopting odds of 2:1, and thus to 

2 Following David lewis, we use the symbol P− for Beauty’s credence function on 
Sunday, P for her credence on Monday after her first awakening, and P+ for her credence, 
as it is modified after she is told that it is Monday.
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have on awakening a credence in H of one third: P(H) = 1
3. in this conclu-

sion he is followed by the majority of the philosophers who have written 
about Sleeping Beauty’s predicament, including those who do not use 
Dutch book arguments (see footnote 1 for a few leading examples).

Darren Bradley and hannes leitgeb have critized hitchcock’s argument 
on the grounds that Beauty need not be a thirder in order to avoid a Dutch 
book (Bradley and leitgeb 2006). She can be a halfer, for being a halfer 
does not mean that, when woken up, she will accept a bet on heads at odds 
of 1:1. in fact, she will not. She realizes that in the second bet there are 
twice as many tails awakenings as heads awakenings, so if a tail has come 
up, she actually bets twice, whereas she bets only once if the coin landed 
heads. if the entire game were repeated 1000 times, and she were to lay 
down (each time) a stake of $1 on the thesis that she is in a heads awaken-
ing, she would, on the average, win 500 times, being paid $3 at odds of 2:1, 
so she would win a net $2 each time, a total winnings of $1000. On the 
average she would however lose the bet 500 times on Monday (because a 
tail came up on Sunday), at a total cost of $500, but also 500 times on 
Tuesday, at a further cost of $500. On the average, then, she would win 
$1000 and lose $1000. this implies that she considers betting odds 2:1 as 
fair, and 1:1 as unfair. however, and this is Bradley and leitgeb’s point, it 
does not imply that her credence in heads is one third. in the happy locution 
of Bradley and leitgeb, odds and credences ‘come apart’ in scenarios like 
that of Sleeping beauty: the number of bets on heads here differs from the 
number of bets on tails. Precisely because Hitchcock’s bookie does not offer 
the same number of books in the event that the coin falls heads or tails, the 
fair odds for the second book do not reflect Sleeping beauty’s credence in H.

kai Draper and Joel Pust find bradley and Leitgeb’s criticism of Hitch-
cock unconvincing (Draper and pust 2008). their argument hinges on the 
value of P(H |MON ), i.e. the credence that the coin landed heads condi-
tioned on beauty’s being told that today is Monday. The standard way of 
calculating P(H |MON ) is on the basis of the assumption P(H1) = P(T1) = 13, 
which results in a value of one half.3 however, if P(H) = 12, as Bradley and 
leitgeb want it to be, then P(H |MON ) = 2

3, in accordance with the well-
known reasoning as given by David lewis (2001). David lewis himself 
was not too happy with the conclusion, and in general it is considered to 
be the achilles heel of halfers.4

3 P(H |MOn) = P(H ∧ MOn)
P(MOn)

 = 
P(H1)

P(H1  T1)
 = 

P(H1)
P(H1) + P(T1)  = 

1
3

1
3 + 1

3
 = 1

2 .

4 though not of double halfers such as peter lewis, who maintain that P(H) = P+(H) = 12 . 
Moreover peter lewis, unlike other double halfers, also holds that P+(H ) is the same as 
P(H |MON ).
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note, however, that Draper and pust’s criticism of Bradley and leitgeb 
rests on the assumption that P(H) = P(H1). in endorsing that assumption 
they are by no means in the minority: almost everybody in the Sleeping 
Beauty debate underwrites it. For thirders, who maintain that P(H1) is a 
third, the assumption leads to the claim that P(H) is one third. For halfers, 
who hold that P(H) is a half, it is a compelling reason to maintain that 
P(H1) is one half. But if one allows that P(H) ! P(H1), then it becomes 
possible to have one’s cake and eat it too: P(H) = 1

2 and P(H |MON) = 1
2 .

peter lewis is one of the few philosophers who contend that P(H) and 
P (H1) are not equal (lewis 2010).5 he observes that in the debate on Sleep-
ing Beauty the equality P(H) = P(H1) has been assumed without question: 
it has never been proved. if one does question the equality, and allows that 
P(H) and P(H1) have different values, then plausible intuitions of both 
thirders and halfers can be preserved. peter lewis then tries to prove that 
P(H) ! P(H1) by constructing Dutch book arguments, first for P(H1) = 1

3 , 
and then for P(H) = 1

2 .
Lewis’s first Dutch book argument is a clever refurbishment of Hitch-

cock’s second bet. he turns it into a bet on ¬H, i.e. on tails, at odds of 
1:1 on Sunday, and on H1, rather than H, at odds of 2:1 on subsequent 
awakenings. the resulting bet is not only fair, but is also what lewis calls 
balanced, by which he means that the bet on H1 occurs with the same 
frequency, irrespective of whether H1, T1 or T2 is true at Beauty’s world 
(Lewis 2010, 375-376). Moreover the bet is, as we shall call it, transparent, 
meaning that Beauty is in an epistemic situation in which she can see that 
the bet is balanced. On this fair, balanced, and transparent bet, lewis dem-
onstrates that Beauty’s credence in H1 is one third.

the second Dutch book argument that lewis constructs is less convinc-
ing. although he does succeed in presenting a fair and balanced book for 
the conclusion that, on awakening, Sleeping Beauty’s credence in H should 
be one half (lewis 2010, 377), the book is not transparent: Beauty cannot 
see that it is balanced when she wakes up. lewis realizes this and makes 
no attempt to hide the deficiency:

“… it can be argued that the bets that make up a Dutch book must be such 
that they can be seen to be fair and balanced at the time that they are offered. 
that condition cannot be met here, and i suspect that if it is applicable, then no 
Dutch book can be constructed to constrain P(H). if that is the case, P(H) = 12 
is not entailed by P−(H) = 12 …” (lewis 2010, 377).6

5 another one is Berry groisman (groisman 2008). in his view, P(H) corresponds to what 
he calls the ‘set-up of coin tossing’ and P(H1) to the ‘set-up of wakening’. this resembles 
our position in that groisman conceives the thirder and halfer answers as relating to different 
questions, but his detailed reasoning is different from ours, as we will see. in particular he 
does not distinguish between the three- and the four-dimensional probability spaces.

6 lewis has heaDS instead of H.
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We conclude that peter lewis’s Dutch book argument for the inequality of 
P(H) and P(H1) falters. although he does succeed in constructing a per-
suasive Dutch book argument for P(H1) = 1

3 , he is not so convincing when 
he tries to show that P(H) = 1

2 . thus he fails to demonstrate that the two 
credences differ.

Dutch book reasoning is uncommonly prone to indiscriminate sniping. 
Why exactly should we require the bookie to be in the same epistemic 
situation as Sleeping Beauty? Should one demand that a book be fair, bal-
anced, and transparent, or only fair and balanced, or simply fair? these are 
difficult questions, illustrating the unreliability of arguments based on Dutch 
book considerations.

before proceeding to our main reasoning in Sects. 4 and 5, we will 
first address a difficulty that Peter Lewis has detected if one insists that 
P(H) and P(H1) are not equal. peter lewis again calls on Dutch books to 
solve this problem, but we show that here, too, Dutch books are not needed. 
Our exposition in Sect. 3 serves as a stepping stone to the argument in 
Sects. 4 and 5.

3. Is H iff H1 True?

While peter lewis concludes that P(H) is unequal to P(H1), he acknowl-
edges that there is a difficulty (Lewis 2010, 376). According to the probabil-
ity calculus, A iff B entails P(A) = P(B).7 So if his conclusion that P(H) ! 
P(H1) is true, then H iff H1 is false. But H iff H1 seems to be intuitively 
obvious in the Sleeping Beauty scenario. after all, ‘the coin landed heads 
and it is Monday’ clearly implies that the coin landed heads, and if the coin 
landed heads, then ‘it is Monday’ will be true of beauty when she is first 
awakened (although she herself does not know what day it is).

lewis, in fact, would like to retain the truth of H iff H1 without giving 
up his conclusion. his way out of the predicament is to take further recourse 
to Dutch book arguments. he begins by casting doubts on the universal 
applicability of the rule that A iff B entails P(A) = P(B), even claiming that 
Bradley and leitgeb had similar reservations: “… the argument strategy 
that Bradley and leitgeb used against hitchcock’s Dutch book also calls 
this rule into question” (ibid., 376). he then notes: “the usual rationale for 
the rule that A iff B entails P(A) = P(B) is a (synchronous) Dutch book 
argument” (ibid.). he goes on to construct a Dutch book argument for this 
rule in line with the Sleeping Beauty protocol. this argument succeeds: it 
shows that an agent who accepts H iff H1, but clings to lewis’s conclusion 

7 indeed, if A → B, then P(B | A) = 1, so P(A ∧ B) = P(A). Similarly, if A ← B, then 
P(A ∧ B) = P(B). So if A  B (i.e. A iff B), then P(A ∧ B) = P(A) = P(B).
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that P(H) = 1
2 and P(H1) = 1

3, can be Dutch booked. that seems to be bad 
news for lewis, but he correctly notes that the Dutch book in question is 
not balanced.

The balanced Dutch book that he subsequently offers produces a different 
result: it leaves open the question as to whether or not P(H) and P(H1) are 
equal. lewis claims that no balanced Dutch book can be made against an 
agent who accepts H iff H1 and P(H) = P(H1), but neither can a Dutch book 
been made against an agent who accepts H iff H1 and P(H)  !  P(H1).  
an obvious conclusion would be that reasoning based on balanced Dutch 
book considerations is weaker than reasoning based on the probability cal-
culus: when all is said and done, here is an assertion that the latter can 
prove and about which the former has nothing to say. peter lewis, however, 
heroically shuns this conclusion. rather than yielding to the calculus, he sets 
up two Dutch book arguments, first for P(H1) = 1

3 and then for P(H) = 1
2 .  

as we have seen in the previous section, the former argument is convinc-
ing, but the latter less so: although the book is fair and balanced, it fails to 
be transparent.

in the next section we will explain how it could happen that P(H)  ! 
P(H1). But rather than doubting the applicability of the probability calculus 
on the basis of Dutch book reasoning, as peter lewis’s argument does, this 
argument is completely in line with the calculus. it is based on the obser- 
vation that, within the Sleeping Beauty framework, there are exceptions to 
H iff H1. given the protocol, H1 entails H, but H does not entail H1: it could 
be the case that heads have landed and that it is tuesday.

the reason why most authors assume that H does entail H1, and thus 
H iff H1, is not difficult to discern. For under the restricted condition that 
Beauty is awake, it does follow that H iff H1. after all, Beauty is awake if 
and only if H1  T1  T2 is true. Moreover, H1  T1  T2 and H  H1 are 
both equivalent to the negation of the proposition ‘the coin landed heads 
and it is tuesday’, i.e. (H1  T1  T2)  (H  H1). thus the calculus tells 
us only that the conditional probability of H is the same as the conditional 
probability of H1:

 P(H |H1  T1  T2) = P(H1 | H1  T1  T2). (1)

Since H1 entails H, (1) is a mathematical identity, for

 H ∧ (H1  T1  T2) = H1 = H1 ∧ (H1  T1  T2).

the imagined equality of the unconditional probabilities P(H) and P(H1) 
does not follow from (1); and although (1) is true it could be that P(H) and 
P(H1) are not the same.

Why do most authors reason about Beauty’s credences under the restric-
tion that beauty is awake? Again it seems the answer is not difficult to 
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discover. it is presumably because people can only have credences when 
they are awake.8 however, it is important to note that this fact poses  
no constraints on the content of the credences. From the fact that people 
can only have credences when they are awake, it does not follow that the 
credences they have when they are awake cannot be about the state of the 
world when they are asleep. as we will explain in the next section, Beauty 
can indeed tailor her credences to what she knows the world will be like 
when she herself is asleep. and this is precisely what one would expect of 
a rational agent.

an objection to the above reasoning might be that P stands for Beauty’s 
credence function on Monday, and so it would be more to the point to con-
ditionalize on MOn = H1  T1, rather than on her being awake, H1  T1  T2. 
But this does not help, for

 P(H | H1  T1) = P(H1 | H1  T1) (2)

is also an identity, and for much the same reason. thus (2) can be true while 
at the same time P(H) ! P(H1). Peter Lewis’s difficulty has been removed: 
since H iff H1 is not true, P(H) ! P(H1) does not involve a contradiction.

4. Sleeping Beauty’s Reasoning: Three Options

the aim of the Sleeping Beauty scenario is the determination of rational 
credences in a situation where uncentred and centred propositions are 
entangled. One of the ways of discovering Beauty’s rational credences is 
via her betting behaviour. As we have seen, it is difficult to decide when 
Beauty regards an aggregate of bets as fair, and balanced, in such a way 
that these odds really do determine her credences. We therefore now propose 
a different way of working out beauty’s rational credences, one that makes 
no use of betting arguments, but rather relies on relative frequencies.

On Sunday, Sleeping beauty is free to ruminate upon the different situa-
tions in which she may shortly find herself. She contemplates the following 
thought experiment. “imagine”, she says, “that the experiment were repeated 
every week for about four years. So every Sunday i would be put to sleep, 
a fair coin would be tossed, and then i would be woken up on the next day, 
put to sleep again, have my short-term memories of this Monday awakening 
erased from my brain, and be woken up again on tuesday if the coin had 
landed tails, but allowed to sleep through till Wednesday if the coin had 
landed heads.”

8 and when they are awake they know that they are awake. We neglect the possibility 
that Sleeping Beauty could be merely dreaming that she is awake. Such outré alternatives, 
including the thought that she could have credences while dreaming, are beyond our remit. 
We shall suppose that her sleeping draught ensures dreamless sleep.
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Suppose that the experiment were performed 2000 times in this way. Beauty 
continues: “i expect the coin to fall heads 1000 times during the 2000 tosses.” 
Of course, being no mathematical neophyte, she knows all about fluctua-
tions; her use of the word ‘expect’ is in the sense of the statistician’s ‘expec-
tation’, i.e. she means that, on the average, there would be 1000 heads and 
1000 tails. Beauty, who is a perfectly rational agent, sets her credence in 
heads on Sunday, before she is put to sleep, equal to the expected relative 
frequency (or chance) of heads during the 2000 repeats of the experiment, 
that is, p(H) = 1000/2000 = 1

2 , where p stands for objective probability, as 
calculated from the expected relative frequencies.

however, the question that adam elga asks is not for her credence in 
heads on Sunday, but rather for her credence in heads on first awakening, 
that is, on Monday:

“When you are first awakened, to what degree ought you to believe that the 
outcome of the coin toss is heads?” (elga 2000, 143).

The complication is of course that after waking up on Monday she does not 
know what day it is: it could be tuesday, for all she knows. it is therefore 
not clear that her credence in heads should still be one half when she is 
awakened.

there are in fact three ways in which elga’s question could be inter-
preted, depending on what one takes to be the meaning of “first awakened”. 
A first possible meaning puts the stress on ‘awakened’. Here elga wants 
to know about Beauty’s credence when she awakes. Beauty reasons: “i can 
calculate the chance of heads, conditioned on my being awake; and so i 
will set my credence in heads equal to it, since i know that i am awake, but 
not that it is Monday.” In this case beauty’s answer is the conditional prob-
ability of heads, given that she is awake.9

In a different reading, the stress is on ‘first’. Here elga is asking what 
beauty’s credence in heads should be, conditional on its being her first 
awakening. in this case Beauty’s answer is the conditional probability of 
heads, given that it is Monday. Although beauty does not know that it is 
Monday when it is Monday, she can of course still say what her credence 
in heads would be if she did have this knowledge.

a third way of understanding elga’s question is simply “What is the 
probability of heads on Monday?”. Here beauty’s answer is supposed to 
reveal her rational credence in heads, as determined by the unconditional 
chance of heads, and independently of whether she is awake or asleep. 
By taking account only of the state of the world, leaving aside her own 

9 interestingly, elga himself alludes to this objectivist reasoning (elga 2000, 143-144). 
he does not develop it, presumably because he assumes that centred propositions require 
reasoning in subjectivist terms.
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condition, she can calculate the chance in question. under the third inter-
pretation of elga’s question, peter lewis is right that P(H) ! P(H1).

the salient point is that in all readings the query can be construed in terms 
of hypothetical relative frequencies, under the application of David lewis’s 
principal principle. the fact that Beauty is dealing with centred propositions 
does not prevent her from setting up an argument about relative frequencies.10

5. Sleeping Beauty’s Calculations

Beauty’s reasoning in the previous section is supported by detailed calcula-
tions. in this section we will spell them out, and give a formal analogue for 
each of the three interpretations of elga’s question. We will show that part 
of the confusion between halfers and thirders is caused by the fact that most 
people assume that Beauty must use a three-dimensional probability space 
rather than a four-dimensional one.

Consider the 4000 different possible ‘events’, corresponding to beauty’s 
being awake 1000 times on Monday when the coin lands heads, her being 
awake 1000 times on Monday when the coin lands tails, her being asleep 
1000 times on Tuesday when the coin lands heads, and finally her being 
awake 1000 times on tuesday when the coin lands tails. the chances we 
shall calculate correspond to treating these possibilities as random events.

We shall supplement the propositions H, T, MOn and TueS by

W: Beauty is awake
S: Beauty is asleep.

the six propositions H, T, MOn, TueS, W and S constitute the events in 
the model.

the Cartesian product {H, T } × {W, S} × {MOn, tueS} yields 8 centred 
propositions, of which only 4 are not null, according to the rules of the 
Sleeping Beauty experiment. these are the possible outcomes of the model:

H W
1  : ‘The coin lands heads, beauty is awake and it is Monday’.

T W
1  : ‘The coin lands tails, beauty is awake and it is Monday’.

H S
2  : ‘the coin lands heads, Beauty is asleep and it is tuesday’.

T W
2  : ‘the coin lands tails, Beauty is awake and it is tuesday’.

10 recently, Cisewski et al. have likewise argued that the debate between thirders and 
halfers results from conflicting assumptions that each group makes, specifying necessary and 
sufficient conditions for these assumptions (Cisewski et al. 2016). their reasoning differs 
however from ours. the same applies to the argument of namjoong kim, who also argues that 
elga’s question is ambiguous (kim 2015); for a reply to kim, see Titelbaum 2015.
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by definition H W
1  = H ∧ W ∧ MOn, but also H W

1  = H ∧ MOn.11 note that 
the last expression looks like the definition of H1, as given at the end of the 
introduction: the superscript indicates however that H W

1  is to be considered as 
a vector in the space spanned by the four vectors H W

1 , T W
1 , H S

2 , T W
2 . in the 

previous sections, as in most of the literature, H1 = H ∧ MOn is tacitly sup-
posed to be a vector in the smaller space spanned by the three vectors H1, T1 
and T2. the background assumption was that, when Beauty has any credences 
at all, she is awake, and when she is awake, she knows this (see footnote 8).

by similar reasoning, we find that T W
1  = T ∧ MOn and T W

2  = T ∧ tueS. 
it is also true that H S

2  = H ∧ tueS, but in this case it is H ∧ W ∧ tueS 
that is a contradiction. Further, H W

1  = H ∧ W,12 and, by analogous reason-
ing, H S

2  = H ∧ S. Some of these equivalences will be used later.
Beauty calculates the chance of H W

1  to be equal to the number of times 
that she is awake on Monday when the coin lands heads (1000), divided by 
the total number of possible events (4000), so p(H W

1 ) = 1000/4000 = 1
4. 

Similarly the chances of T W
1 , H S

2  and T W
2  are all also equal to one quarter:

 p(H W
1 ) = p(T W

1 ) = p(H S
2 ) = p(T W

2 )  =  14 . (3)

This specification of probabilities completes the definition of our model. It 
should be stressed that no arbitrary assumption of symmetry has been made 
here: the conclusion (3) follows simply from the rules of the Sleeping 
Beauty experiment, and the fact that the coin is fair.

Sleeping Beauty sets her credences equal to the relevant hypothetical 
relative frequencies, in accordance with David lewis’s principal principle.
the relative frequency of heads, conditioned on Beauty’s being awake, is

 p(H |W) = 13 , (4)

(see item (a) in the appendix for this calculation). this is the answer to the 
first possible meaning of elga’s question, which is about Beauty’s credence 
at the time of her first awakening, conditional on her being awake (and 
indeed she is certainly woken up for the first time on Monday).

Since H W
1  ∧ W = H ∧ W, it is the case that

 p(H W
1  |W) = p(H |W) ; (5)

11 H ∧ MOn = (H ∧ W ∧ MOn)  (H ∧ S ∧ MOn) = H ∧ W ∧ MOn, since H ∧ 
S ∧ MOn, the option that the coin has landed heads, beauty is asleep and it is Monday, is 
contradicted by the rules of the experiment.

12 H ∧ W = (H ∧ W ∧ MOn)  (H ∧ W ∧ tueS) = H ∧ W ∧ MOn, since H ∧ W ∧ 
tueS, the option that the coin has landed heads, Beauty is awake and it is tuesday, is 
contradicted by the rules of the experiment.
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and from (4) we see that therefore

 p(H W
1  |W) = 13 . (6)

notice that (4), (5) and (6) look very much like the thirders’ stance, but with 
this crucial condition: the chances of H W

1  and H are equal to one another, 
both being one third, but only if they are conditioned on Beauty’s being 
awake.

A puzzling feature of the first interpretation is that the word ‘first’ in ‘first 
awakened’ is redundant. elga could just have easily asked “When you are 
awakened, to what degree ought you to believe that the outcome of the coin 
toss is heads?’ the fact that he did not opens the possibility of a second 
interpretation of his question, where he asks for Beauty’s credence at the 
time of her first awakening, that is on Monday. The relative frequency of 
heads, conditioned on its being Monday, is

 p(H | MON) = 12 , (7)

(see item (b) in the appendix for this calculation). this interpretation was 
obviously not intended by elga, since he is a thirder and the second inter-
pretation yields the halfer position.

What about the third possible meaning of elga’s question? here Beauty 
is supposed to give her unconditional credence at the time of her first awak-
ening. On Sunday she realizes that on Monday she will not know what day 
it is, and she also realizes that the fairness of the coin is independent of her 
being awake or asleep. thus she also takes into account all the situations 
in which she is awake or asleep, including the situation in which she is 
asleep on the tuesdays when the coin has landed heads. thus she calculates 
the unconditional relative frequency of heads to be

 p(H)  =  p(H W
1 ) + p(H S

2 )  =  14  +  14  =  12 , (8)

as should be the case, since the coin is fair.
At first sight it might appear that, since H W

1 , TW
1 , H S

2  and TW
2  are centred 

propositions, only credences could be attached to them, not chances. a cen-
tred proposition is after all about a specific event, in this case its being 
Monday or Tuesday at beauty’s temporal location; and it might seem ques-
tionable to consider such an event as an element in a series. On closer 
inspection, as we explained in the previous section, the propositions in the 
Sleeping Beauty scenario can indeed be assigned objective probabilities. 
For while there are well-documented difficulties in attaching a chance to 
such single-case events as my succumbing to cancer within the next five 
years, there are also single-case events for which these difficulties are less 
pressing or even absent. the events described by the propositions in the 
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Sleeping Beauty experiment are a case in point. as we have seen, Sleeping 
Beauty’s ruminations about what would happen if the experiment were 
repeated two thousand times engender propositions describing events (e.g. 
its being Monday) that are repeatable, despite their single-case appearance. 
Of course, the Mondays and Tuesdays in the series of events are all on dif-
ferent dates, but that is irrelevant to the truth or falsity of the proposition 
‘it is Monday (Tuesday)’. The centricity of H W

1  does not prevent Beauty  
(in thought) from repeating the whole experiment.

6. Horgan and Pust

terry horgan has published a number of papers defending the thirder posi-
tion (Horgan 2004, 2007, 2008; Horgan and Mahtani 2013). These papers 
have been criticized by pust, who takes issue with certain symmetry assump-
tions that horgan makes (pust 2008, 2011, 2012, 2014). although some of 
Horgan’s findings resemble the reasoning under what we have called the 
first interpretation of elga’s question, his approach is quite different. Horgan 
is interested in epistemic probabilities, i.e. probabilities that are “tied to 
available evidence” (horgan 2004, 13); an evidential probability essentially 
is “a degree of evidential support” and therefore “a rational degree of belief” 
(ibid.). In contrast, the reasoning under the first interpretation is based not on 
epistemic probabilities, but on hypothetical relative frequencies. Conse-
quently, as we shall explain below, we can do without horgan’s symmetry 
principles, so that our approach is not touched by pust’s criticisms.

horgan introduces what he calls preliminary probabilities of the proposi-
tions H1, H2, T1 and T2, each of which he says is equal to 1

4 (horgan 2004). 
these probabilities are numerically equal to our chances p(H W

1 ), p(H S
2 ), 

p(T W
1 ), and p(T W

2 ), see eq.(3), but they are conceptually different. On the 
evidence that she has after her first awakening (not knowing that it is her 
first awakening), beauty updates the preliminary probability of H2, namely 
that the coin landed heads and it is tuesday, to 0. as a result, horgan argues, 
her credences in the remaining propositions are all renormalized to 1

3. 
horgan therefore concludes P(heaDS) = P(H1) = 1

3.
pust rejects horgan’s analysis on the grounds that the preliminary prob-

ability of H2 before the update should be 0, not 14 (pust 2008). his reasoning 
is that it does not make sense to imagine, as horgan does, what Beauty’s 
preliminary probability in H2 would be if she were to lack the information 
that H2 can never be true. horgan, in turn, replies by explaining that what 
he means by Beauty’s preliminary probability of H2 is determined from a 
third-person viewpoint:

“Beauty should assign preliminary probabilities not by contemplating how 
she would assign non-preliminary probabilities in a certain epistemic situation 
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in which she is not conscious … but rather by contemplating herself from a 
detached, third-person, perspective.” (Horgan 2008, 158).

this ‘third-person perspective’ is quite close in spirit to our reading of 
Sleeping Beauty’s thought experiment about what would happen if the 
experiment were to be repeated many times, especially to what we called 
the first interpretation. The important difference however is that, where 
horgan has to rely on some notion of symmetry in order to assign equal 
preliminary probabilities to H1, H2, T1 and T2, we appeal directly to the 
hypothetical relative frequencies. no a priori logical assumption is needed 
in our approach: the fairness of the coin and the rules of the experiment are 
enough to prescribe the equality of the expected relative frequencies of  
H W

1 , H S
2 , T W

1 , and T W
2 .

A more recent paper of Horgan and Mahtani (2013) elaborates on Hor-
gan’s idea of generalized conditionalization: the idea is to consider, besides 
the standard Sleeping Beauty scenario, the three variants that are obtained 
(i) by switching the rôles of heads and tails, so Beauty is woken up twice 
if the coin lands heads, and only once if it lands tails, (ii) by switching the 
rôles of Monday and Tuesday, so beauty is awakened on Monday and 
tuesday if the coin lands tails, but only on Tuesday if it lands heads, and 
(iii) by switching the rôles of heads and tails, and of Monday and Tuesday, 
so beauty is awakened on Monday and Tuesday if the coin lands heads, 
but only on tuesday if it lands tails. horgan’s (logical) preliminary prob-
ability distribution relates to Beauty’s third-person epistemic state, on the 
basis of the disjunction of the four scenarios (the original one plus the three 
variants (i) to (iii)). this probability distribution is strongly symmetric 
under exchanges of heads and tails, Monday and Tuesday, and some of the 
four scenarios. after generalized (synchronic) updating by conditionaliza-
tion on the standard Sleeping Beauty scenario (rather than on one of the 
three variants), Horgan and Mahtani arrive at the thirder position.

Pust (2014) first objects by questioning Horgan and Mahtani’s assumed 
preliminary probability distribution, which, as he shows, could quite rea-
sonably be changed in such a way as to produce, after conditionalization, 
the halfer position. he then attacks the whole idea of assigning preliminary 
probabilities on the basis of purely epistemic notions. For if horgan and 
Mahtani’s method were valid, Pust argues, it should be generalizable to the 
situation in which the coin is biased. But then the symmetry at the heads/
tails level is broken; and, as Pust writes, Horgan and Mahtani would have 
to “appeal to a suitable chance-credence principle to justify the assignment 
of credence” (pust 2014, 693). as pust rightly indicates, such an appeal is 
foreign to the horgan approach, which after all is essentially epistemic.

the use of a chance-credence principle is however essential to our method. 
pust’s criticisms have no relevance to our hypothetical relative-frequency 
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probabilities, since we assume no probability distribution on the basis of 
questionable appeals to symmetry: the only input is the datum that the coin 
is fair, so the expectation of the number of heads is the same as that of tails. 
as we will see in the next section, our method also enables us easily to 
handle the case in which the coin is not fair.

7. The OSCAR Seminar

the OSCar Seminar paper (2008) carries the names of sixteen authors, 
among them that of horgan. it purports to show, on the basis of objective 
probability considerations, that Sleeping Beauty’s credence on awakening 
that the coin landed heads is 13. this approach is the closest to ours, but, as 
we shall see, it is different in that it contains another questionable assump-
tion of an a priori nature, an assumption that we avoid. We will first give 
a simplified version of the OSCAr argument. Then we compare it with our 
method, and finally we review a criticism of the OSCAr paper by Pust.

From an application of the Bayes’ formula, the OSCar authors deduce

 p(T |W )
p(H|W )  =   p(W |T )

p(W|H ) , (9)

that is, the ratio of the probabilities of tails and heads, conditional on 
Beauty’s being awake, is equal to the ratio of the corresponding likelihoods 
(see item (c) in the appendix for this calculation). the authors point out that 
Beauty would be awake twice as long in the event that the coin were to fall 
tails than she would if it were to fall heads, for in the former case she would 
be awake for some time on two days, but in the latter case on only one day, 
namely Monday. “Assuming a uniform distribution over times” (OSCAr 
2008, 152), the authors write disarmingly, p(W |T) should be twice as large 
as p(W |H), so from (9) we see that p(T |W) = 2 p(H |W), from which it is 
but a short step to the conclusion

 p(H |W ) =  13 and p(T |W ) =  23 .

While we agree with this result, we find the crucial assumption of a 
uniform distribution over times to be gratuitous: why should the probability 
that the coin has landed tails be proportional to the time that Beauty is 
awake if tails have come up? What if the experimenters have decided (with-
out telling beauty) to wake her up for two hours on Monday if heads come 
up, but for one hour on Monday and one hour on Tuesday if tails come up? 
the OSCar authors would seem in this case to be committed to p(W |T ) = 
p(W |H ) and thus to the halfer position! by the method of our Sect. 5 we have 
established the thirder position without any assumption of uniformity over 
times.
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The criticism that Pust (2011) has levelled at OSCAr is different from 
the objection we have just made. to explain the point, and to show how our 
method is not sullied by it, we must first briefly put aside the simplifications 
that we have introduced in the above explication of the OSCar method. 
While OSCar deals with objective probabilities, the authors do not con-
sider them relative-frequency chances, but rather ‘indefinite probabilities’, 
for which they use the symbol ‘prob’, rather than ‘p’. thus they claim

 prob (Hx | B(t, s)  &  toss(x, s)) = 12 , (10)

in words: the indefinite probability that the coin lands heads, Hx, on condi-
tion B(t, s), namely that Beauty is in a Sleeping Beauty scenario s, at time 
t during s, and on condition toss(x, s), namely that the coin toss, x, that is 
involved in s, has been effected, is equal to one half. Further, as a result of 
the argument that we sketched above, they also claim

 prob (Hx |W(t, s)  &  B(t, s)  &  toss(x, s)) = 13 , (11)

where the extra condition, ‘W(t, s)’, means that Beauty awoke in the scenario
s at time t, and did not remember any previous awakenings during s.

the symbols t, s and x are to be regarded as variables, and it is for this 
reason that the probabilities in (10) and (11) are said to be indefinite. They 
can be related to ‘definite probabilities’, written PrOb, by means of direct 
inference. pust explains the OSCar reasoning as follows:

let σ be a particular Sleeping Beauty scenario and let τ be the coin toss in σ … 
on Sunday Beauty knows B (now,  σ) & toss (τ, σ) and so can conclude by direct 
inference from [(10)] that prOB(Hτ) = 12. however, upon awakening during 
the experiment, Beauty comes to know W (now, σ) & B (now, σ) & toss (τ, σ), 
and as [(11)] involves ‘a more specific reference property’ than [(10)], beauty 
should … base her direct inference on [(11)] and conclude that prOB(Hτ) = 13.” 
(pust 2011, 291–292)

pust objects that one could equally well base direct inference on the fol-
lowing indefinite probability: prob (Hx |toss (x, s)) = 1

2. according to pust, 
this is not trumped by (11), since it contains only two variables, while (11) 
contains three. he concludes that direct inference is powerless to justify 
adoption of a definite probability and so direct inference alone cannot solve 
the Sleeping Beauty problem.

Be that as it may, our unadorned method of hypothetical relative frequen-
cies is perfectly adequate to justify Sleeping Beauty’s rational credence 
in heads upon awakening. as we have explained, she can calculate the 
expected relative frequency of the events corresponding to an awakening 
when the coin lands heads, and she tunes her credence in heads to this relative 
frequency, since she knows that she is awake and that the experiment is in 
progress.
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incidentally, at the end of their paper the OSCar authors generalize the 
terms of the Sleeping Beauty scenario, supposing that the tossed coin is not 
necessarily fair, but rather has a chance α of landing heads.13 their method 
of direct inference shows that, on awakening, Beauty’s credence in heads 
should be α / (2 − α), and they ask:

“Can any of the other arguments in the literature handle this variant of the 
Sleeping beauty problem with equal aplomb?” (OSCAr 2008, 154).

The answer is in the affirmative. In fact, our method of hypothetical relative 
frequencies does the job with even greater ease, for in 2000 runs of the 
experiment, the expected number of Monday heads awakenings is 2000α, 
and the number of Monday tails awakenings is 2000(1 – α), the same as 
the number of Tuesday tails awakenings. The number of Monday heads 
awakenings, divided by the total number of awakenings is therefore

 
2000α

2000α + 2000(1 − α) + 2000(1 − α)  =  
α

2 − α .

this relative frequency determines the rational credence of Beauty, when 
she awakes, that the coin landed heads, in agreement with OSCar. as a 
matter of fact elga’s original reasoning can also be generalized to give the 
same result, although admittedly it is rather long-winded (see item (d) in 
the appendix for this calculation).

Appendix

(a) Proof that p(H |W) = 1
3: 

 p(H |W)  =  p(H ∧ W)
p(W)  = p(H ∧ W ∧ MOn)

p(W)   =  
p(H W

1 )
p(W) .

 the numerator here is just 1
4, while the denominator is

p(W) = p(H ∧ W ∧ MOn) + p(T ∧W ∧ MOn) + p(T ∧W ∧ tueS)
= 1

4 + 1
4 + 1

4 = 3
4,

since p(H ∧W ∧ tueS) is zero. therefore
p(H |W) = 1

4 / 3
4 = 1

3.

(b) Proof that p(H |MOn) = 1
2:

 p(H |MOn)  =  p(H ∧ MOn)
p(MOn)  = p(H ∧ W ∧ MOn)

p(MOn)   =  
p(H W

1 )
p(MOn) .

13 It is ironic that this generalization is the Achilles’ heel of the Horgan and Mahtani 
paper, as we noted in the previous section.
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 the numerator is again 1
4, while the denominator is now

p(MOn) = p(H ∧ W ∧ MOn) + p(T ∧ W ∧ MOn)
= 1

4 + 1
4 = 1

2 .
therefore

p(H |MOn) = 1
4 / 1

2 = 1
2 .

(c) Proof that   p(T |W )
p(H |W ) =  p(W |T )

p(W |H ) :

By Bayes’ theorem,

p(T |W ) =   
p(W |T ) p(T )

p(W)  and p(H |W ) =  
p(W |H) p(H)

p(W)

and therefore
p(T |W )
p(H |W )   =   

p(W |T ) p(T )
p(W |H ) p(H ).

Since the chance of a tail is the same as that of a head, p(T ) and p(H) 
cancel in this equation, and we are left with

p(T |W )
p(H |W )  =  

p(W |T )
p(W|H ) .

(d) Proof that P(H) = α
2 − α by generalized Elga method:

assume P−(H) = α. as elga explained, it does not matter whether we 
(i) first toss a coin on Sunday and then wake up beauty either once or 
twice depending on the outcome, or (ii) first wake up beauty on Mon-
day and then toss a coin to determine whether to wake her up a second 
time. imagine that method (ii) is used, and that Beauty, upon awaken-
ing, were told that it is Monday. Then she would know that she is in 
either an H1 or a T1 world. given this knowledge, her credence that she 
is in H1 is her credence that an α-biased coin, soon to be tossed, will 
land heads:

P(H1 | H1  T1) = α.

this is equivalent to
P(H1 ∧ (H1  T1))

P(H1  T1)   = α.

Since H1 and T1 are mutually exclusive, we find
P(H1)

P(H1) + P(T1)   = α.
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this means we have only one equation to determine two objects, viz. 
P(H1) and P(T1). if the coin is fair, as it is in elga’s original formula-
tion, then this is not a problem: from α = 12 it follows immediately that 
P(H1) must be equal to P(T1). however, when α is any number between 
0 and 1, the relation between P(H1) and P(T1) is not so clear. The first 
step towards discovering this relation is the inversion of both sides of 
the previous equation:

P(H1) + P(T1) 
P(H1)   =  1

α  .

the left-hand side can be written 1 + P(T1) / P(H1), and so
P(T1)
P(H1)

 = 1α – 1  =  1 – α
α  .

this means that
P(T1) = 1 – α

α
 × P(H1).

We follow elga in assuming P(T1) = P(T2), so

P(T2)  =  
1 – α
α  × P(H1)

too. Since H1, T1 and T2 are disjunct and one of them must be true, 
P(H1) + P(T1) + P(T2) = 1. thus, taking out the common factor P(H1), 
we obtain

[1 + 
1 – α
α  + 

1 – α
α ] × P(H1) = 1.

gathering like terms together, we can simplify this to
2 – α
α  × P(H1) = 1.

and therefore
P(H1)  =  

α
2 – α.

With elga’s assumption that P(H1) and P(H) have the same value, 
we arrive at OSCar’s result. Being able to handle this generalized 
Sleeping Beauty is not exclusive to the objectivist approach.
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