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Characterizing Properties and  
Explanation in Mathematics 

Josephine Salverda* 

Abstract 

Mark Steiner proposes one of the earliest contemporary accounts of mathematical 
explanation, which appeals to characterizing properties of entities referred to in 
proofs. Unfortunately Steiner’s remarks are often quite vague, sometimes described 
as ‘very puzzling indeed’, and this lack of clarity has led to a lack of understanding 
and a tendency to reject Steiner’s account in the philosophical literature. 

I argue that Steiner’s account repays deeper analysis by providing a sympathetic 
reading that makes sense of his puzzling remarks and draws out some important 
questions. 

I focus on a simple mathematical example involving sums of number sequences 
and identify three key conditions that the proof must meet to count as explanatory 
for Steiner. I propose a suitable characterizing property and show that on my 
suggestion, the proof indeed fits Steiner’s account. Subsequently, I present a few 
potential problems relating to Steiner’s focus on the generalizability of proofs, and 
show how my reading of generalizability helps to avoid these worries. 

Finally, I show how (my extension of) Steiner’s proposal can account for what 
I take to be the primary epistemic function of an explanation, namely, to help us 
see why the fact to be explained is true. 

1.  Steiner’s Account of Mathematical Explanation 

All proofs show that their conclusions are true; some also explain why 
they are true. But what makes a proof (or argument) explanatory, if it is? 
There has been a recent surge of interest in this topic, reflecting increased 
philosophical attention to mathematical activity and practice.1 

The distinction between proofs that show that their conclusion is true and 
those that explain why it is true is not just something philosophers worry 
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about. For example, in an interview renowned mathematician and Fields 
medallist Michael Atiyah recalls:

‘I remember one theorem that I proved and yet I really could not see why it 
was true. It worried me for years … I kept worrying about it, and five or six 
years later I understood why it had to be true. Then I got an entirely different 
proof … Using quite different techniques, it was quite clear why it had to be 
true.’ (Minio 1984, 17) 

Mark Steiner (1978) proposes one of the earliest contemporary accounts of 
explanatory proof. I provide a sympathetic reading of his account and 
propose an extension that I hope lays the ground for future research. 

1.1.  Three Conditions on Explanation in Mathematics 

According to Mark Steiner: 
‘… an explanatory proof makes reference to a characterizing property of an 
entity or structure mentioned in the theorem, such that from the proof it is 
evident that the result depends on the property. It must be evident, that is, 
that if we substitute in the proof a different object of the same domain, the 
theorem collapses; more, we should be able to see as we vary the object how 
the theorem changes in response. In effect, then, explanation is not simply a 
relation between a proof and a theorem; rather, a relation between an array 
of proofs and an array of theorems, where the proofs are obtained from one 
another by the ‘deformation’ prescribed above. (But we can say that each of 
the proofs in the array ‘explains’ its individual theorem.)’ (Steiner 1978, 143) 

So, a proof must fulfil three conditions in order to be explanatory: 

1. �T he proof makes reference to a characterizing property of an entity 
or structure mentioned in the theorem. 

2. �I t is evident from the proof that the result depends on the property, 
that is if we substitute in a different object of the same domain, the 
theorem collapses. 

3. � We should be able to see as we vary the object how the theorem changes 
in response: the proof is generalizable. 

Steiner’s suggestion is usually broken down into two conditions where 
points 1 and 2 are combined (see e.g. Hafner and Mancosu (2005), Resnik 
and Kushner (1987)), but the first condition here is important to Steiner. 
As we will see in the next section, he stresses the claim that the character-
izing property must be a property of something mentioned in the theorem. 
Therefore, I include condition 1 as a separate criterion. 

Steiner does not explicitly say that these conditions are meant to be 
necessary and sufficient criteria for a proof to be explanatory. Nevertheless, 
he puts forward examples which he takes it meet the schema and are there-
fore explanatory, suggesting that the conditions are sufficient on his view. 
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Additionally, he considers a possible counterexample proposed by Feferman: 
a proof that is thought to be explanatory but does not seem to meet Steiner’s 
criteria. In response, Steiner finds an appropriate characterizing property in 
order to fit the proof to his schema (Steiner 1978, 148). So, it also seems that 
the three conditions are necessary for a proof to be explanatory, on Steiner’s 
view. 

At first glance, there is an immediate tension in Steiner’s account between 
conditions 2 and 3. To show that a proof is explanatory, we are required to 
show both that the theorem ‘collapses’ for a different object of the same 
domain and that it generalizes for some other object (presumably also in 
the domain; Steiner does not specify otherwise). So the second condition 
can’t be understood as saying that the theorem ‘collapses’ for any other 
object in the domain; rather, the theorem should collapse for some object 
in the domain, and in particular presumably for some object which doesn’t 
have the characterizing property. I will say more about this in section 2. 

1.2.  The Sum of Positive Integers from 1 to n 

Steiner considers three proofs (strictly speaking, proof sketches) of the fact 
that the sum of positive integers2 from 1 to n is equal to n(n+1)

2  
. (Steiner 

1978, 136-7) 

1. I nductive proof (strictly speaking, this is only the inductive step): 

S(n +1) = S(n) + (n +1) = n(n + 1)/2 + 2(n + 1)/2 = (n + 1)(n + 2)/2. 

2.  ‘Symmetry’ proof: 
1 + 2 + 3 + … + n = S
n + (n − 1) + (n − 2) + … + 1 = S  = S 

(n + 1) + (n + 1) + (n + 1) + … + (n + 1) = n(n + 1) 

3.  ‘Geometrical’ proof: 

‘By dividing a square of dots, n to a side, along its diagonal, we get an 
isosceles right triangle containing 

2 E xcept where otherwise specified, I use ‘positive integers’ and ‘(natural) numbers’ 
interchangeably.
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S(n) = 1 + 2 + 3 + … + n 
dots. The square of n2 dots is composed of two such triangles – though 

if we put the triangles together we count the diagonal (containing n dots) 
twice. Thus we have 

S(n) + S(n) = n2 + n, q.e.d.’ (Steiner 1978, 137) 

According to Steiner, Proof 1 is not very explanatory, Proof 2 is ‘more 
illuminating’ and Proof 3 is ‘perhaps an even more explanatory proof’ 
(ibid., 145). 

In this paper, I will focus on Proof 2 above and will give a detailed 
analysis of how the proof might fit Steiner’s schema. Neither Steiner nor 
his respondents do so. Steiner makes only the following brief remark: 

‘Both explanatory proofs that the sum of the first n integers equals n(n + 1)/2 
proceed from characterizing properties: the one by characterizing the symmetry 
properties of the sum 1 + 2 +  …  + n; the other its geometrical properties. 
By varying the symmetry or the geometry we obtain new results, conforming 
to our scheme.’ (ibid.) 

Resnik and Kushner (1987) focus on a more straightforward example: 
the irrationality of √2, which I will discuss in section 4. And Hafner and 
Mancosu write: 

‘Steiner’s remarks imply that he apparently takes the symmetry properties 
as well as the geometrical properties of the sum 1 + 2 + … + n as something 
– entities or structures? – mentioned in [the theorem]. This is very puzzling 
indeed and just highlights the need for precise definitions here. In the absence of 
such definitions … we don’t even have a clear enough grasp of Steiner’s theory 
in order to apply and assess it in general’. (Hafner and Mancosu 2005, 233) 

Given the lack of analysis in the literature, I think it is useful to look at this 
example in more depth. I hope my investigation will help us to understand 
Steiner’s three conditions and bring out some important questions for Steiner’s 
account. 

2.  Identifying a Characterizing Property 

2.1.  Commutativity and Associativity of Addition 

Recall Steiner’s example, Proof 2 from the last section: 

1 + 2 + 3 + … + n = S
n + (n − 1) + (n − 2) + … + 1 = S = S 

(n + 1) + (n + 1) + (n + 1) + … + (n + 1) = n(n + 1) 
(Steiner 1978, 136) 
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As we have seen, it is important that the characterizing property applies to 
something mentioned in the theorem, for Steiner. Steiner’s formulation of 
the theorem to be proved is as follows: 

(SUM) S(n) = 1 + 2 + 3 + … + n = n(n + 1)/2. (Steiner 1978, 136) 

The theorem mentions the numbers 1, 2, 3, some arbitrary number n, the 
sum S(n), the operations of addition, multiplication, subtraction and divi-
sion, and the relation of equality. Is Steiner’s point that these entities (taken 
broadly) have symmetry and geometrical properties? Hafner and Mancosu 
suggest that Steiner takes the symmetry properties themselves to be men-
tioned in the theorem, but I don’t think this is required: recall Steiner’s 
stipulation that ‘an explanatory proof makes reference to a characterizing 
property of an entity or structure mentioned in the theorem’ (Steiner 1978, 
147). Although the statement is ambiguous, I read this as follows: the proof 
must mention the characterizing property; and the characterizing property 
must be a property of something mentioned in the theorem. 

Now, Proof 2 presents the sum of integers from 1 to n in two different 
ways. First, the sum is given in that order: 1 + 2 + 3 + … + n. Then, the 
sum is given in reverse: n + (n − 1) + (n − 2) + … + 1. One central insight 
of the proof is that, since addition is commutative and associative, these 
sums are the same. So we can add both sums together to get 2S(n), forming 
a new sum of n elements. Each element of this new sum is equal to n + 1, 
using the commutativity of addition again. So 2S(n) is equal to n lots of 
n + 1, leading to the desired result. 

An initial suggestion, then, might be to propose the following character-
izing property, P: the commutativity and associativity of addition for positive 
integers. This can be seen as a ‘symmetry propert[y] of the sum’ in the sense 
that the two different representations of the sum S(n) are symmetrical around 
their midpoint, and the property ‘behind’ this symmetry is property P. 

Proof 2 implicitly appeals to property P (and in this sense perhaps makes 
reference to it), and the theorem mentions addition, some integers, and the 
sum of integers. So it seems that P holds of some entity or structure men-
tioned in the theorem, as required, hence fitting Steiner’s first condition. 

However, I will now show that P cannot be the property Steiner has in 
mind, because it doesn’t fit Steiner’s second condition. Recall that condition 2 
stipulates that the result must depend on the property in the sense that the 
theorem collapses if we substitute in a different object. 

It is true that the theorem depends on P in the following sense: if addition 
for integers were not commutative and associative, we wouldn’t be able to get 
to the desired result using this proof method. But counterfactuals like this are 
difficult to understand in the mathematical case where results hold necessarily. 
According to Steiner, the appropriate counterfactual to consider instead runs 
as follows: ‘If we substitute in a different object, the theorem would collapse’. 
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It is important to consider here the domain from which the substituted 
object must come. The domain of the theorem is clearly (sums of) elements 
of N, and Steiner explicitly specifies that the ‘different object’ should come 
from the same domain. So we want to substitute in a sum of some sequence 
of natural numbers. 

Note that no matter which sum we choose, the cause of the theorem’s 
collapse will not be a failure of the new object to instantiate property P. 
Any sum of elements in N is commutative and associative, so the theorem 
couldn’t fail because of a breakdown of associativity or commutativity. But 
intuitively we want to choose a new object which is ‘different’ in the sense 
that it lacks the characterizing property of the original object.3 If not, it 
would be hard to understand Steiner’s counterfactual condition as a way to 
flesh out the idea of a result depending on the characterizing property. 

This is a problem for our initial choice of characterizing property, and 
points to a feature any successful characterizing property must have: there 
must be at least one object in the domain for which the characterizing prop-
erty does not hold. Otherwise condition 2 would be impossible to fulfil  
(or is fulfilled only vacuously). I doubt that Steiner has vacuous fulfilment 
in mind, so on a charitable reading of Steiner’s account, I must have iden-
tified the wrong characterizing property. 

I will suggest a new one in the next section; nevertheless, I hope the 
discussion here has helped to clarify the content of Steiner’s second con-
dition. In particular, I suggest that the best reading of condition 2 runs as 
follows: ‘If we substitute an object from the same domain which lacks the 
characterizing property, then the theorem collapses’. I will say more about 
how to understand the ‘collapse’ of the theorem in the next section. 

2.2.  Arithmetic Sequences 

Take the following property, Q: being an arithmetic sequence in N. (An arith-
metic sequence is one with a constant difference between consecutive terms). 
Let us see whether this new property helps to fit Proof 2 to Steiner’s account. 
For ease of reference, I repeat the theorem and proof (or proof sketch): 

Theorem: (SUM) S(n) = 1 + 2 + 3 + … + n = n(n + 1)/2. 

Proof 2: 
1 + 2 + 3 + … + n = S
n + (n − 1) + (n − 2) + … + 1 = S = S 

(n + 1) + (n + 1) + (n + 1) + … + (n + 1) = n(n + 1) 

(Steiner 1978, 136) 

3  Unfortunately I do not have the space to address questions about mathematical ontology 
in this paper. I will speak interchangeably of entities and objects.
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Steiner’s three conditions are satisfied as follows. 

1.  The proof makes reference to a characterizing property of an entity 
or structure mentioned in the theorem. 

The proof and theorem both mention an entity S or S(n), the sum of the first 
n natural numbers. The first n natural numbers form a sequence in N and this 
sequence is also mentioned, in the sense that its initial terms are explicitly 
listed. The sequence has property Q. 

Now, the proof does not explicitly make reference to property Q, but it 
does implicitly appeal to Q: if the sequence did not have a constant differ-
ence between consecutive terms, then the terms of the sequence and its 
mirror image would not ‘match up’ to sum to (n + 1) in each case. I suggest 
that property Q is represented in the diagram appealed to in the proof, so 
Steiner’s first condition is fulfilled.4 

We might worry whether property Q really fits with the fact that Steiner 
calls the desired property a ‘symmetry propert[y] of the sum 1 + 2 + … + n’ 
(Steiner 1978, 145). Property Q is in fact a property of the sequence 
1, 2,  …,  n rather than of the sum. But since Steiner chooses to write 
1 + 2 + … + n here rather than S(n), I think we can reasonably take him to 
be referring to the summand – in this case the terms of the arithmetic 
sequence – rather than the sum itself. The sum is simply a number in N, 
and it is not clear what symmetry property might hold of the sum. 

There is a certain symmetry, on the other hand, in the way terms of the 
sequence are regularly spaced; it’s this fact which means that the terms in the 
sequence and its mirror image match up in each case. Steiner’s remark is 
vague enough that I think this level of symmetry seems like a reasonable fit. 

2.  It is evident from the proof that the result depends on the property, 
that is if we substitute in a different object of the same domain, the 
theorem collapses. 

Consider the following sequence: 1, 4, 6, 25, 49, 101. The theorem col-
lapses for this sequence because the terms of the sequence and its mirror 
image do not ‘match up’ in each case: 

S*     :     1 +   4 +   6 + 25 + 49 + 101 
S*     : 101 + 49 + 25 +   6 +   4 +     1 
2S* : 102 + 53 + 31 + 31 + 53 + 102 

We can see from the diagram that the method used to calculate S in Stein-
er’s example does not work for S*, since 2S* is not a sequence with 
constant difference between terms, unlike 2S. It’s not that there is nothing 
to say about the sum S*; we can still calculate its value. However, we can 

4 I  do not have space to go into issues of reference in this paper. 
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only do so by adding each of the terms. We don’t get an equation like the 
one in Steiner’s original theorem to calculate the value of the sum.5 

So, we have: (i) taken another object from the same domain (taken to be 
sequences of elements of N), where (ii) the object lacks the characterizing 
property and (iii) the theorem collapses. I hope that points (i) and (ii) are 
clear, but (iii) needs some further discussion. Steiner talks loosely about the 
theorem collapsing, but it seems from the discussion of the non-arithmetic 
sequence above that it is really the proof method that collapses. I think this 
is right; focusing on the proof method or argument, rather than the theorem, 
is a more fruitful way to interpret Steiner’s second condition. 

To back up my claim, consider the example of geometric sequences. 
Geometric sequences lack the characterizing property Q, and so in the spirit 
of Steiner’s account, the theorem should collapse for geometric sequences. 
On my reading of ‘the theorem collapses’, this is true: the proof method 
above does not work for calculating the sum of a geometric series. Consider 
a simple example, such as the case where each term of the sequence is 
double the previous term for n > 1: 

S :   1 +   2 +   4 +   8 + 16 + 32
S : 32 + 16 +   8 +   4 +   2 +   1
2S : 33 + 18 + 12 + 12 + 18 + 33

Just as before, 2S  is not a sequence with constant difference between terms 
and the proof method fails to help us find a value for the sum S . However, 
unlike in the previous example, it’s not the case that no version of the 
theorem holds for the new sequence. There is a formula for finding the 
value of sums of geometric sequences: in general Sn = a1(1 – r n)

1 – r , r ! 1, where 
n is the number of terms, a1 is the first term and r is the common ratio.  
So it’s not clear that the theorem collapses, on a reading where this does 
not refer to the proof method used. 

Hence I will take the following approach. Wherever Steiner writes ‘the 
theorem collapses’, I will take this to be shorthand for the following: Given 
a certain proof using a characterizing property R of an entity referred to in 
the theorem, the theorem collapses just in case the same argument applied 
to objects lacking the characterizing property R is not a proof of the modi-
fied proposition that is now the conclusion. 

With this in mind, let’s move on to condition 3 and see how the original 
proof is generalizable. 

5 D on’t be deceived by the kind of symmetry still present in 2S* as it doesn’t get you an 
equation for calculating the sum that doesn’t just involve adding up the terms. We just get 

S* (n)  = 
1
2 (2(a1 + an) + 2(a2 + an − 2) + … + 2(an/2 + a(n + 2)/2))	 if n is even 
1
2 (2(a1 + an) + 2(a2 + an − 2) + … + 2(a(n − 1)/2 + a(n + 3)/2) + 2an + 1/2)	 if n is odd {

In both cases, this is simply a reformulation of S* (n) = ∑ nk = 1 ak.
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3.  We should be able to see as we vary the object how the theorem 
changes in response: the proof is generalizable. 

In keeping with my reading of the theorem collapsing, I will read condition 3 
as follows. Given a certain proof using a characterizing property R of an 
entity referred to in the theorem, the proof generalizes just in case the same 
argument applied to other objects with characterizing property R is a proof 
of the modified proposition that is now the conclusion. I think we can chari-
tably assume that Steiner’s talk of the theorem changing as we vary the object 
is simply a loose shorthand for the account of generalizability just sketched. 

Here are two examples of the theorem from Proof 2 generalized to cover 
other sums of integers. 

Theorem A: The sum of the first n odd positive integers is equal to n2. Or 
S(n)=∑ nk = 1 2k − 1 = 1 + 3 + 5 + … + (2n − 1) = n2.

Proof A: 

S(n) : 1 + 3 + 5 + 7 + … + 2n − 1 
S(n) : 2n − 1 + 2n − 3 + 2n − 5 + 2n − 7 + … + 1 
2S(n) : 2n + 2n + 2n + 2n + … + 2n 

Since there are n terms in the sequence, we have 2S(n)= n.2n and hence 
S(n)= n2.

Theorem B: The sum of the first n terms of the following sequence: 1, 4, 
7, 10, 13, … is equal to 1

2
 (3n2 − n). Or S(n)= ∑ nk = 1 3k − 2= 1

2
 (3n2 − n).

Proof B: 

S(n) : 1 + 4 + 7 + 10 + … + 3n − 2 
S(n) : 3n − 2 + 3n − 5 + 3n − 8 + 3n − 11 + … + 1 
2S(n) : 3n − 1 + 3n − 1 + 3n − 1 + 3n − 1 + … + 3n − 1

Since there are n terms in the sequence, we have 2S(n)= n.(3n − 1) = 
3n2 − n and hence S(n)= 1

2
 (3n2 − n).

Strictly speaking, these are proof sketches. We might ask for further 
clarification of the fact that the nth term in Theorem B is 3n − 2, for example.6 

But Steiner seems happy with proof sketches, given the way he presents 
Proof 2 above. 

Now, in both Theorems A and B we use exactly the same proof method 
from Proof 2 to get to a result about the value of the sum of the first n terms 
of some other sequence in N. In Steiner’s terms, explanation can thus be 
seen as a relation between the array of Theorems SUM, A and B and Proofs 

6 I n general the nth term of an arithmetic sequence is a1 +(n − 1)d, where a1 is the first term 
in the sequence and d is the common difference between two successive terms in the sequence.
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2, A and B. Indeed, the array can be further expanded to cover all arithmetic 
sequences in N, since for any sequence of numbers with a constant differ-
ence between consecutive terms, the same proof method can be used to get 
to a result about the sum of the first n terms of that sequence. 

Theorem C: The sum of the first n terms of an arithmetic sequence  
{a + (k − 1)d}n

k = 1 is equal to 1
2

 n(2a + (n − 1)d).

Proof C: 

S(n) : a + a + d + … + a +  (n − 2)d + a +  (n − 1)d 
S(n) : a +  (n − 1)d + a +  (n − 2)d + … + a + d + a 

2S(n) : 2a +  (n − 1)d + 2a +  (n − 1)d + … + 2a +  (n − 1)d + 2a +  (n − 1)d

Since there are n terms in the sequence, we have 2S(n) = n(2a+(n − 1)d), 
so S(n)= 1

2
 n(2a +(n − 1)d).

That is, Proof 2 in fact generalizes to cover all sums of (finite segments 
of) arithmetic sequences. 

So, it seems that Proof 2 meets Steiner’s third condition on the basis of 
characterizing property Q. In the next section, I will look at Steiner’s 
account of characterizing properties in more depth. 

3.  Characterizing Properties in more Detail 

3.1.  Unique, Partial and Multiple Characterization 

In setting out his account, we have seen that Steiner writes ‘I shall speak 
of ‘characterizing properties’, by which I mean a property unique to a given 
entity or structure within a family or domain of such entities or structures.’ 
He goes on to say that ‘… a given entity can be part of a number of differing 
domains or families. Even in a single domain, entities may be characterized 
multiply’ (Steiner 1978, 143). 

Towards the end of the paper, he allows that ‘… an arbitrary equation with 
rational coefficients has not a unique Galois group, in the sense that no other 
equation has it….The concept of ‘characterization’ will have to be weakened 
to allow for partial characterization. The Galois group of E characterizes it in 
that the properties of the Galois group tell us much about E’ (ibid., 149-50). 

So, it seems that Steiner’s account allows for unique, multiple and partial 
characterization. How should we understand these notions? Steiner gives 
an example: ‘Thus, one way of epitomizing the number 18 is that it is the 
successor of 17. But often it is more illuminating to regard 18 in light of 
its prime power expansion, 2 × 32’ (ibid., 143). 

That is, 18 is uniquely characterized as having prime power expansion 
2 × 32. It is also uniquely characterized as being the successor of 17. Hence 
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we see that 18 is multiply characterized in N: there are (at least) two ways 
of picking 18 out uniquely from other objects in the domain. 

Now, let us consider Steiner’s remark about partial characterization. 
I suggest that 18 is partially characterized by being an abundant number, 
where n is abundant if the sum of the divisors of n is at least 2n. This par-
tially characterizing property ‘tells us much’ about 18 in the sense that it 
picks out 18 as a member of the set of abundant numbers, a proper subset 
of the set of positive integers. Some interesting mathematical results rely 
on picking out this set, so it seems that the partial characterization is math-
ematically relevant. For example, it is easy to show that prime numbers are 
not abundant and that any positive multiple of an abundant number is also 
an abundant number, and mathematicians including Erdős (1934) have 
proved various results about the density of abundant numbers in N. 

Note that 18 is also partially characterized by being an even number, and 
by being equivalent to 0  / 18. So it is clear that multiple partial charac-
terization is also possible. 

Let us now examine the characterizing property I suggested in the last 
section, Q: being an arithmetic sequence in N. Property Q is clearly par-
tially rather than uniquely characterizing. It does not pick out just one entity 
in the set of sequences in N, but rather it picks out all objects with property 
Q, in the same way ‘being an abundant number’ picks out 18 among many 
other numbers (12, 20, 24, 30, …). 

Although Steiner initially focuses on uniquely characterizing properties, 
I don’t think this is problematic. For one, Q is ‘better’ at characterizing 
entities than the commutativity and associativity of addition for integers, as 
it does not apply to everything in the domain of sequences in N. Property 
Q allows us to distinguish between number sequences, in a way which is 
relevant to the proof at hand. And we will need to allow for partially rather 
than uniquely characterizing properties to make sense of the suggestion that 
the proof should generalize to other entities with the same property, as 
stipulated in my reading of Steiner’s third condition. 

In the next section, I explore my reading in more depth. 

3.2.  Varying the Property 

Steiner’s third condition is stated in his words as ‘We should be able to see 
as we vary the object how the theorem changes in response: the proof is 
generalizable’ (Steiner 1978, 143). The meaning of ‘vary the object’ is 
vague. On my reading, we should take the condition to read as follows: 
‘Given a certain proof using a characterizing property R of an entity referred 
to in the theorem, the proof generalizes just in case the same argument 
applied to other objects with characterizing property R is a proof of the 
modified proposition that is now the conclusion’. The idea is that ‘varying 
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the object’ means we take a given characterizing property and look for other 
objects with the same property. 

However, other interpretations of Steiner’s account in the literature suggest 
that we should instead consider different (but closely related) properties in 
order to see whether the theorem generalizes. 

For example, Weber and Verhoeven (2002) discuss a case where theo-
rems about right triangles and obtuse angles are proved by holding the 
proof-idea constant but using a different characterizing property (cosine of 
right angles versus cosine of obtuse angles).7 Here the idea of ‘varying the 
object’ seems to be to look for closely related objects, where the objects are 
closely related in virtue of having closely related characterizing properties. 
This reading seems to fit with one of Steiner’s remarks that ‘generalizability 
through varying a characterizing property is what makes a proof explana-
tory’ (Steiner 1978, 145, emphasis mine). 

In order to stay faithful to this remark, I could simply modify my pro-
posal in section 2 to suggest an alternative characterizing property, Q1,1: 
‘being (an initial segment of) the arithmetic sequence with initial term 1 
and constant difference 1’. To generalize the proof, then, we would simply 
consider objects with closely related characterizing properties, such as Q1,2 
‘being (an initial segment of) the arithmetic sequence with initial term 1 
and constant difference 2’ (the odd numbers), and so on. 

However, I want to resist this move for now because I think my original 
reading is faithful to the spirit of Steiner’s account and helps us to under-
stand some of the remarks he makes about essences. Steiner writes: 

‘My view exploits the idea that to explain the behavior of an entity, one 
deduces the behavior from the essence or nature of the entity. Now the 
controversial concept of an essential property of x (a property x enjoys in all 
possible worlds) is of no use in mathematics, given the usual assumption that 
all truths of mathematics are necessary. Instead of ‘essence’, I shall speak of 
‘characterizing properties” (Steiner 1978, 143). 

Although I do not have space here to discuss the controversial topic of 
essential properties, I suggest we can see an explanatory proof as one which 
explains why all objects with a certain nature have a certain ‘behaviour’ 
pattern (fulfilling the relevant theorem), while all objects lacking this nature 
do not. 

To clarify, my aim is not to propose a reading that is faithful to Steiner’s 
account at all costs; rather, to propose a constructive and charitable reading 
that captures what seems to me the guiding idea behind his account, while 
making the account as interesting and persuasive as possible. In the next 
section I defend my reading of generalizability by showing that it helps to 
overcome a number of potential worries about Steiner’s account. 

7 T hanks to an anonymous referee for suggesting this case.
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4.  Generalizability 

It is clear that generalizability is a crucial component of explanation for 
Steiner; a proof does not count as explanatory if it does not generalize. But 
suppose a mathematician has proved a result about a certain case. Putting 
aside cases of simple error, it might take some time for even a successful 
research mathematician to prove that the result generalizes. In such a case, 
it would seem odd to forbid the mathematician from classifying the proof 
as explanatory until she has proved the generalization. Why think a proof 
that doesn’t (yet) generalize can’t (yet) be classified as explanatory? 

In response, we could argue that as long as what leads us to classify a 
proof as explanatory is the characterizing feature – in our case, the constant 
difference between consecutive terms – then it doesn’t matter if we don’t 
actually make the generalizing step. This fits with what I take to be the 
spirit behind Steiner’s conception of explanation: it is the characterizing 
property (the ‘essence’ of a mathematical entity) which makes something 
explanatory, not whether we happen to have exploited that characterizing 
property to its full potential. 

But a deeper point still remains. What if there is no further generalization 
(not just that we haven’t discovered one)? It seems very plausible to me that 
a proof with no further generalization could nevertheless be explanatory. 
To deny this, I think, needs further argument. 

In section 4.2, I show that my reading of generalizability addresses these 
concerns. First, however, I want to point out another problem with taking gen-
eralizability as we usually understand it to be the cornerstone of explanation. 

The problem is that generalizability admits of degree: some proofs gen-
eralize more widely than others, as I illustrate in section 4.1. And we have 
seen that explanatoriness and generalizability are closely related for Steiner. 
Yet Steiner writes that his ‘proposal is an attempt at explicating mathemat-
ical explanation, not relative explanatory value’ (Steiner 1978, 143); so it 
seems that Steiner’s conception of explanation does not admit of degree. 
In the next section I discuss this apparent mismatch by focusing on a par-
ticular example. 

4.1.  Degrees of Generalizability and the Square Root of Two 

Theorem: The square root of 2 is not rational. 

Proof:  We proceed by contradiction. Suppose √2 were rational. Then √2= a
b

for a, b ∈ N and b ! 0. Then 2 = (a
b)2 so 2b2 = a2. As Steiner puts it: 

‘… by using the Fundamental Theorem of Arithmetic – i.e. that each number 
has a unique prime power expansion (e.g. 756 is uniquely 22 × 33 × 71) – we can 
argue for the irrationality of the square root of two swiftly and decisively. For 
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in the prime power expansion of a2 the prime 2 will necessarily appear with an 
even exponent (double the exponent it has in the expansion of a), while in 2b2 its 
exponent must needs be odd. So a2 never equals 2b2, q.e.d.’ (Steiner 1978, 137-8) 

How does this prime factorisation proof meet Steiner’s three criteria on 
explanation? 

1. �T he proof makes reference to a characterizing property of an entity 
or structure mentioned in the theorem: as Steiner suggests, ‘the prime 
power expansion of a number is a characterizing property’ since by 
the Fundamental Theorem of Arithmetic, each number has a unique 
prime power expansion (Steiner 1978, 138 and 144). In this case the 
proof makes reference to the unique prime expansion of the num-
ber 2, which is an entity mentioned in the theorem. 

2. �I t is evident from the proof that the result depends on the property, 
that is if we substitute in a different object of the same domain, the 
theorem collapses. Here, if we substitute in the number 4, we don’t 
get a result about the irrationality of the square root of 4 because ‘the 
prime power expansion of 4, unlike that of 2, contains 2 raised to an 
even power, allowing a2 = [4]b2’. (Steiner 1978, 144)8 

3. � We should be able to see as we vary the object how the theorem 
changes in response: the theorem is generalizable to cover more 
numbers. For example, we can substitute in 5 or any other prime, p, 
to get directly to a result about the irrationality of √p. Indeed, we can 
generalize further to the claim that ‘the square root of n is either an 
integer or irrational … [and] almost the same reasoning gives us the 
same for the pth root of n’. (ibid.) 

As we see, this example fits Steiner’s three criteria. Drawing on earlier 
discussion, we can easily identify the characterizing property9; we can eas-
ily find counterexamples and generalizations of the theorem; and both the 
theorem and proof collapse when we substitute in another entity like 4, 
since the square root of 4 is rational. 

Now, there are many different proofs of the irrationality of the square root 
of two, and some of these generalize less widely than the one just discussed. 
Take the following visual proof, presented in (Miller and Montague 2012, 
110).10 

8 S teiner has ‘allowing a2 = 2b2’ here, which must simply be an error.
9 H ere I put aside concerns that the correct characterizing property is a bit more subtle 

than suggested by Steiner. The proof relies not simply on 2 having a unique prime expan-
sion, but on the fact that the unique prime expansion of a prime number is that prime itself; 
or more generally that whenever n is not a perfect square, one of the exponents in the unique 
prime expansion of n is not even.

10  Printed with permission. Copyright 2012 Mathematical Association of America.  
All Rights Reserved.
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Tennenbaum’s proof 

We now describe Tennenbaum’s wonderful geometric proof of the irrationality 
of √2. Suppose that √2 = a/b for some positive integers a and b; then a2 = 2b2. 
We may assume that a is the smallest positive integer for which this is possible. 
We interpret this geometrically by constructing a square of side a and, within 
it, two squares of side b (see Figure 1). Since the combined areas of the squares 
of side b equals the area of the square of side a, the shaded, doubly-counted 
square must have the same area as the two white squares. We have therefore 
found a smaller pair of integers u and v with u2 = 2v2, which is a contradiction. 
Thus √2 is irrational. 

Figure 1.  Geometric proof of the irrationality of √2 

This proof seems a good candidate for an explanatory proof to me (at least 
as good a candidate as the prime factorisation proof presented by Steiner). 
But Tennenbaum’s proof does not automatically generalize to cover all 
primes. Indeed, although Miller and Montague generalize the proof to cover 
the case n = 3, they write that ‘For the irrationality of root 5 we have to 
modify our approach’ and they show that further generalizations to cover 
triangular numbers only work up to n = 10 (Miller and Montague 2012, 
111-113). So the proof generalizes less widely than Steiner’s example. 

I suggest that we can see the new visual proof as posing a dilemma for 
Steiner. On the one hand, Tennenbaum’s proof seems like a good candi-
date for being an explanatory proof. If this is right, then it will be a point 
against Steiner’s account if his schema for explanatoriness cannot readily 
accommodate the proof.11 On the other hand, if Steiner’s account can 
accommodate the proof (given some reasonable characterizing property), 
then we have two explanatory proofs of the same result which generalize 
to a different degree. This is a problem if we think, as Steiner seems to, that 
generalizability tracks explanatoriness and that explanation does not admit 
of degree. 

Now, an easy way out of this dilemma for Steiner would simply be to 
allow that explanation does after all admit of degree. For example, Steiner’s 

11 I  do not have the space here to discuss potential characterizing properties.
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third condition could be modified along the following lines: ‘The further a 
proof generalizes, the greater the degree of explanatory value’. 

This would allow Steiner’s account to accommodate both proofs of the 
irrationality of √2. For example, we could simply hold that both proofs 
meet a minimum explanatory threshold: that they generalize to cover three 
further cases, say. The unique factorisation proof is nevertheless more 
explanatory than Tennenbaum’s proof, since it generalizes to cover many 
more cases. 

Although this may seem like a promising approach, I want to suggest 
one good reason not to take it. Apart from problems of where to draw the 
somewhat arbitrary threshold, the problem is that modelling explanatory 
value directly as a function of generalizability could lead to problems of 
incommensurability. Different proofs of the same result may generalize not 
only to different degrees, but also to cover different kinds of cases. This 
means it may be impossible to directly compare the generalizability of two 
proofs, in order to determine which is more explanatory. 

For example, in one paper Stan Wagon presents fourteen different proofs 
of a result about tiling a rectangle, comparing and classifying the proofs 
according to their possible generalizations. Some of these proofs generalize 
to cover the cylinder, while others generalize to the torus. As Wagon points 
out, ‘no one of the proofs is best in terms of its ability to generalize’ (Wagon 
1987, 601). 

Although there is more to be said on this point12, in this paper I want to 
focus on a way of circumventing the dilemma that fits better within Stein-
er’s framework. In the next section, I argue that my reading of Steiner’s 
generalizability condition deals neatly with the problems discussed so far. 

4.2.  Advantages of my Reading 

Recall the reading of generalizability under which I interpreted Steiner’s 
third condition: ‘Given a certain proof using a characterizing property R of 
an entity referred to in the theorem, the proof generalizes just in case the 
same argument applied to other objects with characterizing property R is a 
proof of the modified proposition that is now the conclusion’. 

Note that in fact generalizability does not admit of degree, on this read-
ing. Suppose the characterizing property is R. The theorem generalizes just 
in case the same argument (resulting in a suitably modified proposition) 
applies to all other objects with property R. In some cases, there will be 
many objects with property R. And in some cases, there will be few such 
objects – perhaps only one. Condition 3 is met if the same argument can be 

12 T he obvious suggestion is to see generalizability as only one of multiple explanatory 
dimensions. 
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applied to all such objects: whether there are many or only one. It is an 
all-or-nothing condition, and cannot be partially met. 

How does this help us to resolve the dilemma posed in section 4.1? Well, 
it is not the case that the prime factorisation proof that √2 is irrational is 
automatically more generalizable than Tennenbaum’s pictorial proof, sim-
ply because the former covers more numbers (namely all the primes). 
Rather, each proof is generalizable just in case the proof’s argument can be 
applied to all cases of objects with the relevant characterizing property. 
In the prime factorisation case, it’s obvious that the proof is generalizable 
in this sense (it’s easy to see that substituting in another prime will work). 
In the pictorial case, this is less obvious and needs further work. Perhaps the 
pictorial proof is not generalizable in this way. But whether it is generaliz-
able in this sense or not, is not a matter of degree. 

So, Steiner can get around the dilemma I presented by claiming that 
neither explanation nor generalizability admit of degree on the best reading 
of his three conditions. 

My reading of generalizability also has a number of further advantages. 
First, generalizability as presented here is independent of the interests of 
persons. So explanatoriness is not relative to persons’ abilities and interests, 
on my reading of Steiner’s account; to this extent it is an objective property 
and does not depend on whether we happen to have discovered the gener-
alization.13 Second, the generalizability requirement is not as restrictive as 
might first appear: (i) It does not exclude proofs which cover only one object 
and cannot be extended to apply to more objects, if the characterizing property 
applies only to a single object; (ii) In the same vein, the most general ver-
sion of a proof (like Proof C in section 2.2) will still count as generalizable, 
as long as it covers all objects with property R. 

We might worry whether my strong reading of generalizability matches 
the usual way we use the term in mathematics. But we can forestall this 
objection by taking generalizability on my reading to be short for ‘gener-
alizability with respect to the relevant characterizing property’ and allowing 
for ‘trivial generalizability’ in case (i) just mentioned, where the character-
izing property applies to just one thing. 

One serious disadvantage, however, is that the account so far gives no 
indication of how an explanatory proof fulfils the primary epistemic function 
of an explanation, namely, to help us see why the fact to be explained is 
true. I will address this problem in the next section, in which I also return 
to examine Proof 3 from section 1 in light of the discussion so far. 

13 I  do not have space to explore debates about different kinds of objectivity in this paper. 
See for example (Burge 2010, 46-54). 
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5.  New Directions 

5.1.  Ontic and Epistemic Aspects of Explanation 

Wesley Salmon suggests a distinction between ontic and epistemic concep-
tions of explanation in the scientific case, where ‘the epistemic conception 
takes scientific explanations to be arguments’ and ‘[t]he ontic conception 
sees explanations as exhibitions of the ways in which what is to be explained 
fits into natural patterns or regularities’ (Salmon 1984, 293). I will under-
stand the terms ‘epistemic’ and ‘ontic’ in broadly this way, as distinguishing 
between an explanation that provides or increases our understanding, and 
an explanation that describes the structure or pattern of the (in this case 
mathematical) world.14 

Steiner’s account seems at first glance to have both ontic and epistemic 
components. For example, Steiner stipulates that in an explanatory proof 
it should be ‘evident that the result depends on the property’, and that ‘we 
should be able to see as we vary the object how the theorem changes in 
response’ (Steiner 1978, 143, emphasis mine), which seems to point to an 
epistemic aspect of his account. 

One important question is what it means for the result depending on the 
property to be ‘evident’ on Steiner’s account. Recall the discussion of Proof 
2 in section 2. Why, we might ask, was the importance of property Q not 
immediately apparent when first analysing Proof 2? It’s not clear how we 
might come to identify property Q except by thinking about how the proof 
might collapse or generalize to cover other sums of number sequences. This 
is how I came to identify the property. To a more practised mathematician 
or mathematics teacher, the required property might become apparent at 
first glance, perhaps based on familiarity with such results. If this is right, 
then identifying an appropriate characterizing property seems to build in an 
epistemic aspect to Steiner’s account, where a proof is judged to be explan-
atory based on the cognitive capacities or background of the reader. 

On the other hand, Steiner’s account clearly focuses on properties and 
patterns of dependence, and indeed he rejects another proposed criterion of 
explanation connected with our ability to visualize on the basis that ‘this 
criterion is too subjective to excite’ (Steiner 1978, 143). So it seems that 
Steiner’s primary aim is to capture an ontic or at least objective account of 
explanatory proof. 

We could maintain an emphasis on the ontic aspect by arguing that a less 
experienced mathematician may incorrectly classify proofs as explanatory 
(or non-explanatory) based on incorrectly identifying the characterizing 

14 N ote that it is not clear we can maintain the distinction between these terms in the 
same way in all areas: for example, philosophers investigating mechanistic explanation have 
argued otherwise. See e.g. Illari (2013). My thanks to an anonymous referee for this point.
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property. After all, Steiner does not specify that ‘evident’ means anything 
like ‘easy to grasp’. Instead, we could simply propose that ‘evident’ be read 
as ‘evident to a mathematician’; where, of course, further work would be 
needed to say who counts as a mathematician. In this way, a Steinerian 
account can maintain that a proof is explanatory in some sense indepen-
dently of whether the average person actually classifies it as such. 

In what follows, I want to go beyond Steiner’s account and propose a 
way to combine both epistemic and ontic aspects, because of the problem 
raised in the last section: how does a proof’s meeting Steiner’s three condi-
tions help us to see why the theorem proved is true? 

My suggestion is that a proof counts as explanatory in an ontic or objec-
tive sense if it in fact meets Steiner’s three conditions, involving some 
suitable characterizing property. We can be justified in calling the proof 
explanatory if we latch onto the relevant characterizing property (even if, 
as I suggested earlier, we don’t latch on to it in full generality or we don’t 
actually make the generalizing step). The proof also counts as explanatory 
in an epistemic sense if the property is presented in a way that enables us 
(or a person with suitably advanced mathematical skills) to latch on to the 
relevant property. 

In my proposed extension of Steiner’s account, the primary epistemic 
function of an explanation is fulfilled to the extent that the proof presents 
the characterizing property in an accessible way: the more accessible, the 
more readily we see why the theorem proved is true. 

I do not have space to defend this suggestion in depth, but I illustrate 
the proposal in the next section by going back to examine Proof 3 from 
section 2.

5.2.  The Importance of Presentation 

I suggest that Proof 3 involves the same characterizing property as in Proof 
2, presented in a different way. For ease of reference, I repeat Proof 3: 

‘By dividing a square of dots, n to a side, along its diagonal, we get an 
isosceles right triangle containing 

S(n) = 1 + 2 + 3 + … + n 
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dots. The square of n2 dots is composed of two such triangles – though 
if we put the triangles together we count the diagonal (containing n dots) 
twice. Thus we have 

S(n) + S(n) = n2 + n, q.e.d.’ (Steiner 1978, 137) 

Like Proof 2, Proof 3 also essentially involves counting each element of the 
sum twice. Here the second sum is upside down, rather than backwards as in 
Proof 2. But this is just a different geometrical representation of the same idea. 
The ‘geometric’ proof, as Steiner calls it, also only works because there is a 
constant difference between terms in the sum (which are represented by dots). 

We could apply the same argument to other instances of arithmetic 
sequences as in the first two images below. 

Whenever the sequence has a constant difference between terms, two dot 
copies of the sequence will form a rectangle. It’s easy enough to see that 
no rectangle will be formed if there is not a constant difference between 
terms, as in the third array of dots. 

Note that we can’t generalize the proof to cover an arbitrary arithmetic 
sequence as we did with Proof 2, because we can’t represent an arbitrary 
arithmetic sequence using dots. This might tempt us to say that Proof 3 fails 
to meet Steiner’s third condition; but recall the reading of generalizability 
defended earlier. It’s not part of the condition that the argument has to apply 
to the abstract general description of the case. Rather, the important thing 
is that the argument can be applied to any individual case of an object 
with the same characterizing property. This is true (allowing for a broad 
understanding of applying the argument: in some cases it may be hard to 
physically draw all of the dots!). 

Let me clarify this. The relevant question is: Does the set S of all objects 
with property Q contain the ‘arbitrary arithmetic sequence’ a, a + d, a + 2d,…? 
If so, the argument in Proof 3 can’t be used to cover this arbitrary case as the 
argument in Proof 2 can (as shown in Proof C, section 2.2). This is because 
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we can’t represent a + d, for example, using a concrete number of dots in the 
way we can represent a particular number. However, I suggest that the arbi-
trary sequence is not really a sequence in S; rather, it stands for any sequence 
in this set, and the argument in Proof 3 does cover each one of these 
sequences. So Proof 3 meets Steiner’s third condition, I suggest. 

My proposal, then: Proofs 2 and 3 make use of the same characterizing 
property – being a sequence of numbers with a constant difference between 
terms. They both meet Steiner’s three conditions. What differs between the 
proofs is the degree to which they make the relevant characterizing property 
accessible, and thereby the degree to which they achieve the primary epis-
temic function of an explanation: enabling or helping us to grasp why the 
proof’s conclusion is true. 

I find the characterizing property easier to spot and presented more clearly 
in Proof 2, but this may depend on the reader’s cognitive background and 
skills. In general, identifying a suitable characterizing property could be an 
epistemically challenging task, if the property is presented unclearly or in 
a way not accessible to someone with a particular set of cognitive skills. Such 
a proof can nevertheless be declared objectively explanatory, according to 
Steiner’s account. It’s just that the average reader can’t immediately access 
the property – and hence the explanation. 

To summarise, I hope my proposal has provided reason to think that suc-
cessful future developments of Steiner’s account could include both an 
ontic component – whether or not the proof contains a suitable character-
izing property which meets conditions 1–3 – and an epistemic component – 
whether the characterizing property is presented in a way accessible to a 
reader with a certain cognitive background. 

6.  Conclusion 

I have attempted to give a maximally charitable reading of Steiner’s 
account, one which makes sense of the puzzling comments he makes about 
his sum-of-integers example. I analysed one of Steiner’s proofs (Proof 2) 
and identified a characterizing property in order to show that the proof does 
indeed meet Steiner’s three conditions and hence can be called explanatory 
on his account. 

Subsequently, I raised a few potential worries about Steiner’s account, 
and showed how my reading of his third generalizability condition helps 
Steiner to avoid these problems. 

Finally, I returned to examine Proof 3 and suggested that a proof may 
display its characterizing property more or less clearly, allowing for a new 
epistemic component to Steiner’s account that I hope lays the ground for 
further research. 
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