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ABSTRACT

The past decades, there has been an increased philosophical interest in mathemat-
ical practice. These philosophers intend to answer questions related to the activities
of working mathematicians. One of these questions is what aims direct mathemat-
ical research. After all, mathematicians often express the desire for good or beautiful
mathematics. These types of reflections indicate the need for an understanding of
aims that go beyond justification. In this paper, we explore potential ways in which
philosophy can clarify what these aims are. Furthermore, we stress the importance
of a multidisciplinary approach to this problem.

1. Introduction

The topic of this paper is mathematical aims, by which we mean directions
that guide a mathematician’s activities. Explicating such aims helps us to
answer questions such as the following. Why do mathematicians prove?
Why are certain mathematical arguments valued more than others? What
is the role of non-traditional proofs in mathematics? As the title suggests,
we are interested in aims other than justification. This choice is not inspired
by a belief that justification is not an important mathematical aim, it cer-
tainly is. Rather, it is encouraged by the firm belief that the aim of justifica-
tion is largely insufficient in order to account for much of mathematical
activity. Our purpose is not to give definitive answers to the question what
these other mathematical aims are, but to examine where this question might
lead us.

In section two we introduce the topic of our paper by pointing to a grow-
ing trend in philosophy of mathematics to emphasize the importance of
mathematical practice. In section three we discuss several possible roads to
explore when talking about mathematical aims. Section four develops a
critical note on methodology. In section five we conclude this paper.
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2. Philosophical Attention for Mathematical Practice

2.1. A break in Tradition

During the last decades, different currents in philosophy of mathematics
have been recognized and distinguished; mainstream philosophy of math-
ematics, maverick philosophy of mathematics and philosophy of mathematical
practice.

Two kinds of philosophical questions have mainly determined topics
dealt with in mainstream philosophy of mathematics; ontological questions
and epistemological questions. Ontological questions are concerned with
the subject matter of mathematics, addressing what kind of objects math-
ematical entities actually are. Are they abstract or physical, are they
objectively existing or not? Epistemological questions, on the other hand,
concern mathematical knowledge. How do we acquire knowledge about
mathematics? The answer to this question is of course not independent
from, and is thus often addressed in connection with, a specific ontological
position. Moreover, it leads to other epistemological questions on the nature
of mathematical knowledge. In what respect, if any, is mathematical knowledge
similar to or different from other kinds of knowledge? Does mathematical
knowledge enjoy some kind of certain and infallible status, granting it a
unique epistemological status? In order to answer these questions, the major
philosophical schools of the past century have all associated themselves
with a particular type of (either godlike or human) ideal mathematician. For
(methodological) Platonists, an ideal mathematician is one with perfect
intuition. For empiricists, (s)he is the ultimate empirical scientist. For logi-
cists, a fully rational agent. For formalists, an entirely free one. From the
traditional schools, only intuitionists (although generally as objectivist and
perfectibilist as their rivals) come anywhere near giving a role to actual
mathematicians: genuine mathematical theories, they hold, are not waiting
to be discovered and then justified but are actively and permanently devel-
oped by creative subjects instead. What remains remarkably constant how-
ever throughout these (conservative to more liberal) accounts is that “ideal
mathematicians are usually assumed to be infallible, eternal or atemporal,
unlimited in memory or complexity, isolated from other mathematicians,
mental beings without contexts. [...] Insofar as actual mathematicians err,
they fail to approximate ideal mathematicians and so are of no concern to
philosophy” (Tymoczko 1986, p. 45).

Maverick philosophers, such as Thomas Tymoczko, question the
approach of mainstream philosophy of mathematics, and suggest to break
with this tradition epitomized by the foundationalist approaches. These
have dominated the agenda of philosophy of mathematics for the first half
of the 20th century, being mainly, if not exclusively, focused on the
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outcomes or ‘products’ of mathematical practice. It was only since the pub-
lication of Proofs and refutations by Imre Lakatos, one of the very few
philosophers being occupied with this theme early on, that it gradually
became clear to an increasing number of scholars that a full understanding
of mathematics also involves a grip on mathematical activity itself, as a
process (Lakatos 1976). This concern with what it actually is that mathema-
ticians do when they do mathematics, only implicit in Lakatos’ work
though, pointed to possible new ways of steering out of a lingering philo-
sophical crisis (see 2.2). Clearly, this implies a reconsideration of what
should be philosophy of mathematics in the first place. For the mavericks,
in contrast with mainstream philosophy of mathematics, this much was
or is clear: A meticulous analysis of mathematical practice is deemed
indispensable to do proper philosophy of mathematics, and mainstream phi-
losophy of mathematics, as e.g. conducted from within the foundationalist
programs, is insufficiently equipped methodologically in order to properly
deal with it.

The third tradition mentioned above, philosophy of mathematical prac-
tice, is presented by Mancosu (2008a) as the middle ground between
mainstream and maverick philosophy of mathematics. This position sees
limitations in both previous approaches. Mainstream philosophy of math-
ematics neglects the mathematical practice, while maverick philosophy has
not been able to get a substantial foothold in philosophy of mathematics.
The methodology of this third, intermediate position generally speaking
remains closer to the spirit of mainstream philosophy of mathematics, while
keeping an emphasis on the importance of paying attention to mathematical
practice.!

2.2. Relation between Philosophy and Mathematical Practice

Directing the attention of philosophers away from a perfectibilist view and
towards the practice of mathematicians suggests previously unaddressed
topics. Note that this does not entail demonstrating that mathematics is
dishonorable or untrustworthy as an epistemic endeavour. Indeed, we are
not at all in the business of bringing it down. However, its practices should
be investigated dispassionately, and might even, as a result of that, be
improved. That is, philosophy, with its particular competencies, can con-
tribute to a useful reflection on mathematical practices, by shaping and
facilitating these.

! For a more detailed discussions concerning the differences and relations between main-
stream philosophy of mathematics, philosophy of mathematical practice and maverick phi-
losophy of mathematics, See (Mancosu 2008a) and (Van Bendegem 2014).
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In this very respect, it may address topics that are directly relevant for
working mathematicians, breaking with a tradition of detachment so char-
acteristic of mainstream philosophy of mathematics. Reuben Hersh, one of
the early ‘maverick’ thinkers about mathematics, himself being a mathema-
tician, noted that “mathematicians themselves seldom discuss the philo-
sophical issues surrounding mathematics; they assume that someone else
has taken care of this job. We leave it to the professionals” (Hersh 1998,
p. 13), the latter of course supposing to be philosophers. Looking back on
an entire career in mathematics, his occasional co-author Philip Davis con-
firms and specifies: “Most practicing mathematicians care very little about
discussing the philosophy of their subject, but they work unconsciously
with a philosophy of Platonism. [...] If the shortcomings of Platonism are
pointed out, mathematicians usually fall back on formalism” (Davis 2000,
p- 50). With this he echoed the following classic lines from their joint,
groundbreaking book The Mathematical Experience:

Most writers on the subject seem to agree that the typical working mathemati-
cian is a Platonist on weekdays and a formalist on Sundays. That is, when he is
doing mathematics he is convinced that he is dealing with an objective reality
whose properties he is attempting to determine. But then, when challenged to
give a philosophical account of this reality, he finds it easiest to pretend that he
does not believe in it after all. (Davis & Hersh 1983, p. 321)

However, when it comes to challenging this rather careless and fairly super-
ficial attitude, it seems “the professional philosopher, with hardly any
exception, has little to say to the professional mathematician. Indeed, he
has only a remote and inadequate notion of what the professional mathema-
tician is doing” (Hersh 1998, p. 13). Again, this obvious neglect might be
linked to the — philosophically unhealthy — preoccupation, throughout the
twentieth century, with shaken foundations, i.c., the ‘aftermath’ of the
famous crisis, which is a matter of hardly any immediate relevance to prac-
ticing mathematicians.

People noticed that in their normal everyday work as mathematicians you don’t
really find results that state that they themselves are unprovable. And so math-
ematicians carried on their work as before, ignoring Godel. The places where
you get into trouble seemed too remote, too strange, too atypical to matter.
(Chaitin 1999, p. 15)

Therefore, as Yehuda Rav has aptly noted, “it’s important to remember that
mathematics is not an edifice which risks collapse unless it is seated on
solid and eternal foundations that are supplied by some logical, philosoph-
ical, or extra-mathematical construction” (Rav 1993, p. 80). This is indeed
one of the central ideas to any alternative picture, as magnificently captured
in the following legendary extract of contemporary philosophy of mathe-
matics, by the hand of Morris Kline:
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The developments in this [twentieth] century bearing on the foundations of
mathematics are best summarized in a story. On the banks of the Rhine, a beau-
tiful castle has been standing for centuries. In the cellar of the castle, an intri-
cate network of webbing had been constructed by industrious spiders who
lived there. One day a strong wind sprang up and destroyed the web. Franti-
cally the spiders worked to repair the damage. They thought it was their web-
bing that was holding up the castle. (Kline 1980, p. 277)

A question that arises when looking at the actual practice of mathemati-
cians, leaving the cellar behind and entering the other floors of the castle
so to say, is what aims of the mathematical endeavour can be identified.
This requires a careful look into the reasons that support mathematician’s
actions and choices. For example, why do mathematicians prove? An
answer to expect is that the method of rigorous proof gives mathematicians
certainty about the truth of the theorems shown. This aim should of course
not be neglected, as it is without any doubt one of the main driving forces
of mathematical practice. In this paper we will however want to reflect on
aims that go beyond this justificatory aim. Our reflection has two important
reasons. Firstly, as indicated in the previous section, justification has
received the most philosophical attention already. This does of course not
mean that all interesting questions about it have been sufficiently answered,
but we want to further open and facilitate the debate on other aims math-
ematicians might have. Secondly, a glance at mathematicians’ own views
on practice demonstrates that, in effect, other aims do enter the picture.

2.3. Aiming for Good Mathematics

In this subsection, we will start by taking a look at some of these mathema-
ticians’ reflections. When mathematicians think about their own practice,
they often refer to distinctions such as those between good and bad math-
ematics, or that between beautiful and ugly mathematics. A famous example
has been given by G.H. Hardy:

The mathematician’s patterns, like the painter’s or the poet’s, must be beauti-
ful; the ideas, like the colors or the words must fit together in a harmonious
way. [...] [T]here is no permanent place in this world for ugly mathematics.
(Hardy 1992, p. 85)

Another famous mathematician, Paul Erdos, was fond of referring to the
The Book, where the most perfect proofs of all theorems were to be found.
In this respect it was not an actual physical book, but a virtual way to pay
tribute to the idea that some proofs triumph in elegancy and beauty. Proofs
from THE BOOK by Aigner and Ziegler (1999) is an effort at a concrete
approximation of The Book. The authors do not claim to have a definitive
collection of good mathematics, and do not suggest there is an unambiguous
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distinction between beautiful and ugly mathematics. In their brief introduc-
tion, they state:

We have no definition or characterization of what constitutes a proof from The
Book: all we offer here is the examples that we have selected, hoping that our
readers will share our enthusiasm about brilliant ideas, clever insights and
wonderful observations. (Aigner & Ziegler 1999: preface)

Notice that not only proofs are labeled with some judgment here, but also
brilliant ideas, clever insights and wonderful observations. Terence Tao
(2007), like the above scholars, claims that mathematicians should strive to
produce good mathematics. This however, he argues, cannot possibly have
a singular and fixed meaning:

Almost immediately one realises that there are many different types of mathe-
matics which could be designated “good”. [...] [T]he concept of mathemati-
cal quality is a high-dimensional one and lacks an obvious canonical total
ordering. (Tao 2007, pp. 623-624)

Tao offers an open-ended list of more than twenty possible readings, includ-
ing: good mathematical application, good mathematical pedagogy, rigorous
mathematics, beautiful mathematics and strong mathematics.

The fact that these judgments about mathematics can play an actual role
in mathematical practice can be recognized in the following quote by math-
ematician Michael Atiyah, who describes his experience with proving a
theorem. The fact that he wants the proof to play a certain role, namely
explain why the theorem is true, leads to the search for an alternative proof:

I remember one theorem that I proved and yet I really couldn’t see why it was
true. It worried me for years and years. [...] In order for the proof to work,
every single thing had to go just right — you had to be remarkably lucky, so to
speak. I was staggered that it all worked and I kept thinking that if any one link
of this chain were to snap, if there was some flaw in the argument, the whole
thing would collapse. [...] I kept worrying about it, and five or six years
later I understand why it had to be true. Then I got an entirely different proof
[...] Using quite different techniques, it was quite clear why it had to be true.
(Atiyah 1988: p. 305)

It is possible to further augment this list with other similar quotes and
observations by mathematicians, but this is not the point of this paper. In
essence, we argue that, if distinctions such as those between good and bad
or beautiful and ugly mathematics exist, it seems fair to assume mathema-
ticians attempt to produce good or beautiful mathematics. But just acknowl-
edging this does not address the matter of what these distinctions actually
mean and what their exact role is in mathematical practice. In order to do
this we must answer why some piece of mathematics is valued and perhaps
why another piece of mathematics receives less valuation. In the next
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section, we will discuss several possible answers to the question of what
might fall under the scope of aiming for better mathematics, or put other-
wise: what mathematicians value besides justification. As to be expected,
given that many mathematicians themselves have already labeled good
mathematics as a multidimensional concept, different perspectives are
needed. Our ambition is not to give an exhaustive analysis of what math-
ematical aims are, but rather to suggest what might be different meaningful
starting points for getting a better grasp on this notion.

We will start by looking at the notion of scientific aims, and see whether
these might be extendable to mathematics. Next, we will address two values
that have received the most, albeit limited, attention in philosophy: math-
ematical explanation and mathematical beauty. In the last two subsections
we discuss different ways in which proofs and non-deductive or non-formal
methods deployed in them can be valued.

3. Perspectives on Mathematical Aims

3.1. Scientific Aims

A first possibility is to look at the aims of other sciences. The essential aims
of science are often said to be prediction, control and explanation. A scien-
tific discipline has to decipher the hidden truths of reality so that we can
predict what will happen to this reality, control reality in accordance with
our own individual capacities, and answer explanation-seeking why-ques-
tions concerning this reality. This seems to work for most specific scientific
disciplines. The concrete case will, without any doubt, be more complex as
more nuanced aims can play indispensable roles as well. Moreover, getting
a clear view on what prediction, control and explanation really means in
the actual practice, is still an ongoing debate in philosophy.

Be that as it may, we can not display a similar general view about the
aims of mathematics by referring to these widely accepted aims of science.
It may seem intelligible that mathematicians want to decipher the hidden
truths of, whatever concrete picture someone has of it, a certain mathematical
reality. Nonetheless, other problems arise when extending these scientific
aims into mathematical practice. It is hard to imagine how we could iden-
tify analogous accounts, if any, of prediction in mathematics. Mathemati-
cians certainly make guesses about what they think a mathematical result
will or should look like, or whether a statement will turn out true or false.
If an aim is to be recognized here, it is not to find an adequate prediction
of a result, but to find a proof of the theorem. The same problem is encoun-
tered when thinking about the notion of control, obviously ubiquitous in
scientific practice but seemingly absent in mathematical practice. Explana-
tion, on the other hand, might be a good candidate for a mathematical aim.
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We will discuss the possibility that mathematicians look for an explanation
why a certain mathematical statement is true further on. In general, how-
ever, it is clear we need a new perspective to truly capture the essence of
mathematical aims.

One could still try to state that an aim of mathematics is to facilitate these
scientific aims. Mathematics has repeatedly shown to be indispensable for
science in order to achieve better predictions, improved control and more
adequate explanations. It might be the case for some mathematical research
that these aims have an impact on their research. Yet a closer look learns us
that the mathematical success in science does not direct for what and how
mathematicians look in their own research. Mathematicians do mathematics
for the sake of mathematics itself, as was already clear from the reflections
of mathematicians mentioned earlier. Mathematics is not but the handmaiden
of science, if at all. A nice metaphor on the limits of this idea is given by
Ian Stewart:

It was like an expedition to cross an unscalable mountain range. At the outset,
you can see the peak that must be conquered. But there’s no way to climb it.
And so the expedition heads off into the desert, trying to go round the moun-
tain, and bypass the peak. Now, the techniques you need to survive in the desert
are not those that help you climb mountains. So you end up with specialists on
cacti and rattlesnakes and spiders, and the flow of sand-dunes in the wind, and
the causes of flash-flooding, and nobody cares any more about snow, ropes,
crampons or peg-hammers. So, when a mountaineer asks the sandunologist
why he’s studying sand-dunes, and is told to ‘to get past that mountain’, he
doesn’t believe a word of it. And it get worse when the answer is ‘I don’t give
a hoot about mountains sand-dunes are much more fun.” But the mountain’s
still there, and the desert still goes round it. And if the desertologists do their
stuff well enough — even if they’ve forgotten about the mountain — then one day
the mountain will cease to be a barrier. (Stewart 1997, p. 65)

The reality that Stewart wants to describe here is that while Poincaré may
have been originally driven into topology by a problem in physics, the
discipline led him so far away from reality and into abstract mathematics.
The result is a distance between problems in physical science and aims in
mathematical research.

3.2. Mathematical Explanation

One of the potential aims mentioned previously is explanation. Mancosu
(2008b) differentiates between two senses in which mathematical explana-
tion is discussed in the philosophical literature: extra-mathematical explana-
tion and intra-mathematical explanation. The former is concerned with the
application of mathematics in the physical sciences, and whether the role
mathematics plays here can be considered to be an explanatory one. An
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often debated example is the role of mathematical properties of prime num-
bers in the explanation of why species of cicadas have, depending on the
geographical area, either 13 or 17 year life cycles (Baker 2005). This dis-
cussion is usually linked with ontological considerations about mathemat-
ics. Literature on intra-mathematical explanation, on the other hand, deals
with the role of explanation within mathematics itself. An example is that
we could, given multiple proofs of a particular theorem, make a distinction
between more and less explanatory proofs.

In the investigation of aims that guide mathematical activity, explanation
is a good candidate. We previously saw the case where Atiyah described
how, in need for a better explanation of the theorem, a mathematician might
look for another proof. The search for explanation might be characterized
in various ways, including a search for the deep reasons, a better under-
standing or a satisfying reason why. Philosophical models strive to clarify
the notion of mathematical explanation.

Looking at contributions to recent analytic philosophy, two kinds of
approaches can be recognized. A first, starting with the model presented by
Mark Steiner (1978), tries to explicate the notion of explanatory proofs.
In order to do this, Steiner introduces the notion of a characterizing prop-
erty, a property unique to a given entity or structure within a family or
domain of such entities or structures. An explanatory proof is a proof that
depends on a characterizing property of an entity or structure mentioned in
the theorem. But merely pointing to this characterizing property is not
enough. One must be able to generate new, related proofs by varying the
property (substituting it with the characterizing property of a related entity)
while holding the proof-idea constant. Other authors, such as Carlo Cel-
lucci (2008) and Marc Lange (2014) have proposed alternative models,
while sustaining a primary focus on the explanatory value of mathematical
proofs.

The second kind looks at a broader picture. Kitcher (1989), one of the main
defenders of the notion that scientific explanation is linked with theoretical
unification, has argued that his unification approach covers mathematical
explanation as well. We will not go into the technical details of his notions
of explanation and unification, but it stands to its credit that the possibility
of deriving as much as possible mathematical statements whilst keeping the
basic assumptions limited has an intuitive appeal. Hafner & Mancosu
(2008) present doubts whether Kitcher’s model is able to actually account
for explanation in mathematical practice, but the general idea that explanation
and unification share a link still is sustained. Other models of unification
might be more successful, as well as other explanatory values on a theo-
retical level.

The notion of explanation can be a worthwhile topic to gain access to
mathematical aims. We should, notwithstanding, be aware that explanatory
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power is only one way mathematicians value their work. This pitfall, of
placing a cluster of positive values under the umbrella of explanation, is
also noted by Avigad:

Such proofs are sometimes called explanatory, and there is a small but growing
body of work on the notion of explanation in mathematics. will use the term
here only gingerly, for two reasons: First, the term is not so very often used in
ordinary mathematical discourse; and, second, it is certainly not the only term
which is used to voice positive judgments about proofs. Here, I would prefer to
remain agnostic as to whether there is a single overarching concept that
accounts for all such positive judgments, or rather a constellation of related
notions; and also as to whether the particular virtues considered here are best
labeled “explanatory”. (Avigad 2006: p. 106)

3.3. Mathematical Beauty

Another concept that receives some philosophical interest capturing math-
ematical appreciation is that of mathematical beauty. The list of distin-
guished scholars having pointed to aspects of the fundamentally aesthetic
nature of mathematics is quite impressive. Mathematics has been likened
to painting, music, sculpture or poetry, the successful mathematician to an
artist. Because it has so often been defended, philosophically, that mathe-
matical patterns are inherently beautiful, by abduction, the aesthetic appeal
of specific mathematical hypotheses and results has been frequently con-
sidered as an indication of their coherence or truth as well as (potential)
relevance and importance, e.g., by Russell or Poincaré. Hardy even explic-
itly confirmed the Aristotelian identification of the Beautiful, the True, and
the Good in the case of mathematics. This indicates that mathematical
beauty has long exclusively been thought of as purely abstract in nature,
only likened to that of concrete art products. However, in recent times it has
also been given a more earthly (or less idealist) dimension. With reference
to the surprising facets of ‘emergent’ computer generated patterns, e.g., it
is not unheard-of nowadays to plainly speak of ‘fractal art’. Formerly, con-
sidering these or any mathematical objects as beautiful ‘accidents’ would
no doubt have been sacrilege. Also, the status of aesthetic appreciation in
matters mathematical has been thoroughly questioned. That is, the idea that
mathematical beauty is not anywhere near absolute, but rather ‘in the eye
of the beholder’, either individually or collectively, has been well supported
indeed. See, e.g., the famous survey conducted by David Wells for Math-
ematical Intelligencer in 1988 (Wells 1988 and Wells 1990). So all right if
beauty is an essential criterion of what is considered as mathematically
valuable. “Yet no one can say precisely of what beauty in mathematics
consists, and professional mathematicians will not necessarily agree on
their definitions of mathematical beauty, on their practical judgements of
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which theorems, proofs, concepts, or strategies are most beautiful, or on the
role their personal feelings for mathematical beauty play in their own
work”. (Wells 1988, p. 30). The results of the inquiry confirmed this picture,
and allowed for “the negative conclusion that the idea that mathematicians
largely agree in their aesthetic judgments is at best grossly oversimplified”
(Wells 1990, p. 40).

Two remarks are in order. First, even a subjective reading of mathemat-
ical beauty might play an imperative role in mathematical practice. Second,
philosophers can still try to capture a more objective reading of mathemat-
ical beauty as well. Gian-Carlo Rota (1997) states that, given a historical
period and a specific context, one can find reasonable agreement as to
which mathematics is regarded as beautiful. Rota’s explication of the con-
cept of mathematical beauty is based on the enlightenment a certain piece of
mathematics provides. Mathematical ugliness, Rota argues, encourages math-
ematicians to develop more aesthetically appealing arguments. Another
approach to mathematical beauty, presented by James McAllister (2005), sug-
gests conceptions of mathematical beauty evolve under the influence of that
what can be grasped in a single act of mental apprehension. As an example
he gives the gradual acceptance of new classes of numbers in mathematics.
Initially a new class, such as negative or complex numbers, was regarded
as ugly. As mathematical theorizing led to show the applicability and fruit-
fulness of a new class of numbers, aesthetic merit rose accordingly.

Parallel to the remark made with mathematical explanation, we should
remain cautious with linking positive judgments on mathematical argu-
ments a singular concept such as beauty. Matthew Inglis and Andrew
Aberdein (2015) stated that while many scholars associate simplicity with
beauty, results based on empirical methods do not support that claim. It is
our view that a further analysis of terms such as mathematical explanation
and mathematical beauty is warranted, but at least as important is the
inquiry of mathematical simplicity, depth, elegance, insightful and other
terms that have received far less or no philosophical interest.

3.4. Mathematical Proofs

When looking at proof in particular, and more precisely the reasons behind
favoring certain proofs, values other than explanation, beauty or justifica-
tion arise without doubt. Rav’s seminal paper Why do we prove theorems
(1999) serves as a good starting point. Rav argues that proofs do much
more than verify mathematical claims, and that the proofs themselves can
better be seen as important bearers of mathematical knowledge. In order to
make his point, he sketches the following hypothetical situation. He consid-
ers a machine that is capable of answering instantaneously and infallibly
whether a mathematical claim is true or not. As delightful as this may seem,
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Rav suggest that we would continue looking for alternative proofs that have
other merits, such as the fact that they demonstrate new insights, mathe-
matical methods or mathematical strategies. Hence, proofs have a value that
goes beyond merely establishing the truth of the theorem. Euclid’s proof of
there being infinitely many primes is mentioned as an example. The result
of this proof is not (only) what makes it important for mathematicians, but
(also) the strategy of proving that a set is infinite and then using the ele-
ments of this supposedly finite set in order to bring about a new element of
that set, is. In other words, the real value of the proof goes beyond knowing
that the theorem established by it is in fact true:

It is a purely creative, topic-specific move; this move, simple as it is, consti-
tutes a contribution to mathematical knowledge which goes beyond the state-
ment of the proposition. Indeed, by the same method as in forming the number
N one proves that there are infinitely many primes of the form 4n + 3. Further-
more, Euclid’s idea of forming p, p,...p, + 1 was used by Gddel in order to
show that the function P (n) taking the n” prime number as its value is [primi-
tive] recursive. (Rav 1999: p. 21)

Good or interesting mathematical proofs, in this sense, is mathematics that
brings about concepts and methods that are fruitful for other mathematical
research. David Corfield seems to support Rav’s ideas, pointing to the:

dual roles of mathematical proof: establishing the truth or correctness of
propositions and contributing to the conceptual development of a field. What
mathematicians are largely looking for from each other’s proofs are new con-
cepts, techniques, and interpretations. (Corfield 2003, p. 56)

Michael de Villiers (1990) claims, with a special interest in the role of the
proof in the educational context, that it would be intellectually dishonest to
maintain that verification is the only function a proof can play. For example,
proof can play an important role in the systematisation of various known
results into a deductive systems of axioms, definitions and theorems. Such
a systematisation can have diverse merits; it is easier to identify inconsist-
encies, mathematical theories are unified by integrating formerly unrelated
statements with one another or it provides a global perspective of a topic
by exposing the underlying axiomatic structure. De Villiers discusses five
such functions of proof in his paper, namely verification, explanation,
systematisation, discovery and communication. What end a mathematician
wants to achieve will have an impact on how and which proofs are valued.

Another perspective on this topic is provided by John Dawson (2006),
discussing the phenomenon of re-proving theorems. If justification of the
theorem is the only aim of mathematicians, why are multiple proofs of the
same theorem omnipresent in mathematics? Dawson argues this has various
reasons including the wish to discover new routes, remedy perceived gaps
in earlier arguments, demonstrate the power of a different methodology or
to employ reasoning that is simpler than that of earlier proofs.
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In sum, how a proof'is developed, read and valued may be influenced by
one or more aims. An important factor seems to be that mathematical proofs
are valued for the fact that they introduce a specific concept, technique or
interpretation. The previously mentioned values of explanation and beauty
can still be in play here, as well as others including fruitfulness, generality
or applicability. Furthermore, as proving and reproving can be motivated
by several distinct aims, proof valuation becomes highly contextual. One
proof might be admired for its simplicity if the aim is communication, but
disregarded when the aim is to demonstrate the power of a methodology.
These observations make it more challenging to get a firm philosophical
grip on the subject matter, but should do honour to the complexities of
mathematical practices.

3.5. Non-Formal and Non-Deductive Methods

Shifting our attention from the aims concerning proofs to the actual argu-
ments contained in them, leads to the straightforward observation that
mathematical proofs do not at all consist of or develop via deductive pro-
cedures alone, and just as with proofs in general we can question the role
or value of these other types of mathematical arguments. Indeed it can be
quite easily seen that formal derivation does not exhaust the category of
rigorous, that is mathematically accepted, argument. One can point to a
number of specific inductive methods applied in the course of both the
process of discovery and justification in mathematical practice such as vis-
ualization, number crunching, or probabilistic reasoning. But the repository
of methodological resources of working mathematicians is surely bigger
than even that, also including other-than-inductive non-deductive arguments
getting into mathematical play. To be clear, not ‘just’ the preparative or
informal stages on the road to formal proof are hereby envisaged, but also
the ways these proofs get supplemented or framed, in order for the intended
audiences to grasp their content and judge their quality.

The late American mathematician and Field Medalist 1982 William
P. Thurston has with regard to this addressed the matter of proof vs progress
in mathematics (Thurston 1994). What exactly are they, what is their role
in mathematical practice and how do people relate to them? Like matters
touched upon in previous subsections, also questions like these are bound
to take the philosopher of mathematics way beyond the matter of whether
a newly proposed piece of mathematics, that is a proof, adds to the collec-
tion of established truths or not. More particularly, it raises the issue of
mathematical understanding, and that of the conceptual dynamics facili-
tating it. The rise of computer proof, for one, has brought this matter to the
fore very strongly. If we really want to get a grip on this topic, Thurston
complained, then the traditional DTP or Definition-Theorem-Proof-model
of mathematical practice should be put to the test, and some of its ‘other’
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dimensions become the object of consideration as well. Thurston in this
respect distinguishes a number of alternative but non-exclusive modes of
mathematical thought contributing to a grasp on mathematical units (prop-
ositions or proofs) in general, among which the linguistic, visual, logical,
and dynamical ones, noting:

People have amazing facilities for sensing something without knowing where it
comes from (intuition); for sensing that some phenomenon or situation or object
is like something else (association); and for building and testing connections and
comparisons, holding two things in mind at the same time (metaphor). These
facilities are quite important for mathematics. (Thurston 1994, p. 165)

Rigorous but non-formal arguments often come in the format of proof-
outlines: sketches of the characteristic global shape of a proof, e.g., infinite
descent, splitting in cases, or reductio (Van Bendegem 2000). Unlike many
of their formal counterparts, these typically have the virtues of surveyabil-
ity and robustness (Mackenzie 1998). The reason why is simple: they are
concise but powerful ways of grasping the upshot or meaning of proofs,
their overall structure being what counts, not so much meticulous detail.
Because of this, they facilitate the transfer of particular proof techniques to
other contexts, for example more general ones; the association facility
referred to by Thurston above.

The role of non-deductive methods might also lead to the consideration
of the role of mathematical experimentation. While the term experiment
may seem odd in mathematics, its use can be found in mathematical prac-
tice. Whether you take this term literally or not, the notion of experimental
mathematics can be used to label activities in the process of mathematical
creation. This can involve work carried out on computers, results of pencil-
and-paper work or even experimental techniques involving physical models.
These activities often remain hidden from public discussions, but when
investigating what it means to aim for good mathematics this context should
not be left aside. The editorial columns of the journal that carries the name
Experimental Mathematics, founded in 1992 believe mathematical practice
benefits from making this experimentation process accessible for the math-
ematical community:

Experimental Mathematics was founded in the belief that theory and experi-
ment feed on each other, and that the mathematical community stands to
benefit from a more complete exposure to the experimental process. The
early sharing of insights increases the possibility that they will lead to theo-
rems: An interesting conjecture is often formulated by a researcher who lacks
the techniques to formalize a proof, while those who have the techniques at
their fingertips have been looking elsewhere. Even when the person who had
the initial insight goes on to find a proof, a discussion of the heuristic process
can be of help, or at least of interest, to other researchers. There is value not
only in the discovery itself, but also in the road that leads to it. (From the
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“Statement of Philosophy and Publishing Criteria” of Experimental Mathe-
matics by David Epstein, Silvio Levy, and Rafael de la Llave; retrieved from
the journal’s website http://www.emis.de/journals/EM/ on 3 December 2016)

When addressing the context of discovery, the work by George Polya
should not be underestimated. In How to solve it (1945), his most famous
and accessible work (later expanded with more sophistication in two double
volume books), Polya set out a four-stage model of the mathematical prob-
lem solving process. According to it, one first tries to understand any prob-
lem at hand (1), on the basis of that devises a plan (2), then carries out that
plan (3), and finally returns to the problem and verifies whether it has
hereby been satisfactorily settled (4). Pélya himself got closest to being
philosophical at the outset of Induction and analogy in mathematics (1973),
which he himself even labels as ‘in a sense’ a philosophical essay, then
making an instructive distinction between demonstrative and plausible rea-
soning. The former method, aimed at proving mathematical statements,
“has rigid standards, codified and clarified by logic, [... it] is safe, beyond
controversy, and final” (Polya 1973, p. v). The latter’s standards, on the
contrary, are ‘fluid’, and directed towards generating and supporting con-
jectures. This type of reasoning, Polya claims, is being unjustly neglected
in education. “Certainly, let us learn proving, but also let us learn guessing”
(Polya 1973, p.vi). Demonstrative reasoning, as he has it, is but one side of
mathematics, being the format of finished mathematics.

Yet mathematics in the making resembles any other human knowledge in the
making. You have to guess a mathematical theorem before you prove it; you
have to guess the idea of the proof before you carry through the details. You
have to combine observations and follow analogies; you have to try and try
again. (Pélya 1973, p. vi)

The two kinds of reasoning distinguished by Pélya do however not contra-
dict but complete each other. Both are indispensable for any student of
mathematics worthy of that name. Plausible, heuristically driven reasoning
essentially constitutes the way to establishing rigorous proof. Focusing on
this hitherto neglected type, Pdlya offers many examples, something he
considers the most proper way of instructing interested readers, that is by
offering them ample material for imitation and opportunity for practice.
The reason is that there exists, in his view, no foolproof method to learn
guessing. Explicit heuristics and search strategies may of course be offered,
but these, in principle, will only approximately fit any of the concrete cir-
cumstances in which they will ever be applied.

In conclusion, reflections on mathematical aims can and should also
address to what end non-deductive and non-formal methods find their
place in mathematics. This involves further investigating several heuristic
devices, both in the context of discovery and the context of justification.
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Philosophical talk on mathematical aims should circumvent earlier mistakes
of philosophy of mathematics, namely purely focussing on the outcomes or
products of mathematical practice. All aspects of mathematical practice, in
its complete richness, can be considered as a part of a route to a certain
mathematical aim.

4. Reflections on Methodology and Disciplinarity

With all in mind that has been said in preceding sections with respect to the
inherent pragmatic dimension of mathematical knowledge acquisition, it
seems appropriate to raise the question of whether the task of properly
assessing it can actually be realized by philosophy alone. The answer to
which, in our view, should be clearly negative. If meaning is not independ-
ent from use, then aspects of said use are surely open to investigation from
a variety of angles, philosophical and non-philosophical alike. If this is
admitted, however, in its turn, a consideration of the relative importance of
these different perspectives is in order.

Should one rest content, in epistemological matters, with traditional
‘armchair’ philosophical analysis of things? In our young field called ‘the
philosophy of mathematical practice’, this has turned out to be an important
point of reflection in its own right. If we truly want to shed light on math-
ematics as a contextualized human activity resulting in fallible intermediate
product, that is, should not be more order than your typical rendering of an
idealized picture of this intellectual craft? Following the lead of Lakatos, at
the very least historical considerations are in want, complementing the kind
of monolitic abstract models of mathematical knowledge traditionally
arrived at by philosophy.

A philosophy of mathematics needs to be adequate for actual mathematical
practice and provide an explanation for the procedures of the mathematical
community. Empirical and conceptual work needs to be brought together in
order to reach this goal. [...T]he puzzle of the objectivity of mathematical
knowledge cannot be solved by philosophers alone. Involvement with math-
ematical practice means that other disciplines, such as the history of science,
the fields of science education, sociology of science, cognitive science, and
possibly psychology hold parts of the answer to our questions. (Lowe & Miiller
2010, editorial preface)

The previous metaphilosophical claim entails a shift from mathematical epis-
temology as a rational, normative (a priori) to an at least partially descriptive
(a posteriori) endeavour. Conceptual analysis of ‘mathematical knowledge’
then turns into conceptual modeling of it, whereby the limited intuitive (and
often strictly individual/introspective) stock of data supporting the exercise is
traded in for or expanded by empirical material of various sort, tuning the



MATHEMATICAL AIMS BEYOND JUSTIFICATION 21

resulting conceptual (explicative) definitions into ‘reflective equilibria’
between these various sources. Note that this, importantly, entails the avoid-
ance of any kind of reductionism. However, a dominant disapproval of any
form of naturalism, whereby one arrives at prescriptions taking into account
descriptions (naturalistic fallacy!), has kept epistemology away from any
empirical considerations until recently. This is e.g. the case when it comes to
the achievements of psychology and cognitive science.

Philosophers of mathematics in general, and analytic philosophers in particular,
have shown great reservations toward taking seriously the work of psycholo-
gists on mathematical reasoning. This is possibly due to the influence of Frege’s
arguments against psychological accounts of mathematical objects, which he
deemed either unsatisfactory or subjective. Since then anti-psychologistic ten-
dencies have been popular in philosophy of mathematics, so that philosophers
have shunned the idea that any psychological insights might be relevant to their
enterprise. (Cruz et al. 2010, p. 94)

It is instructive to note that ‘even’ Imre Lakatos, despite his call for a
legitimate place for the history of mathematics complementary to philoso-
phy of mathematics, remained a rationalist about mathematical knowledge
after all. Indeed, what he intended to offer where not actual but rational
reconstructions of mathematical development, with the aim of uncovering
a large scale logic of mathematical discovery the actual history should sub-
mit to (footnote history).

Thus one cannot replace philosophy of science by sociology of science as the
supreme watchdog. If both history and sociology of science are norm-impreg-
nated, rational appraisal of scientific progress must precede, not follow, full
scale empirical history. [...] Psychologism and sociologism both seem to me to
be open to the following fundamental objection. Everyone [...] is bound to use
normative third-world criteria, whether explicit or hidden, in establishing cri-
teria for a scientific community. (Lakatos 1978, p. 115-116)

In a recent paper, Donald Gillies has denied that the so-called metasciences
are necessarily in a worse position vis-d-vis demarcationist philosophy
when it comes to pinpointing the nature of science. The latter also, he
observes, start their conceptual work from a number of “intuitively’ accepted
exemplar cases (e.g. proper mathematical proofs), before starting a critical
analysis improving initial explicative definitions distilled from those.
Indeed, that might be precisely what metascientists from a historical, soci-
ological and/or cognitive perspective are doing when engaging in epistemic
modelling practices: start from a number of rather intuitive conceptions,
and then begin a back-and-forth between empirical and theoretical phases
(during the latter of which philosophy might have a considerable impact),
until their conception of the knowledge phenomena under investigation are
reasonably stabilized.
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We begin, say, with some rather crude philosophy of science. This is used as a
guide in the study of history of science. However, these historical studies sug-
gest some improvements in our philosophy of science. This improved philoso-
phy of science is used as a guide to further study of the history of science, and
so on. What seems to be ruled out by Lakatos’ saying is the possibility of first
working out a philosophy of science and then applying this philosophy of sci-
ence to the history of science. [...] How then could rational appraisal of scien-
tific progress precede full-scale empirical history? The two have to be devel-
oped together through continual interaction. [...Wlhy should there be a
supreme watchdog? Why not two or more watchdogs of equal status? (Gillies
2014, p. 16-17)

5. Conclusion

In this paper we engaged in questions concerning mathematical aims. For-
mulating such questions is related to a fairly young philosophical trend of
taking the actual practice of mathematicians seriously. A glance at mathe-
matical practice, we argue, learns us that justificatory aims are not sufficient
to account for much of mathematical activities. Mathematicians often
express the desire for good mathematics and the aversion for ugly mathe-
matics. Philosophy can investigate what this difference amounts to by clar-
ifying what it exactly is what mathematicians praise or look for. We explored
several perspectives on this subject matter.

A first possibility is to focus on what might count as a mathematical
value, in order to see why mathematicians prefer some piece of mathemat-
ics over another. Mathematical explanation and mathematical beauty are,
considering recent philosophical interest in these notions, promising candi-
dates for grasping mathematical valuation. Nevertheless, more research is
needed to fully understand these notions and other notions might capture
mathematical appraisal as well.

A second possibility is to look at specific mathematical products and
mathematical creative processes, in order to specify to what end these are
and can be used in practice. We emphasized that this approach has to
acknowledge all mathematical activities, and thus also address the role and
significance of non-formal and non-deductive arguments.

The understanding of mathematical aims is far from complete. We
addressed some philosophical insights and future questions for philosophy,
but we also stated completing such a theory is not a task for philosophy
alone. Other approaches, such as empirical methods, should be welcomed as
well. Ideally, theoretical and empirical work stand in communication with
each other. The former should not be blind for the results that are offered
by empirical sciences, while the latter may benefit from philosophical work
on concepts and definitions.
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