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Abstract 

In recent times philosophers of mathematics have generated great interest in expla-
nations in mathematics. They have focused their attention on mathematical practice 
and searched for special cases that seem to own some kind of explanatory power. 
Two main views can be identified, namely noneism and someism: the first is the 
view that no proof is explanatory, whereas the second is the view that some proofs 
are explanatory while others are not. The present paper aims to discuss the plausi-
bility of the latter view. I first point out the main difficulties involved in this kind 
of research and I focus on a recent someist account, namely Frans and Weber’s 
mechanistic model. Their approach seems promising, but further research is needed 
before accepting this someist model as a proper one. I then outline a general assess-
ment on someism which doesn’t turn out to be so convincing. I therefore suggest 
another view that I call allism, i.e. the view that all proofs are explanatory, at least 
in some sense, and I argue for its plausibility. 

1.  Proof and Explanation 

In recent times philosophers of mathematics have aroused great interest in 
the issue of explanation within mathematics. They have focused their atten-
tion on mathematical practice and searched for special proofs that own 
some kind of explanatory power.1 Some mathematicians have also talked 
about explanations. For instance, Giancarlo Rota emphasized a fundamental 
distinction between proofs and explanations in mathematics. He proclaimed: 

Not all proofs give satisfying reasons why a conjecture should be true. Verification 
is proof, but verification might not give reason (Rota 1997, pp. 186-187). 

* I  would like to thank Andrea Iacona for his comments on earlier versions of this paper. 
I am also grateful to Carlo Cellucci, Valerio Buonomo, Eugenio Petrovich, Daria Vitasovic, 
Joachim Frans and the audience of the workshop “Mathematical Aims beyond Justification” 
(Brussel, December 2015) for their very helpful suggestions. 

† D epartment of Philosophy, State University of Milan, Italy.
1  See Mancosu (2008, 2011), Cellucci (2014), Pincock and Mancosu (2012), Molinini 

(2013a). These authors support this position by means of several examples drawn from the 
history of mathematics.
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A similar remark has been suggested by the Fields Medal winner Timothy 
Gowers, who stated: 

For mathematicians, proofs are more than guarantees of truth: they are valued 
for their explanatory power, and a new proof of a theorem can provide crucial 
insights (Gowers and Nielsen 2009, p. 879). 

Various other examples could be found in the literature.2 For this reason 
several contemporary philosophers have seriously taken into consideration 
this issue, hence raising a number of new questions.3
Two main views can be identified. The first supports the idea that mathema-
ticians have never explained anything and mathematics would just be about 
proving theorems without explaining them. For instance, Grosholz states: 

mathematical truths are constructed or demonstrated, not explained (Grosholz 
2000, p. 81). 

Resnik and Kushner support such position and talk about: 
[…] the mistaken idea that there is an objective distinction between explanatory 
and non-explanatory proofs (Resnik and Kushner 1987, p. 154). 

I refer to this view as noneism, i.e. the view that no proof, either formal or 
informal, is explanatory.4 The second supports instead the idea that there 
exists a proper subset of proofs that own some kind of explanatory power 
so we can make a distinction between proofs that explain and proofs that 
merely prove. I refer to this view as someism, i.e. the view that some proofs 
are explanatory, while others are not. 

In this paper I aim to discuss the plausibility of the latter view since 
someism has been supported by several contemporary philosophers. I first 
present the main difficulties that we have to face when we search for explan-
atory proofs in mathematics. In the third section I focus on a recent someist 
account, namely Frans and Weber’s mechanistic model. Their approach seems 
promising, but further research is needed before accepting this someist model 
as a proper one. In the fourth section I shift the focus to other someist accounts 
that have been suggested so far and I outline a general assessment on someism 
which doesn’t turn out to be so convincing. Finally, in the last section I 
suggest another view that I call allism and I argue for its plausibility. 

2  See Mancosu (2000) and Molinini (2014) for an historical account. See also Molinini 
(2012, 2013a), Hafner and Mancosu (2005), Mancosu (2001, 2008). 

3 A  few philosophers have argued that not all explanations within mathematics come in 
the form of proofs, but I raise a few doubts on such account. However, I’m not going to 
discuss this issue in this paper because I’m only going to deal with proofs that show some 
kind of explanatory power. See Mancosu (2008, p. 142), Resnik and Kushner (1987, p. 152), 
Colyvan (2012, p. 97), Molinini (2014, p. 98). 

4  We borrow the term “noneism” from Lewis (1990), where it is used with a different meaning.
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2.  A Cumbersome Research 

When we look for the word “explanation”, in the dictionary, we find defini-
tions such as “a statement, fact or situation that gives a reason for some-
thing, that makes something easier to understand.”5 As you can see, such a 
definition makes use of expressions like “gives a reason for”, and “easier to 
understand”, but their meaning is not so clear, so is the meaning of “expla-
nation”. However, there exist specific cases where a sort of explanation can 
be identified, at least as an intuitive notion. Consider, for instance, the fol-
lowing example: many people know that if one pours a bit of oil in a glass 
of water, after a while, the oil will be placed upon water as a second layer. 
Nevertheless, not everyone knows why this happens. Acknowledging that 
a double layer will appear after that operation does not imply that we know 
the reason behind such physical phenomenon. It seems hence reasonable to 
recognize two kinds of knowledge: the first is about what we know to be 
as such, whereas the second concerns why such a fact is like that. The latter 
is connected with the notion of explanation and in mathematics this kind of 
knowledge can be related with proofs that answer the following why-
questions Q: 

Q)  Why is the statement T of this theorem true? 

Observe that it is a very broad characterization of explanations in mathe-
matics, but it seems to be a good starting point. Since antiquity, philoso-
phers have attempted to clarify what an explanation is and we can find in 
literatures several ways of referring to this notion. Hafner and Mancosu 
have pointed out some of them:6

(a)  a deep/satisfying/true reason 
(b)  the reason why 
(c)  an understanding of the essence 
(d)  a better understanding 
(e)  an account of the fact 
(f)  the causes of 

It shows how difficult figuring out a satisfactory notion of explanation is. 
The situation is well depicted in Resnik and Kushner: 

Although from Aristotle onwards empirical science has acknowledged the 
production of explanations as one of its major goals and accomplishments, this 
is not an acknowledged goal of mathematical research. Mathematicians rarely 
describe themselves as explaining […] Given such evidence that the practice of 
explaining mathematical phenomena has been barely acknowledged, one could 

5  See, for instance, Oxford Wordpower Dictionary (2006).
6  See Hafner and Mancosu (2005, p. 218).
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hardly expect that testing descriptive or normative accounts of it would be an 
easy task (Resnik and Kushner 1987, p. 151). 

For this reason, any philosophical investigation on explanation has to deal 
with the issue concerning what we repute a reasonable way of identifying 
an explanation. In other words, we have to establish a criterion according 
to which we convince ourselves that we are facing exactly what we are 
searching for. Such a criterion seems to be a crucial point affecting the 
whole debate and we might refer to it as the problem of evidence.7 Indeed, 
it concerns which evidence allows us to assert that we are dealing with a 
genuine explanation, avoiding to face a circularity, i.e. we are facing an 
explanation because it is an explanation. 

The problem of evidence has been taken into account by some philoso-
phers. A few of them suggest that looking at the works of mathematicians 
is the right way to deal with this issue.8 Indeed, they argue, if a mathemati-
cian has claimed that a specific proof is actually an explanation, then it 
would be reasonable to accept it as such. However, this argument do not 
seem to be well grounded. It seems plausible that only a proper training in 
mathematics allows one to establish any difference between proofs and to 
identify explanations among them, but few objections may be raised. Firstly, 
what means to be “a mathematician” does not seem to be well-defined. 
One might think that having a bachelor degree in mathematics is enough to 
be labelled as a mathematician, others may suggest that only a master 
degree allows one to possess such title. And still others may object that only 
a full professor working for a university with several publications in his 
curriculum is allowed to be defined a mathematician. Moreover, it might be 
the case that a philosopher may be used to deal with mathematics every 
day, hence reaching a fair mathematical training. But even if it might make 
sense to identify a “subset of mathematicians” the fact that a mathematician 
has ascribed to a specific proof an explanatory power is not sufficient to 
claim that it actually is an explanation. It might be the case that they don’t 
discuss the topic of explanation with the same philosophical care and 
rigour as a philosopher would expect. Finally, even if they prove to be good 
philosophers, we should take into consideration the entire community of 
mathematicians and not just few of them as the supporters of this approach 
seems to do. There might be a disagreement. Hence, their proposal does not 
seem to work. For these reasons the problem of evidence is still open and 
we have to face a troublesome situation. The following example might help 
to clarify. Suppose we are going to explore a garden and we wish to describe 
a special flower from Asia named “F”. It might be the case that we already 

7  See Molinini (2013a).
8  See Hafner and Mancosu (2005, 2008), Molinini (2012).
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know in which place in the garden the flower F is kept. Thus our aim here 
is to define a model able to describe it in a proper way making it clearly 
distinguishable from all other flowers. Alternatively, another situation can 
be such that we do not know if this flower actually exists and which char-
acteristics it has to possess. However, we try to recognize it among all 
flowers by means of several hypotheses. For example, we might suppose 
that it has to be similar to other well-known Asian flowers and so it needs 
to possess some peculiar properties that we can deduce from observing 
those Asian flowers. Hence, we aim to define a model capable of identifying 
the flower F, but it might still be the case that the flower doesn’t exist. These 
two situations seem to be rather different, and our previous discussion sug-
gests that the investigation on explanations in mathematics is likely to fall 
into the latter troublesome scenario. It might be the case that explanations 
do not exist at all.9 

Nonetheless, some philosophers have tried to grasp the notion of expla-
nation in mathematics, following their intuition regarding what means “to 
be explanatory”. 

3.  Frans and Weber’s someist view 

3.1.  The model 

Frans and Weber aim to identify explanations in mathematics by means of 
a mechanistic approach.10 Specifically, they consider a mechanistic model 
of explanation in science and try to develop it within mathematics.11 
A  mechanistic explanation in science aims to explain why a system or 
a  class of systems owns a specific capacity or regularity. For instance, 
a neuroscientist might wonder: “Why does this drug help people to feel 
better?”. In this example, a mechanistic explanation succeeds if it manages 
to reveal which underlying mechanism is responsible for such phenomenon. 
An empirical study using neuroimaging techniques might reveal which 
parts of the brain are involved during the assumption of the drug. That 
allows the scientist to identify which parts are constituting the mechanism 
and consequently to give a mechanistic explanation of the phenomenon. 

9 N ote that the search for explanations in science is rather different. Indeed, here there 
is at least a reasonable subset of all possible claims in science that are recognized as being 
an explanation of a physical phenomenon, and our investigations aim at defining a model(s) 
that fits all these explanations. 

10  See Frans and Weber (2014).
11 R ecently, a few authors have taken into consideration a mechanistic approach to scien-

tific explanation. They claim that such approach has been neglected in the literature, even 
if it proves to be an interesting alternative, especially in life sciences, such as biology or 
neuroscience. See Machamer et al. (2000), Bechtel and Abrahamsen (2005).
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Frans and Weber admit that such an account should be clarified. They give 
the following definitions: 

A capacity ascribed to a system is a systematic connection between inputs and 
outputs, i.e. a system has a capacity if it is able to produce specific outputs 
given specific inputs. 
A mechanism is a collection of entities and activities that are so organized that 
they realize the capacity. 
A mechanistic explanation of a capacity is a description of the underlying 
mechanism.12 

Afterwards, Frans and Weber consider a proof of a theorem taken from 
geometry, namely the Butterfly Theorem:13

Theorem 1.  Let C be the midpoint of a chord AB of a circle. Consider the 
chords FG and ED that go through point C, and the chords FD and EG 
that cut AB respectively at M and N. Then C is the midpoint of MN. The 
picture below shows the situation. 

Proof. Consider the inscribed angles EDF and EGF. Recall that if two 
inscribed angles of a circle intercept the same arc, then the angles are con-
gruent. Hence, the angles EDF and EGF are equal. Similarly, the angles 
DFG and DEG are equal. It follows that the angles FCD and GCE are equal 
as well. Then, the triangles FCD and EGC are similar, since they have equal 
angles. By the properties of similar triangles, we obtain 

DF = EG
FC CE

12 T he notions of system, entity, activity and organization, are not sharply defined.
13 T he curious name is clearly linked with the spatial configuration of the figure set by 

the problem, similar to a Butterfly.
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Now draw a perpendicular to DF through the centre O and construct the 
point H. Similarly, construct the point J. 

Recall that if a radius of a circle is perpendicular to a chord, then the radius 
bisects the chord. Hence, DF =  2HF and EG =  2EJ. By substitution into the 
previous relation, we obtain 

HF = EJ
FC CE

It easily follows that
HF = FC
EJ CE

Hence, the triangles FCH and EJC are similar (by the property on similar 
triangles: if an angle of one triangle is congruent to an angle of a second 
triangle and the lengths of the sides spanning these angles are proportional, 
then the triangles are similar). It follows that the corresponding angles CHF 
and EJC are equal. 

Now consider the convex quadrilateral MCOH.14 Since C is the mid-
point of the chord AB, then the angle MCO is right (by the property on 
circles: the line joining the centre of a circle to the midpoint of a chord is 
perpendicular to the chord). Hence, the sum of the angles OHM and MCO 
equals 180° and it follows that the convex quadrilateral MCOH is cyclic15 
(by the theorem: a convex quadrilateral is cyclic if the opposite angles are 

14 A  convex polygon is a not self-intersecting polygon in which no line segment between 
two points on the boundary ever goes outside the polygon.

15 A  quadrilateral is called cyclic if its vertices lie on a single circle.
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supplementary). Similarly, the convex quadrilateral CNJO is cyclic. The 
picture below shows the situation.16

The inscribed angles CHM and COM are congruent since they intercept the 
same arc (now we are referring to the circle which inscribes the quadrilat-
eral MCOH). For the same reason, the angles NJC and NOC are equal. 
As shown above, the angles CHM and NJC are equal.17 Then, the angles 
COM and NOC are equal as well. Finally, we conclude that the triangles 
MCO and CNO are congruent (by the theorem: if two angles and the included 
side of one triangle are congruent to two angles and the included side of a 
second triangle, then the two triangles are congruent). This implies MC = CN, 
that is C is the midpoint of MN.� 

Frans and Weber claim that the proof is explanatory. Specifically, they 
firstly identify a system with a peculiar capacity. Secondly, they recognize 
in the proof the entities and the activities that belong to the system and 
discuss how these elements are organized. The system is a quadrilateral 
inscribed into a circle, and it owns the capacity to connect the following 
inputs/output:18 

16 T he authors note that these last two steps are not always possible, as in the case the 
point H and the point M coincide. At any rate, the theorem can be proved in another way. 
Here, we do not discuss it since it does not seem relevant to the present discussion. Indeed, 
we may restrict the original theorem to a specific case and reformulate all these consid-
erations such that Frans and Weber’s account is not undermined. See Frans and Weber 
(2014, p. 9).

17 N ote that the angles CHF and CHM are exactly the same. Similarly, the case of EJC 
and NJC.

18  Below we show a specific case (the same quadrilateral that can be recognized from 
the previous proof), but their account regards any quadrilateral inscribed into a circle. 
Indeed, recall that the Butterfly theorem applies to any possible geometric construction that 
satisfies its hypothesis.
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Inputs
C is the midpoint of a chord AB of the circle 
FG and DE are chords that go through point C 
DF is a chord that cuts AB at M 
EG is a chord that cuts AB at N 

Output 
C is the midpoint of MN 

Then, they claim that the proof identifies several entities such as chords, 
triangles, midpoints and angles. Differently, rather than speaking about activ-
ities they prefer to speak about dependence between properties of entities. 
For instance, it is possible to recognize the following entities: 

•  �the line passing through the centre of the circle and intersecting the 
chord DF; 

•  the chord DF; 
•  the triangle FCD; 

and the related dependency between properties: 

•  �if the line passing through the centre of the circle and intersecting the 
chord DF has the property of being perpendicular to the chord DF, 
then the chord DF has the property of being cut at its midpoint; 

•  �if the triangle FCD has the property of having two angles equal to two 
angles of another triangle T, then the triangle FCD has the property of 
being similar to the triangle T.

They further claim that these elements might be manipulated in order to 
formulate what-if-things-had-been-different questions. Specifically, it is 
possible to vary the properties of an entity and see how other properties of 
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the same entity or of another entity would change in response. They give 
the following example of what-if-things-had-been-different question: 

•  �What if the line passing through the centre of the circle and intersect-
ing the chord DF was not perpendicular? 

•  �What if the triangle FCD has not two angles equal to two angles of 
another triangle T ? 

These questions allow us to recognize which entities and properties (of 
entities) are relevant so that the proof works. The theorem might collapse 
if one changes one of such elements. For this reason, the authors refer to 
these relevant elements as difference-makers. 
Finally, they point out that the steps in the proof are organized in a specific 
sequence which cannot be freely changed. We need to set the first steps at 
the beginning in order to proceed in the proof. Moreover, they argue that a 
particular spatial organization of all difference-makers is needed. If we 
apply the same difference-makers to a similar geometrical structure, we 
might be unable to prove the theorem.19 According to Frans and Weber, all 
the above considerations are sufficient to establish that the proof describes 
how all the difference-makers are organized (mechanism) such that the 
given quadrilateral inscribed in a circle (system) satisfies the statement of 
the theorem (output) if certain conditions (inputs) hold. That is, the proof 
fits their mechanistic model of explanation. To gain greater precision they 
add that the proof allows one to answer several what-if-things-had-been-
different questions, which in turn sheds light on why the theorem is true. 
Such information, they argue, is genuinely explanatory. 

To conclude, they further claim that not all proofs are explanatory since 
at least the proofs using reductio ad absurdum always fail to be explanatory. 

3.2.  Criticism 

This model has not yet been discussed in literature and I believe that my 
considerations will be useful. I am going to test Frans and Weber’s model 
on a reductio proof in geometry, but we first need few clarifications. 

The authors don’t develop a careful account of a mechanistic description 
of a given proof so that it seems open to interpretation. We need to clarify 
what “give inputs to a system”, means since giving inputs to a mathematical 
object does not seem to be a very clear notion. In the previous example, a 
reasonable way of understanding this notion is the following: given a quad-
rilateral inscribed into a circle, one draws all elements, that appear in the 
inputs, on this figure according to the specific properties that are described 

19 T he authors don’t clarify what they exactly mean with a “similar structure” although 
it does not seem to be a serious problem for their account.
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in such inputs.20 Then, among all possible chords inscribed into a circle, 
one needs to choose the right one, and so on. Another reasonable inter
pretation of “give inputs to a system”, might be: given a system, one does 
a translation/rotation/dilatation/contraction on one or more components that 
form the system such that the conditions prescribed into the inputs are sat-
isfied.21 By component we mean a geometric object that can be visually 
recognized inside the system, where “inside” is left intuitive. Thus “give 
inputs to a system” might make sense if one means “draw all elements, that 
appear in the inputs, on the system according to the specific properties 
described by the inputs” or “do a translation/rotation/dilatation/contraction 
on one or more components that form the system such that the conditions 
prescribed into the inputs are satisfied”. 

Similarly, we have to clarify what “produce outputs” means. Here a rea-
sonable interpretation might be that a system “produces outputs if specific 
inputs are given” if the system, as it appears to be after we have given the 
inputs, turns out to be a mathematical object with new properties that were 
lacking in the initial system.22 

Furthermore, the notion of entity is not so clear. They claim that “the 
proof […] identifies certain entities […] such as chords, triangles, midpoints, 
and angles”23, but what it exactly means to be “an entity of a system” is not 
clarified. A reasonable interpretation seems to be that an entity is a geometric 
object and it belongs to the system if it can be visually recognized inside 
the system, where “inside” again is left intuitive. 

Another concern regards the choice of the system and its capacity. In 
their example, they regard a quadrilateral inscribed into a circle as the 
system, but only the circle and the four vertices of the quadrilateral are 
mentioned in the proof. Anyways, four points on a circle seem to be enough 
to identify a quadrilateral inscribed into a circle. Therefore we might assume 
that we must be able to identify the system in the proof although it need 
not be explicitly mentioned. Furthermore, they do not specify if this choice 
is unequivocal.24 I believe their model aims to grasp a possible mechanistic 
interpretation in a proof, but there may be other justified ways to describe 
such proof as a mechanistic explanation. 

20 T his remark is supported by their comment: “[…] the instructions used to construct 
the figure are the inputs […]” (p. 10).

21 T his remark is supported by their comment: “[…] identify entities and perform imag-
inary manipulations as discussed above […]” (p. 16).

22 T his remark is supported by their comment: “Within the set of quadrilaterals inscribed 
in a circle […] these specific conditions result in a specific output” (p. 11).

23  See Frans and Weber (2014, p. 11).
24 A lthough the notion of “identity between objects” in mathematics is troublesome, in 

this case it seems reasonable to speak about identity or difference between geometrical 
objects in terms of visual recognition on the paper. Two objects are not considered the same 
if we can distinguish them by visualization on the paper. 
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Finally, these remarks seem to provide a fair interpretation of Frans and 
Weber’s account even if we are not arguing that such interpretation is the 
only one possible. Indeed, other different clarifications might make sense 
as well with our proposal representing just one. 

Let’s now consider the following reductio proof: 

Theorem 2.  Let ABC be a triangle. If the angle Â is greater than 90°, then 
both the angle B̂ and the angle Ĉ are less than 90°. 

Proof. Suppose that B̂  ≥ 90, then Â + B̂ > 180. Now recall that the sum of 
all angles in a triangle equals 180, i.e. Â + B̂   + Ĉ = 180°. This implies that 
Ĉ = 180°  – (Â  +  B̂ ). By the above we obtain that Ĉ < 0°, so we reach an 
absurd. We conclude that the angle B̂  < 90°. A similar reasoning works for 
the angle Ĉ, which turns out to be less than 90°.� 

Here it seems reasonable to identify a triangle as the system, which owns 
the capacity to connect the following input/outputs:25 

Input 
Â is greater than 90° 

Output 
B̂  is less than 90° 

Ĉ is less than 90°

As we have observed above “give these inputs”, means “do a rotation on 
AB and a rotation plus dilation on BC such that Â is greater than 90°” and 

25  Below we show a specific case, but our account regards any triangle. Indeed, the 
above theorem applies to any possible triangle that satisfies its hypothesis.
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the outputs refer to two properties that this modified system has to possess. 
This proof does not identify many entities, but it is possible to recognize 
the following ones: 

•  the angle B̂ ; 
•  the angle Ĉ; 

and the related dependencies between properties: 

•  �if the angle B̂  has the property of being greater than or equal to 90°, 
then the angle B̂  has the property that its sum with an angle greater 
than 90° is greater than 180°; 

•  �if the angle Ĉ has the property of being greater than or equal to 90°, 
then the angle Ĉ has the property that its sum with an angle greater 
than 90° is greater than 180°; 

These elements further allow us to formulate the following what-if-things-
had-been-different questions: 

•  What if the angle B̂  was not greater than or equal to 90°? 
•  What if the angle Ĉ was not greater than or equal to 90°? 

Finally, a specific organization of all these difference-makers can be identi-
fied. For instance, we need to suppose that B̂  ≥ 90° in order to claim that 
Â + B̂  > 180°. Similarly, we have firstly to consider the angle Ĉ and its 
property to be equal to 180° if summed with the angles Â and B̂  in order to 
claim that Ĉ < 0°. 

Thus the above considerations show that there exists a justified way to 
describe this proof as a mechanistic explanation. Since Frans and Weber 
endorse the view that reductio proofs are non-explanatory, the fact that this 
model seems able to fit also them makes Frans and Weber’s view not so 
convincing.26 It might be the case that their model needs to be revised or 
their remark on reductio proofs is mistaken. I’m not supporting any particu-
lar claim here, but our positive test on a reductio proof should motivate 
further research before accepting this account as a proper one. 

4.  A General Assessment on Someism 

Other authors have tried to identify which proofs are explanatory among all 
proofs. Several someist models have been suggested so far, but they either have 
not been properly developed or have been significantly criticized by others. 

26 T hey clearly state: “This does not render all proofs explanatory, since certain types of 
proof, such as proofs using reductio ad absurdum fail to give either bottom-up or top-down 
explanations” (p. 17).
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One of the most discussed models in literature has been offered by 
Steiner.27 It is based on the intuitive idea that an explanatory proof is able 
to grasp the “essence of an entity”. This account is vague and several con-
cepts are left undefined. This lack of clarity makes it open to interpretation 
and hence it does not seem to be well founded.28 Although these criticisms 
sound reasonable, it might be the case that Steiner’s intuitions are on the 
right track, but underdeveloped. The other main objection is that Steiner’s 
model does not ascribe explanatory value to proofs that mathematicians 
ascribe it to.29 As pointed out earlier, this argument do not seem to be well 
grounded. Thus these objections are not enough to dismiss this model. 
Steiner’s idea might still be a good intuition, even if his attempt needs 
further improvement and clarification. Anyways, we do not have stronger 
reasons to accept it than to discard it, hence we would rather remain neutral 
on its validity.30 

Other philosophers have discussed a few models of scientific explana-
tions within mathematics, but these alternate models have also been rejected. 
Hafner and Mancosu, for instance, take into consideration Kitcher’s account 
of explanation, but they dismiss it since this model does not fit a proof 
regarded to be explanatory by a mathematician.31 A similar investigation is 
carried out by Molinini with respect to Hempel-Oppenheim model.32 These 
arguments do not seem to be well grounded for the same reasons I have 
discussed earlier, but I do not have any valuable reason to accept these 
models anyways. 

Generality and unification have also been proposed as possible criteria 
of explanatoriness. With regard to generality, Steiner suggests that the 
explanatory power of a proof is connected with its being generalizable 
whereas Kitcher claims that explanatory proofs can be identified in specific 

27  See Steiner (1978).
28  See Resnik and Kushner (1987), Butchart (2001), Hafner and Mancosu (2005), Cel-

lucci (2008) and Molinini (2012).
29  See Hafner and Mancosu (2005), Molinini (2012). 
30 A n improved version of Steiner’s model has been suggested by Weber and Verhoeven 

(2002). It is an interesting proposal though I have some doubts on the idea that such proposal 
really represents a refinement. At any rate, I do not discuss the issue here, since this proposal 
does not appear to be a proper someist account. Indeed, the authors aim mainly to show how 
explanatory power might be related to the capacity of proofs to answer specific why-questions, 
so that several kind of proofs might turn out to be explanatory, such as existence proofs, 
uniqueness proofs or identity proofs. Their account seems to be based on a pluralistic view 
of explanatory power in mathematics. Pluralism does not necessarily exclude someism, but 
we should be able to identify clear examples of non-explanatory proofs. These proofs are 
not supposed to answer any possible why-questions and it doesn’t seem easy to show. The 
authors do not deal with it, so it is not clear if their proposal can be regarded as a proper 
someist model. 

31  See Hafner and Mancosu (2008), Kitcher (1984, 1989). 
32  See Molinini (2013b), Hempel and Oppenheim (1948).
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generalizations, which are characterized as being able to see old theories as 
special cases in the new account.33 With regard to unification, some authors 
have argued that unification processes seem to grasp essential features of 
an explanation, illuminating connections between different areas of math-
ematics and shedding light on previous results.34 For instance, Mancosu has 
shown how the original approach to complex analysis suggested by 
Pringsheim reveals that unification might play a crucial role.35 Their obser-
vations are deep and insightful, but the authors don’t develop any proper 
account based upon these concepts. It might be the case that in the future 
an interesting model will be suggested, or it might similarly be the case that 
no one has yet done it as it is too difficult to be carried out, or even worse 
it might not make sense at all. 

Other interesting connections with explanatoriness can be found in the 
literature but they are, once again, not properly developed. For instance, 
Molinini has advanced that Bolzano’s theorem on continuous functions and 
Euler’s theorem on the existence of an instantaneous axis of rotation reveal 
a close connection between purity and explanatoriness, but no proper 
account has been suggested.36 

To conclude, I have taken into account most of the someist proposals sug-
gested by philosophers so far and my considerations haven’t turn out to be 
so optimistic. The final assessment on Frans and Weber’s someist account 
has not been so convincing, and the other someist models haven’t been 
deemed so adequate. Therefore, no satisfactory solution has been found to 
the problem of evidence. It might be the case that someism has to revised, 
but it is not required. The difficulties encountered in elaborating a successful 
model might depend on the fact that such investigations are in a preliminary 
stage and in the future more interesting accounts will likely be proposed. 
Although my investigations are not enough to dismiss someism, I can at 
least argue that its plausibility is not so reliable. For this reason, in the next 
section a few modest suggestions will be put forward in order to suggest a 
compelling alternative view. 

33  See Steiner (1978, p. 146), Kitcher (1984, p. 208-209). In another paper, Steiner 
claims that the embedding of the real numbers in the complex plane allows us to find 
explanatory proofs of otherwise unexplained facts about the real numbers. See Steiner (1999, 
p. 137).

34  See Colyvan (2012, p. 96), Kitcher (1989, p. 437), Friedman (1974, p. 15). It is note-
worthy that Kitcher has never dedicated any paper explicitly to explanation within mathe-
matics, whereas he has defended a unification account of explanation in science. At any rate 
his account has been investigated in the context of geometry by Hafner and Mancosu (2008).

35  See Mancosu (2001, part III), Pringsheim (1925). 
36  See Molinini (2012, section 3), Molinini (2013a, p. 127). See also Mancosu (2001, 

p. 112). With regard to this issue, Detlefsen and Arana have focused on a specific notion of 
purity, which they have called topical purity. They argue that a topical pure proof shows some 
epistemic advantages, which seem to be a virtue of the proof. See Detlefsen and Arana (2011).
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5.  Another view: Allism 

My aim here is to offer another view on explanations in mathematics. I will 
refer to it as allism, i.e. the view that all proofs are explanatory, at least in 
some sense.37 In order to grasp the plausibility of this view, note that we are 
searching for proofs that are able to answer the following why question Q: 

Q)  Why is the statement T of this theorem true? 

Following our intuition regarding what means “to be explanatory”, we 
might claim that we can ascribe an explanatory power to any proof that 
satisfies the following condition σ:38 

σ)  if we read (and understand) it, then we are able to give a proper answer 
to the why-question Q by reference to some explanatory elements of the proof. 

If we accept this condition, then a proof appears always to possess some 
kind of explanatory power. Indeed, if we read (and understand) a proof then 
we can easily formulate the following statement 

because so and so, 

where the expression “so and so” has to be replaced with the text of the given 
proof. The above statement therefore seems to be a proper answer to the 
why-question Q. Hence, the given proof satisfies the condition σ. This remark 
therefore suggests that a basic explanatory power might be ascribed to each 
proof, at least in this sense, and so allism seems to be a reasonable view. 

It is worth pointing out that the above suggestion is just a special kind 
of answer to why-question Q, while there might exist several others. 
Moreover, one might ascribe an explanatory power to any proof that is able 
to answer a different why-question.39 Finally, another kind of explanatory 
power may be assigned according to other criteria. For this reason it might 
be possible to ascribe additional explanatory power to any proof other than 
its basic explanatory power. My previous claim only aims to suggest that 
any proof owns a basic explanatory power. Thus any other investigation on 
explanatoriness is not necessarily undermined. 

37  We borrow the term “allism” from Lewis (1990), where it used with a different meaning.
38 O ne might reject this claim by arguing that the condition σ does not properly represent 

the notion of explanation. I might agree with this, but in the contemporary debate on expla-
nation within mathematics a preliminary investigation on the general notion of explanation 
is not usually taken into consideration. The search for models which seek to identify expla-
nations within mathematics are usually based on the intuition regarding what means “to be 
explanatory”. Hence, if we do not want to accept the condition σ then we need first a better 
clarification than the intuitive notion.

39  Weber and Verhoeven have suggested a connection between explanatoriness and the 
ability to answer a why-question. I believe that their considerations can be successfully 
reconsidered in my view. See Weber and Verhoeven (2002). See also footnote 30. 
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Despite the plausibility of allism, it might be the case that this view is 
not so interesting. If all proofs were explanatory only in the above sense, 
then it could be argued that all the investigations on explanation are mean-
ingless since there exists only one basic explanatory power that makes 
sense. In this case there would not be much difference between allism and 
noneism. Nonetheless, this is not the case I will defend and I will instead 
argue for a different interpretation of allism. 

I believe that allism can be regarded as an interesting view if it is possible 
to ascribe a further explanatoriness to proofs other than their basic explana-
tory power, at least in quite a number of cases. Hence, it would be possible 
to distinguish a proof from another according its explanatory power. In this 
new framework the problem of evidence has clearly changed. The issue no 
longer concerns the way we aim to identify an explanation among all proofs 
since in this view all proofs are explanatory, at least in a basic sense. The 
problem of evidence is now about what we consider a reasonable way of 
classifying all proofs according to their different explanatory power. 

Now I’m going to show that Frans and Weber’s someist model can be 
reconsidered in this view as a satisfactory allist model able to reveal some 
kind of explanatory degree in a proof, at least in geometry. If a proof can 
be modelled as a mechanistic explanation, then it is able to answer several 
what-if-things-had-been-different questions, a kind of explanatory infor-
mation. We might define d as the number of all answers to what-if-things-
had-been-different questions that it provides. This number may be regarded 
as an explanatory degree owned by the proof. Furthermore, given the huge 
variety of proofs, it seems unlikely that this number always turns out to be 
the same. Indeed, the proofs vary depending on the number of entities that 
they make reference to, on the number of properties that they ascribed to 
the entities and on the complexity of geometrical constructions that they 
use.40 For this reason the number of answers to what-if-things-had-been-
different may be rather different in each proof. In addition, in each proof 
we might identify another legitimate mechanistic interpretation so that if 
new explanatory information is found they might increase the number d. 
Finally, note that one may argue that some proofs might show an infinite 
number of what-if-things-had-been-different questions. This would be a 
problem to be dealt with if it were the case. However, this situation seems 
unlikely since the number of all elements mentioned in a proof is finite and 
the wording of what-if-things-had-been-different questions is not entirely 
arbitrary. These questions have to be related to the text of the proof. This 

40 N ote that the number of entities and properties mentioned in a proof may significantly 
vary on the amount of previous theorems that a proof makes reference to. When a previous 
result is mentioned instead of proved in carrying out the proof, several potential explanatory 
information may disappear. 
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number might be huge and it may be difficult to catch the number d. How-
ever, this last remark might suggest that degree d will be hard to grasp, 
though this doesn’t undermine the fact that a different explanatory degree 
might be ascribed to each proof. 

Now remember that Frans and Weber’s someist model was able to fit a 
reductio proof. This fact suggested further investigation before accepting 
the model. Under my view, however, this does not represent any evident 
problem. Allism admits the possibility that reductio proofs might have an 
explanatory power to some degree. An allist therefore may reconsider Frans 
and Weber’s model in this view and use it to grasp explanatoriness in reduc-
tio proofs. 

For these reasons it seems that at least a proper model has been found. 
It doesn’t mean that the problem of evidence has been solved. Several other 
models may be needed to classify all proofs according to their different 
explanatory power. Anyways, it represents a good starting point and an 
allist may hope for positive developments.41 To conclude, allism seems to 
be a fruitful view and I believe that future investigations with respect to this 
view might shed light on the troublesome topic of explanation. 
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