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From Linguistics to Deontic Logic via  
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Abstract

The present paper aims to bridge the gap between deontic logic, categorial gram-
mar and category theory. We propose to analyze Forrester’s (1984) paradox through 
the framework of Lambek’s (1958) syntactic calculus. We first recall the definition 
of the syntactic calculus and then explain how Lambek (1988) defines it within 
the framework of category theory. Then, we briefly present Forrester’s paradox in 
conjunction with standard deontic logic, showing that this paradox contains some 
features that reflect many problems within the literature. Finally, we analyze For-
rester’s paradox within the framework of the syntactic calculus and we show how 
a typed syntax can provide conceptual insight regarding some of the problems that 
deontic logic faces.
Keywords:  Categorial grammar, Joachim Lambek, Forrester’s paradox, Modal logic, 
Deductive systems, Type theory.

1.  Introduction

Categorial grammar, understood as a (well defined) formal syntax, was 
introduced in the work of Ajdukiewicz (1935) and Bar-Hillel (1953), 
although the expression ‘categorial grammar’ appeared later (see Bach 1988). 
In contrast with approaches that concentrate on the phrase’s structure, catego-
rial grammar analyzes sentences in terms of syntactical categories (Bach 
1988, p. 1). In 1958, Lambek introduced a syntactical calculus based on 
Gentzen’s (1934) sequent calculus as a tool to analyze these syntactical 
categories. Later, Lambek (1968; 1969) realized that his syntactic calculus 
behaved as a closed category, and so Lambek (1988) revisited categorial 
grammar within the framework of category theory. Although the term 
‘category’ is used to refer to syntactical categories in categorial grammar, 
‘category’ in the context of category theory refers to the concept introduced 
in the work of Eilenberg and Mac Lane (1945). Following Lambek (1988, 
p.298), we shall restrict the use of the term ‘category’ to category theory 
only. We will speak of syntactic types rather than syntactic categories to 
avoid confusion.
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Also introduced in the fifties but utterly unrelated to categorial grammar 
and category theory, von Wright (1951) proposed to construct a (monadic) 
deontic logic in analogy with alethic modal logic to formalize the behaviour 
of terms such as obligatory, permitted or forbidden.1 It did not take much 
time for his work to become the target of multiple objections, now known 
as the paradoxes of deontic logic. The first objection was formulated by 
Prior (1954) and aimed to show that von Wright’s notion of commitment 
fails in context of derived obligations. Von Wright (1956) took this paradox 
very seriously and answered it by introducing the building blocks of what is 
nowadays known as dyadic deontic logic. Even though dyadic deontic logic 
attracted the interest of some philosophers (for instance Rescher 1958), 
the  initial system of von Wright stayed a choice target for the paradoxes.  
In 1958, Prior presented the paradox of the good Samaritan, precursor of 
Nozick’s and Routley’s (1962) robbery paradox, which aimed to show that 
the relation of deontic consequence in von Wright’s system leads to para-
doxical results. But the coup de grâce against his approach was given by 
Chisholm (1963), who showed that monadic deontic logic is simply not 
powerful enough to represent conditional obligations, a central notion for 
normative reasoning. Dyadic deontic logic was further developed by von 
Wright (1967) and has since then become a distinct field of study in philo-
sophical logic (for an overview, see Tomberlin 1981). Chisholm’s objection 
was however not literally a mortal blow to monadic deontic logic. After the 
introduction of possible world semantics by Kripke (1963), von Wright’s 
system was analyzed in the framework of modal logics, which gave rise to 
the well-known standard system of deontic logic (sdl for short).2 Despite 
many objections against sdl as a logic that represents deontic entailment, 
it remains a central point in the literature insofar as philosophers either 
build their systems as extensions of sdl or position themselves according 
to it, pointing out which principles they reject and why. Some times after 
the development of sdl, Forrester (1984) presented an objection against the 
standard system to show that sdl’s notion of consequence simply does not 
represent the relation of deontic entailment within the natural language.

Although deontic logic was introduced roughly at the same time as cat-
egorial grammar and category theory, it has been developed and utilized 
independently from both these fields.3 The present paper aims at making 
the bridge between deontic logic, on the one hand, and category theory and 

1 I n a monadic deontic logic, there is only one formula in the scope of the deontic 
operators, while in a dyadic one there are two.

2 N ote that von Wright’s initial system is not equivalent to the standard system.
3 T o the best of our knowledge, there has been no approach joining categorial grammar 

with deontic logic and scant few regarding deontic logic and category theory. Johanson 
(1996) used category theory to model normative systems but there was no follow up, and 
Lucas (2006; 2007; 2008) used category theory to model actions in deontic contexts.
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categorial grammar, on the other. This will be done by analyzing Forrester’s 
paradox through the categorical framework of Lambek’s syntactic calculus. 
We will first present the syntactical calculus in the context of category 
theory, and then we will briefly present sdl and Forrester’s paradox, 
explaining why we concentrate on this paradox rather than others. We will 
analyze the paradox through the framework developed so far and conclude 
in the last section with remarks for future research.

2.  Lambek’s syntactic calculus

The general idea of categorial grammar is to analyze sentences in terms 
of syntactical types rather than to concentrate on the phrase’s structure 
(Bach 1988, p.1). Assuming a finite set of primitive types T = {τ  1, …, τn}, 
the set of complex types is defined recursively from the language 
L = {(,), ⊗, /, \, T  } by:

ϕ := τi | ϕ ⊗ ψ | ϕ/ψ | ϕ\ψ

The operator ⊗ expresses concatenation of types and ϕ ⊗ ψ is read 
‘ϕ times ψ’. The types ϕ/ψ and ϕ\ψ are respectively read ‘ϕ over ψ’ and 
‘ϕ under ψ’. Here, a syntactical type is understood as a linguistic functor 
(not to be confused with a functor between two categories), which takes a 
type and transforms it into another. For instance, if we assume a set T = {s, n} 
of two primitive types s (for declarative sentences) and n (for nouns), then 
the type n\ s is understood as a linguistic functor which takes a noun and 
transforms it into a declarative sentence from the right. Similarly, the type 
s/n would be understood as a linguistic functor which takes a type n and 
transforms it into a declarative sentence from the left. Let us borrow two 
examples from Lambek (1958, p.156) to see how it works.

Paul  steals
n n\ s

While ‘Paul’ is of type n, ‘steals’ is of the type that takes a noun and trans-
forms it into something of type s from the right. Similarly, the word ‘poor’ 
in the following sentence is of the type that takes a noun and transforms it 
into a noun from the left, thus n/n.

poor  Paul  steals
n/n n n\ s

A word must be of at least one type, but it can have different types 
depending on the context. For instance, ‘steals’ in the latter example could 
also be understood as of the type ((n/n) ⊗ n)\ s, that is, of the type which 
takes something of type (n/n) ⊗ n and transforms it into a declarative 
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sentence from the right. By concatenation, the sentence ‘poor Paul steals’ 
is of the following type.

((n/n) ⊗ n) ⊗ (n\ s)

Having this in mind, an obvious question would be to ask: how can one 
prove that something which is of type ((n/n) ⊗ n) ⊗ (n\ s) is of type s? 
Put differently, how can we prove that ‘poor Paul steals’ is a sentence? This 
is where Lambek’s syntactic calculs enters the picture.

The syntactic calculus is defined on the grounds of a deductive system, 
which in turn is defined within the framework of category theory. Let us con-
sider first the axiomatic definition of a category (cf. Mac Lane 1971, pp.7-8).

Definition 1. A  category C is composed of:

1.  C-objects;
2.  C-arrows;
3. � an operation which assigns to each C-arrow two C-objects (the domain 

and the codomain);
4. � an operation which assigns to each pairs of C-arrows f : a → b and 

g : b → c the composite arrow gf : a → c, which respects associativity, as 
represented by the following commutative diagram;

gh(gf ) = (hg) f

h

f

gf

hg

a b

cd

5. � an operation assigning to each C-object an identity arrow 1a : a → a 
which respects the identity law, meaning that the following diagram 
commutes.

1b

f

f

a b

g

g
cb

Now, consider Lambek’s (1988, pp.302,307) definition of a deductive system.
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Definition 2. A  deductive system is composed of:

1.  types, considered as objects;
2.  proofs, considered as arrows between types;
3. � the identity arrow 1A : A → A for any type A respecting the identity law;
4. � composition g f : A → C of arrows f : A → B and g : B → C respecting 

the associative law.

	 f 1A = f = 1B f� (Identity law)
	 h(gf ) = (hg) f� (Associative law)

As such, a deductive system can be defined as a category where the arrows 
are proofs (deductions) and the objects are formulas (types).4 Now, consider 
the definition of a monoidal category (cf. Mac Lane 1971, p.161).

Definition 3. A  monoidal category is a category C composed of:

1.  a tensor product ⊗ (i.e., a functor ⊗ : C × C → C);
2. � a unit object 1 such that there are arrows (natural isomorphisms) fx and gx;

fx : 1 ⊗ x → x
gx : x ⊗ 1 → x

3. � an arrow axyz for associativity (which is a natural isomorphism); 
ax y z : (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z)

4. � the following commutative diagrams, representing respectively the tri-
angle and pentagon identities.

(x ⊗ 1) ⊗ y  x ⊗ (1 ⊗ y)ax,1,y

(w ⊗ x) ⊗ (y ⊗ z)  w ⊗ (x ⊗ (y ⊗ z))

((w ⊗ x) ⊗ y) ⊗ z

(w ⊗ (x ⊗ y)) ⊗ z  w ⊗ ((x ⊗ y) ⊗ z)

x ⊗ y

4  It should be noted that Lambek (1988; 1999) proceeds backwards and defines a category 
on the grounds of a deductive system instead of defining a deductive system as a category, 
although he himself points out that this definition of a category is unorthodox (cf. Lambek 
1988, p.298). Since Lambek’s work, it has been shown that there is a strong connection 
between logical systems and different kinds of categories. As such, from a conceptual point 
of view, it is better to define a deductive system as a category that respects specific criteria, 
and this is what will be done within this paper.
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In a nutshell, a monoidal category is a category C together with an associa-
tive tensor product and a unit. From the definition of a deductive system, 
Lambek (1988, p.302) proposes the following definition for the syntactic 
calculus. As we will see, the syntactic calculus is defined as a monoidal 
category given that concatenation of types is an associative tensor product 
that comes with a unit I.

Definition 4. T he syntactic calculus is a deductive system with a special 
type I and which is closed under three binary operations ⊗, / and \ that 
satisfy the axiom schema (ρA) – (αA

−1), which are natural transformations, 
and the rules of inference ( f  *) – (+g).

	 ρA : A ⊗ I → A� (ρA)

	 ρA
−1 : A → A ⊗ I� (ρA

−1)
	 λA : I ⊗ A → A� (λA)

	 λA
−1 : A → I ⊗ A� (λA

−1)
	 αABC : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C )� (αABC)

	 αA
−1

BC : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C� (αA
−1

BC)

g : A → C/B
g+ : A ⊗ B → C (g+) (+g)g : B → A\C

+g : A ⊗ B → C 

f : A ⊗ B → C 
f * : A → C/B (  f *) f : A ⊗ B → C

* f : B → A\C (* f )

Taken together, the axiom schema (ρ), (ρ−1), (λ) and (λ−1) make I into a 
nullary type (we can think of I as a space), and the axiom schema (α) and 
(α−1) state that ⊗ respects associativity. Note that Lambek (1988, p.309) 
assumes the following proofs, and as such the syntactic calculus satisfies 
the triangle and pentagon identities.

m1 : A ⊗ B → (A ⊗ I ) ⊗ B
m2 : (A ⊗ I ) ⊗ B → A ⊗ (I ⊗ B)
m3 : A ⊗ (I ⊗ B) → A ⊗ B
n1 : ((A ⊗ B) ⊗ C ) ⊗ D → (A ⊗ B) ⊗ (C ⊗ D)
n2 : (A ⊗ B) ⊗ (C ⊗ D → A ⊗ (B ⊗ (C ⊗ D))
n3 : A ⊗ (B ⊗ (C ⊗ D)) → A ⊗ ((B ⊗ C ) ⊗ D)
n4 : A ⊗ ((B ⊗ C ) ⊗ D) → (A ⊗ (B ⊗ C )) ⊗ D

n5 : (A ⊗ (B ⊗ C )) ⊗ D → ((A ⊗ B) ⊗ C ) ⊗ D
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To understand properly the categorical structure induced on the syntactic 
calculus via the operations / and \, we must introduce the notion of a closed 
category (cf. Mac Lane 1971, p.184).5

Definition 5. A  closed category is a monoidal category C where the tensor 
product has a right adjoint.

To properly understand this definition, we must introduce some terminol-
ogy. A functor is a mapping (an arrow) between two categories that preserve 
compositions and identities. Following Mac Lane (1971, p.13):

Definition 6. A  functor C  BΦ  is a morphism between two categories 
such that:

1.  there is F (c) in B for each c in C;
2.  there is F (c1) F( f  )  F (c2) in B for each c1 f  c2 in C;
3.  F (1c) = 1F (c);
4.  F (g f  ) = F (g) F( f ).

As it happens, a tensor product of some arbitrary formula and a formula A 
can be seen as a functor − ⊗ A : C → D. Note that since we are in a monoidal 
category, and not a symmetric monoidal category (where the tensor product 
would be commutative), A ⊗ − and − ⊗ A are different functors. Now, consider 
the following definition (cf. Mac Lane 1971, p.16).

Definition 7.  Let f : a → b be a C-arrow and F, G : C → D be two functors. 
A natural transformation η : F → G is a family of arrows such that for 
every a of C there is ηa : F(a) → G(a) in D making the following diagram 
commute (in D).

G(  f  )F(  f  )

ηb

ηa
F(a) G(a)

G(b)F(b)

A natural isomorphism is a natural transformation that possesses an inverse, 
that is, when there is also a natural transformation n−1 : G → F such that 
n−1n = 1F and nn−1 = 1G.

5 N ote that Mac Lane (1971) defines a closed category as a symmetric monoidal category 
where the tensor product has a right adjoint functor. Here, we modified slightly the definition 
and do not require that the category is symmetric, i.e., that the tensor product is commutative.
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An adjunction between two functors F : C → D and G : D → C arises 
when there is an exact correspondence between the arrows f : a → G(b) 
and g : F (a) → b (cf. Goldblatt 2006, p.439). This notion was introduced 
in the work of Kan (1958). Formally, an adjunction is defined as follows 
(cf. Mac Lane 1971, p.80).6

Definition 8. A n adjunction from C to D is a pair of functors F : C → D  
and G : D → C together with two natural transformations η : 1C → GF and 
ζ : FG → 1D,  called respectively the unit and the counit of the adjunction, 
such that ζF F(η) = 1F and G(ζ )ηG = 1G. 

This definition implies that the two following diagrams are commutative.

ζF(a)1F(a)

F(a) FGF(a)

F(a)

F(ηa)

G(ζ(b))1G(b)

G(b) GFG (b)

G(b)

ηG(b)

A closed category is thus a monoidal category where there is an iso
morphism between the class of morphisms (of C  ) from A ⊗ B to C and the 
class of morphisms from A to [B, C], with [B, C] a right adjoint functor of ⊗. 
In other words, we have:

HomC (A ⊗ B, C) ~= HomC (A, [B, C])

Given non-commutativity of the tensor product, there can be another right 
adjoint functor such that there is an isomorphism between the class of 
morphisms (of C  ) from A ⊗ B to C and the class of morphisms from B to 
A, C.

Lambek’s syntactic calculus is defined as a biclosed monoidal category, 
that is, a monoidal category where the tensor product possesses two right 
adjoints. Indeed, / : C × C → C is a right adjoint of ⊗ inasmuch as the iso-
morphism can be proven from ( f *) and (g+). Moreover, the tensor product 
possesses another right adjoint, namely \ : C × C → C. The isomorphism 
between the Hom-sets can be proven from (* f ) and (+g).

It is noteworthy that it is not assumed that there are proofs from A ⊗ B 
to B ⊗ A, nor from B ⊗ A to A ⊗ B. Hence, the syntactic calculus is not a 
symmetric biclosed monoidal category, nor a braided biclosed monoidal 
category. Actually, the fact that the syntactic calculus is not a symmetric 
monoidal closed category implies that the two right adjoints are different.

6  There are various equivalent definitions of an adjunction. Note that here we use Mac 
Lane’s (1971, p.83) theorem 2 and provide an alternative definition.
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Returning to the aforementioned example, we can now prove within the 
syntactic calculus that a sentence of type ((n/n) ⊗ n) ⊗ (n\ s) is of type s. To 
do so, it suffices to show that there is a proof of s from ((n/n) ⊗ n) ⊗ (n\ s).

Example 1. T here is an arrow h : ((n/n) ⊗ n) ⊗ (n\ s) → s, namely the 
arrow [((+(1n\ s))*)(1n\n)+]+.

1n\ s : n\ s → n\ s
1n/n : n/n → n/n +(1n\ s) : n ⊗ (n\ s) → s

(1n/n)+ : n/n ⊗ n → n (+(1n\ s))* : n → s/(n\ s)
((+(1n\ s))*) (1n\n)+ : n/n ⊗ n → s/(n\ s)

[((+(1n\ s))*)(1n\n)+]+ : n/n ⊗ n ⊗ n\ s → s

Note that one could have found an easier way to obtain that arrow. Intuitively, 
one could be tempted to assume that if it is possible to prove that there is an 
arrow f : (n/n) ⊗ n → n, and then another arrow g : n ⊗ (n\ s) → s, then 
one would obtain a proof from ((n/n) ⊗ n) ⊗ (n\ s) to s. The intuition would 
be to go from ((n/n) ⊗ n) to n, and then from n ⊗ (n\ s) to s, as represented 
in the following tree.

poor  Paul  steals
(n/n)    n    n\ s

n

s

n\ s

But this is not how it works. Indeed, the composite arrow g f would not be 
defined in that case since g’s domain would be different from f ’s codomain. 
In order to apply transitivity, one would first need to prove that there is 
h : ((n/n) ⊗ n) ⊗ (n\ s) → n ⊗ (n\ s) and then show i : n ⊗ (n\ s) → s, which 
is quite different from our starting intuition. Nonetheless, it is still possible 
to show that there is a derived rule such that if one assumes that there are 
arrows f : A ⊗ B → C and g : C ⊗ D → E, then one can conclude that there 
is an arrow h : (A ⊗ B) ⊗ D → E.7

(H) g : C ⊗ D → E
(H) f : A ⊗ B → C g* : C → E/D

(g*) f : A ⊗ B → E/D
  ((g*) f )+ : (A ⊗ B) ⊗ D → E  

7 I  am indebted to Marc-Kevin Daoust for that idea.

(β)
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This makes the proof more intuitive insofar as it is easier to show the 
two following arrows.

1n/n : n/n → n/n
(1n/n)+ : (n/n) ⊗ n → n

1n\ s : n\ s → n\ s
+(1n\ s) : n ⊗ n\ s → s

Hence, the aforementioned derived rule can be applied to obtain the following 
proof.

(1n/n)+ : (n/n) ⊗ n → n  +(1n\ s) : n ⊗ n\ s → s
[((+(1n\ s))*)1n/n]+ : ((n/n) ⊗ n) ⊗ (n\ s) → s

Summing up, Lambek’s syntactic calculus can be defined through category 
theory as a biclosed monoidal category since the operations respect the 
minimal properties of a tensor product with its adjoint(s). From a semantical 
point of view, Lambek interpreted the syntactic calculus within a topos 
semantics via a structure preserving functor (see Lambek 1988, p.313 for 
details).8 Note, however, that the syntactic calculus can be interpreted in 
some semantics that are different than toposes. The advances that have been 
made in category theory showed that monoidal categories, and not just 
toposes, play an important role in the development of logical frameworks. 
There are actually many semantical interpretations available in structures 
weaker than toposes. For instance, various substructural logics are exten-
sion of the syntactic calculus and can be interpreted within the framework 
of residuated lattices. Already in 1968, Lambek (1968, p.292) defined his 
syntactic calculus as a residuated category, which was defined a year later 
as a biclosed monoidal category (Lambek 1969, p.98). As such, one can see 
why / and \ are sometimes named the left and right residuals of ⊗.

While linear logic was introduced by Girard in 1987, Abrusci (1990a, 
1990b) showed how Lambek’s syntactic calculus is actually a fragment of 
the noncommutative intuitionnistic linear logic (i.e., NILL without intui-
tionnistic negation).9 The non-commutativity of the syntactic calculus comes 
from the fact that it is defined as a biclosed monoidal category instead of a 
symmetric (or braided) monoidal closed category. Casadio and Lambek 
(2002) then showed how different categorial grammars can be obtained 

8 T his requires the introduction of the usual lattice operations of a Heyting algebra 
(cf. Lambek 1999, p.281). A topos is a Cartesian closed category with a subobject classifier 
(cf. Mac Lane 1971, p.106).

9 S ee also Casadio et al. (2004) for the comparison between the syntactic calculus and 
NILL.
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through the extension of the calculus via some additional properties, 
depending on whether one wants commutativity, compact duality or involu-
tive duality. In these cases, one would respectively obtain classical bilinear 
logic, compact bilinear logic or Curry’s semantic calculus. The reader may 
consult Casadio and Lambek (2002) for details. See also Moortgat (2009) 
for symmetric categorial grammar, which would be an extension of classical 
bilinear logic (where the tensor is non-commutative).

3.  SDL and Forrester’s paradox

Leaving aside the categorical framework of the syntactic calculus, we now 
turn our attention to modal logic. It is worth mentioning that the term ‘standard 
system’ in the deontic logic literature is sometimes used ambiguously. A 
distinction must be made between the standard system and a standard sys-
tem (or the standard systems). The standard system, sdl, is equivalent to 
the modal logic KD.10 Following Åqvist (2002, p.205), sdl is the smallest 
set constructed from the language L = {( ,), Prop, ¬, ⊃, O} (with the usual 
definitions for the other logical connectives, interdiction FA =def O¬A and 
weak permission PA =def ¬O ¬A, and Prop a denumerable set of atomic 
propositions) which is closed under the rules modus ponens, O-necessitation 
and contains the axiom schema (A1)–(A4).

 A ⊃ B   A
 B

  (modus ponens)

 A
 OA   (O-necessitation)

	 every propositional tautology of L� (A1)
	 PA ≡ ¬O¬A� (A2)
	 O(A ⊃ B) ⊃ (OA ⊃ OB)� (A3)
	 OA ⊃ PA� (A4)

While (A1) implies that sdl is an extension of the (classical) propositional 
calculus, (A2) assumes that weak permission is the dual operator of O, (A3) 
is the K axiom of distribution and (A4) is the well-known axiom schema 
(D). The set of well-formed formulas is defined recursively by:

A := pi | ¬A | A ⊃ B | OA

10 S ee Chellas (1980) for an introduction to modal logics.
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The modal logic KD is the smallest set which satisfies these conditions. 
On the other hand, a standard system is a conservative extension of KD. 
Following Åqvist (2002, p.155), ∆ is a normal system of deontic logic if  
K ⊆ ∆, and a strongly normal deontic logic if KD ⊆ ∆.11 Thus, a standard 
system is a strongly normal deontic logic or, put differently, the class of 
standard systems contains extensions of KD.

Forrester’s paradox aims to show that the rule (ROM), a derived rule in 
KD, fails to represent the intuitive notion of deontic entailment in the stand-
ard system.

 A ⊃ B
 OA ⊃ OB

        (ROM)

The paradox can be formulated as follows (see Peterson and Marquis 2012):

(1)	 Jones murders Smith (p)
(2)	 Jones ought to not murder Smith (O¬p)
(3)	 �If Jones murders Smith, then Jones ought to murder Smith gently 

(p ⊃ Oq)
(4)	I f Jones murders Smith gently, then Jones murders Smith (q ⊃ p)

By modus ponens between (1) and (3) we get (5).

(5)	 Jones ought to murder Smith gently (Oq)

By (ROM) and modus ponens, (6) follows from (4) and (5).

(6)	 Jones ought to murder Smith (Op)

But from (A4) and (6) we can derive (7), which contradicts (2).

(7)	 it is false that Jones ought to not murder Smith (¬O¬p)

We follow Åqvist’s (2002, pp.161-173) presentation of the paradoxes. Let 
τ : NDL → KD be a translation function from the Natural Deontic Language 
to KD’s language, and τ−1 be the inverse map of τ from KD to NDL. NDL 
can be viewed as a set containing the (intuitive) semantical consequences of 
the normative English language. The translation function assigns equivalence 
classes of formulas.

Paradoxical results arise in two situations. Either there is a formula 
A ∈ KD such that τ −1(A) ∈/ NDL because intuitively τ −1(A) seems invalid, 
or there is a formula A ∈/ KD such that τ −1(A) ∈ NDL because τ −1(A) seems 
intuitively valid. These are respectively a right-to-left inadequacy and a 

11 N ote that a formal system can be understood as a set of theorems, containing specific 
axioms, that is closed under some rules of inference.
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left-to-right inadequacy. They imply that the logic is not an adequate rep-
resentation of the natural language. Let:

φ = p ˄ [(p ⊃ Oq) ˄ (q ⊃ p)] 
π = O¬p ˄ φ

Forrester’s paradox states two right-to-left inadequacies, that is:

φ ⊃ Op ∈ KD    τ  −1(φ ⊃ Op) ∈/ NDL
π ⊃ ⊥ ∈ KD    τ  −1(π ⊃ ⊥) ∈/ NDL

It is shown in Peterson and Marquis (2012) that Forrester’s paradox is 
actually not a paradox for the standard system, although it is a paradox for 
a standard system, which either admits q ⊃ p as an axiom or includes a 
necessity operator of type □ and can translate (4) by □ (q ⊃ p). Forrester’s 
paradox is not a paradox for sdl per se since:

φ ⊃ Op ∈/ KD 
π ⊃ ⊥ ∈/ KD

Put differently, neither φ ⊃ Op nor π ⊃ ⊥ are derivable in KD. Nonetheless, 
Forrester’s paradox can be objected to some (conservative) extensions of KD.

We chose to analyze Forrester’s paradox insofar as it incorporates three 
different problems for deontic logic. First, given that the paradox uses an 
obligation that arises in a context of violation, it incorporates Chisholm’s 
(1963) paradox and shows that the standard systems cannot deal appropri-
ately with conditional obligations. Secondly, the step from (4), (5) and 
(ROM) to (6) is an instance of Prior’s (1958) good Samaritan paradox, or 
of Nozick’s and Routley’s (1962) robbery paradox.12 In addition to these 
two features, Castañeda (1986) pointed out that Forrester’s paradox brought 
to light a more subtle, linguistic problem for deontic logic. Indeed, 
Castañeda (1986) argued that the paradox appears when one does not 
distinguish between propositions and practitions. In other words, if one wants 
to avoid the paradox, then one must distinguish between the context in which 
an obligation arises (described by a proposition) and the action which is in 
the scope of the deontic operator. While a proposition can be true or false 
(i.e., it is declarative), a practition cannot (Castañeda 1986, p.37).13 We chose 

12 T his step cannot be done in KD, but assume a standard system in which it can.
13 N ote that his formal framework was not proposed as a tool that was meant to resolve 

Forrester’s paradox but rather that it was a happy consequence that the framework provided 
the material to deal with the paradox. Indeed, Forrerster’s paradox was published in 1984 
(although Castañeda became aware of the paradox in 1982), and the solution proposed by 
Castañeda (1986) is based upon the formal framework presented in Castañeda (1981), which 
is the result of his work done in Castañeda (1959; 1968; 1970; 1977).
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to analyze Forrester’s paradox through the framework of categorial gram-
mar via category theory insofar as it involves:
1.	 contrary-to-duties (cf. Chisholm’s paradox);
2.	 the notion of deontic entailment (cf. the good Samaritan paradox);
3.	� a syntactical distinction between propositions and practitions (cf. Casta

ñeda’s analysis of Forrester’s paradox).

As we will see, these three aspects can be dealt with by using a typed syntax.

4.  The paradox revisited

4.1.  Deontic logic within a typed syntax

Deontic logic is usually interpreted as a modal logic. It should be noted, 
however, that our approach is neither oblivious nor incompatible with the 
modal tradition. Indeed, there have been many approaches that developed 
modal logics within categorical settings.14 Even though these approaches 
mostly dealt with S4 modalities, it remains that modal logic can be incor-
porated within a categorical framework. We wish to show how this could 
be beneficial for deontic logic. In what follows, we illustrate how category 
theory provides an interesting framework to analyze many problems that 
deontic logic faces. We show that most of these problems can be solved 
using a typed theory. Since categorical logic, once the quantifiers are intro-
duced, is mainly a typed theory, our analysis suggests that category theory 
is a likely candidate for the formalization of deontic logic.

Obviously, the application of categorial grammar to deontic logic requires 
more primitive types than only s and n. In his 1958 paper, Lambek intro-
duced nc, ns and np for count nouns, substance nouns and plural nouns. 
A year after, Lambek (1959) introduced more syntactic types to analyze the 
English verb phrase. For instance, he augmented T  with i, p and q, standing 
respectively for the types of infinitive of intransitive verb, present participle 
of intransitive verb and past of intransitive verb. Of course, more syntactical 
types can be introduced, as it is done in Casadio and Lambek (2002), where 
one can find types for past and present questions, past and present declarative 
sentences and objects. Although our analysis does not require that we bur-
den ourselves with types for questions, the analysis of Forrester’s paradox 
requires that we introduce types for tensed declarative sentences. As it was 
noted by Lambek (1988, p.315), thus constructed, the syntactic calculus 
does not account for imperative sentences, which we often distinguish from 
factual propositions since Hume’s naturalistic fallacy.

14 S ee for instance Reyes and Zolfaghari (1991) and Makkai and Reyes (1995). See also 
Steve Awodey and Kohei Kishida. Topology and Modality: the Topological Interpretation 
of First-Order Modal Logic. The Review of Symbolic Logic, 1 (2): 146-166, 2008.
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It is worth pausing here and consider carefully the type we wish to intro-
duce for imperative sentences (or, more accurately, normative propositions).15 
Hume’s semantical dichotomy between facts and norms states that one can-
not infer a descriptive sentence from a set constructed only of normative 
premises, and, vice versa, that one cannot infer a normative sentence from 
a set of descriptive premises. This semantical dichotomy causes some issues 
when one considers Jørgensen’s (1937) dilemma. In a nutshell, the dilemma 
arises if one assumes that the truth value of a declarative sentence depends 
upon the world, that is, if one adopts a (naive) correspondence theory of 
truth. Since there is a semantical dichotomy between facts and norms, one 
can safely assume that if normative propositions can be true or false, then 
it is not in the same conditions that descriptive propositions do. But if one 
assumes that the truth value of a sentence depends upon its correspondence 
with reality, then, assuming the semantical dichotomy, normative propositions 
are not declarative given that normative propositions cannot be verified 
empirically. Thus the dilemma: normative inferences seem to follow some 
logical rules, but since the object of logic (when applied to inferences) is 
declarative sentences, it seems that logic cannot deal with normative infer-
ences seeing that normative propositions are not declarative (assuming the 
correspondence theory of truth).16

Our solution to the dilemma is to reject the correspondence theory of 
truth. Normative propositions are declarative. For example, it is true that 
one should not steal since there are legal norms that forbid stealing. How-
ever, we nonetheless assume Hume’s semantical dichotomy since normative 
propositions are not true in the same conditions that descriptive propositions 
are.17 But still, both are declarative. This leads us to distinguish between two 
syntactic types. While sd is the syntactic type of descriptive (declarative) 
sentences, sn is the syntactic type of normative (declarative) sentences.

Thus, we assume a language L as defined earlier but constructed from 
the set of primitive types T  = {sd, sn, n, i, p, q}. As it was mentioned in Lam-
bek (1999, p.281), one must assign to each word at least one syntactical type 
by means of a dictionary. This begs the question of the syntactical types 
of words such as ought, should, can or must in a normative context, but 
also of words such as obligatory, permitted or forbidden. Since von Wright, 
the tradition has been to interpret these words as modalities that influence 
declarative sentences. For instance, the following sentence would be trans-
lated in sdl by Op, with p being ‘John eats’.

John ought to eat

15  We distinguish between a norm (or an imperative) and a normative proposition. While 
the latter is declarative, the former is not.

16 S ee Peterson (2011) for an analysis of the dilemma.
17  Following Alchourrón and Bulygin (1981), the truth value of a normative proposition 

depends upon a norm.
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From the point of view of syntactical types, this would require that the sen-
tence be written as:

	 ought (John eats)� (8)
sn /sd n  n\ sd

sn /sd sd

sn

In this case, ‘ought’ would be of type sn /sd, that is, of the type that takes a 
descriptive sentence and transforms it into a normative one from the left.

Another option would be to consider the term ‘ought’ as it was written 
in the first sentence.

	 John ought (to eat)� (9)

n  (n\ sn)/i  i

sn

In both cases, it can easily be proven that the sentences are of type sn. The 
proof of (8) requires (but not necessarily) a derived rule similar to β as 
presented previously. The proof (left to the reader) becomes obvious when 
one can prove (δ).

(H) f : A ⊗ D → E
(H) g : B ⊗ C → D *f : D → A\E

(*f )g : B ⊗ C → A\E
+[(*f )g] : A ⊗ (B ⊗ C) → E

The proof of (δ) can be visualized by the following tree.

A B C

E

DA

The proof of (9) is straightforward.

(δ)
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1n\ sn /i : (n\ sn) / i → (n\ sn) / i

(1n\ sn /i)+ : ((n\ sn) / i) ⊗ i → n\ sn
+[(1n sn /i)+] : n ⊗ (((n\ sn) / i) ⊗ i) → sn

Now, an obvious question would be to determine whether these two types 
are equivalent, that is, if there are arrows:

γ : sn / sd → (n\ sn) / i

γ−1 : (n\ sn) / i → sn / sd

Without pretending that such arrows do not exist, we did not find any 
(although this may be unsatisfactory for the reader). For now, we assume 
that the distinction between the two different syntactical types is sound.

With that in mind, we can revisit Forrester’s paradox and see which type 
each sentence is. Let us consider the first type for ‘ought’ (hereafter the 
a-translations).

(1) Jones murders Smith
n (n\ sd) /n n

(2a) ought (not (Jones murders Smith))
sn /sd sd /sd n (n\ sd)/n n

(3a) Jones murders Smith implies ought (Jones
n (n\ sd)/n n (sd\ sn)/sn sn /sd n

murders Smith gently)
(n\ sd)/n n sd\ sd

(4) Jones murders Smith gently implies Jones murders Smith
n (n\ sd)/n n (sd\ sd) (sd\ sd)/sd n (n\ sd)/n n

(5a) ought (Jones murders Smith gently)
sn /sd n (n\ sd)/n n sd\ sd

(6a) ought (Jones murders Smith)
sn /sd n (n\ sd) /n n

(7a) not (ought (not (Jones murders Smith )))
sn /sn sn /sd sd/sd n (n\ sd) /n n
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The proofs of the types of these sentences are relatively easy and so are left 
to the reader.18 Let us now look at the translations for the second interpreta-
tion of ‘ought’ (hereafter the b-translations).

(2b) Jones ought to not murder Smith
n (n\ sn)/i i/i i/n n

(3b) Jones murders Smith implies Jones ought
n (n\ sd)/n n (sd\ sn) /sn n (n\ sn)/i

to murder Smith gently
i/n n i\i

(5b) Jones ought to murder Smith gently
n (n\ sn) /i i/n n i\i

(6b) Jones ought to murder Smith
n (n\ sn) /i i/n n

(7b) not (Jones ought to not murder Smith)
sn /sn n (n\ sn) /i i/i i/n n

4.2.  Ought-to-be/Ought-to-do

The reader familiar with the deontic logic literature will in all likelihood 
have noticed that the first interpretation of ‘ought’ is related to the Ought-
to-be interpretation of normative sentences, while the second interpretation 
refers to the Ought-to-do (see von Wright 1999). While the Ought-to-be 
interpretation takes ‘ought’ as a modality that changes the truth value of a 
descriptive proposition (e.g., modal deontic logic within possible worlds 
semantics), the Ought-to-do interpretation considers that there are actions 
(rather than propositions) in the scope of the deontic operator (as in dynamic 
deontic logic and deontic logic with algebras for actions).

It is noteworthy that from the perspective of categorial grammar, the 
Ought-to-do interpretation of the operator O allows us to construct norma-
tive sentences that are more closely related to the English language. Indeed, 
the compositionality of n\ sn /i seems to be naturally related to the natural 
language. When interpreted in terms of Ought-to-be, ‘ought’ is taken as a 
modality that modifies the truth value of a descriptive statement, and thus 
the formal translation requires that we rearrange the phrase’s structure. 
This results in an asymmetry between the formal language and the English 
language. Moreover, interpreting ‘ought’ in terms of Ought-to-do not only 

18 H int: construct a tree and then use (β) and (δ).
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allows us to preserve the phrase’s structure within the formal language of 
the syntactic calculus, but it also preserves the meaning of term ‘ought’ in 
the natural language. Indeed, actions, and not declarative sentences, are 
obligatory, permitted or forbidden. In this respect, interpreting ‘ought’ in 
terms of Ought-to-do allows for a more faithful representation of the sen-
tence’s structure and meaning into the formal language. Hence, the analysis 
of normative sentences from the point of view of syntactical types suggests 
that normative (declarative) sentences should be interpreted as being of the 
Ought-to-do type rather than of the Ought-to-be, meaning that the deontic 
operator O is of type (n\ sn) /i rather than sn /sd.

That being said, if one wants an Ought-to-do interpretation of O, then 
one might want to replace the primitive type i by a primitive type a for 
action verbs. Understood this way, the deontic operator O would be of type 
(n\ sn) /a rather than (n\ sn) /i. This would mean that O is of the type that 
takes a noun and an action verb and transforms it into a normative sentence. 
This view is consistent with Hume’s semantical dichotomy given that it 
implies that the truth value of a normative proposition does not rely upon the 
descriptive proposition in the scope of O. Thus, the Ought-to-do interpreta-
tion should be preferred to the Ought-to-be insofar as it preserves the syntac-
tical structure of normative sentences within the English language and that it 
is consistent, contra the modal interpretation, with Hume’s naturalistic fallacy.

4.3.  Conditional obligations and detachment

In addition to revealing the Ought-to-do structure of normative sentences, 
the analysis of Forrester’s paradox through the framework of the syntactic 
calculus allows us to provide a formal explanation to the problem that is 
implicit to Chisholm’s paradox, i.e., that a material conditional is inappro-
priate to deal with conditional obligations. Indeed, one can see in both the 
a-translations and the b-translations that the material conditional in  (3) is 
of the type that takes a normative statement and a declarative statement and 
turns it into a normative statement (a conditional obligation). Our analysis 
provides a formal explanation as to why the material conditional is not 
appropriate to translate conditional obligations: the conditional ⊃ should 
not be interpreted as a connective of type (sd\ sn) /sn. As such, Chisholm’s 
paradox arises when a deontic conditional is interpreted as a connective of 
the type that takes a descriptive sentence (a context) and a normative sen-
tence and transforms it into a normative sentence.

Many deontic logicians think that material conditionals are not sufficient 
to represent the formal properties of conditional obligations. We agree.19 In 
a nut-shell, to model conditional obligations, one requires a primitive dyadic 

19 As it is shown in Peterson (2014b), it is nonetheless possible to model conditional 
obligations with a monadic O and a connective similar to the linear implication.
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operator that can represent situations where the initial conditions for the 
obligation are encountered.20 In a possible worlds semantics, this is usually 
done in minimal models, where one can define the accessibility relation for 
the primitive operator in terms of a subset of a more general accessibility 
relation (see for example Chellas 1974). Another way of answering this 
problem is to introduce temporal deontic logics. Decew (1981) for instance 
argued that the solution to the conditional obligations problem requires tem-
poral modalities. The main objection is that dyadic systems fail to represent 
the temporal character implicit to conditional obligations. An interesting solu-
tion was proposed by van Eck (1982a, 1982b), who introduced a quantified 
temporal deontic logic.

With that being said, one can see that there are (at least) two things going 
on with conditional obligations. First, it is clear that a material conditional 
such as ⊃ is not of type (sd\ sn) /sn, and thus neither (3a) nor (3b) are appro-
priate translations. This, which begs the question of the syntactical type of 
a conditional obligation, brings us to the next point: some might argue that 
there is a temporal parameter implicit to conditional obligations. Hence, 
using  to represent conditional obligations, one could try to define the 
type of  with the help of primitive types that are indexed to some states, 
allowing the representation of the temporal parameter. A possible solution 
would be to consider the conditional  as of the syntactical type that takes 
a descriptive proposition in the past (or the present) and makes it into a 
normative proposition in the present (or in some possible future related to 
that present). Put differently, if one considers that the world is in a specific 
state at a moment i, then  is of the type that takes a descriptive sentence 
at i and a normative sentence in a state i + 1 (accessible from i) and makes 
it into a normative conditional in state i. Hence, a solution is to consider that 
 is of the type s(i)

d \ s(i)
n /s(i+1)

n , where the set of primitive types is augmented 
with types that are indexed to states.

Issues concerning conditional obligations can also be seen through the 
problem of detachment. Following van Eck (1982a, p.263), the problem of 
detachment comes from the fact that although sometimes one might want 
to conclude the normative consequent from the conjunction of the descriptive 
antecedent and the normative conditional, as in the following reasoning, it 
remains that sometimes the addition of other conditions results in situations 
where one does not want to detach the normative consequent.

P1	 If Jones drinks alcohol, then he must not drive. 
P2	 Jones drinks alcohol.
∴	 Jones must not drive.

20 T here are however problems regarding the detachment of conditional obligations. See 
Vorobej (1986) for an overview.
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From a categorical perspective, the problem of detachment can be reduced 
to the fact that there is not always a proof of the normative consequent from 
the conjunction of the conditional obligation and the descriptive antecedent.

Put differently, we do not have the following arrow for every A and B.21

f : A ˄ (A  B) → B

From a categorical point of view, the classical connectives ˄, ¬ and ⊃ can 
be defined on the basis of a deductive system (i.e., a category) where arrows 
are proofs and objects are propositions. In doing so, one obtains a Cartesian 
closed category with conjunction commutative and idempotent, respecting 
the triangle and pentagon identities and the associative law (with ¬ defined 
as ¬A =def A ⊃ ⊥ and ⊥ an initial object). From this perspective, ˄ and ⊃ 
are adjoint. This can easily be seen from the fact that:

g : A ˄ B → C
g : A → B ⊃ C 

h : A → B ⊃ C
h : A ˄ B → C 

Using these rules, one can easily show that:

1A⊃B : A ⊃ B → A ⊃ B
g  (1A⊃B) : (A ⊃ B) ˄ A → B 

In other words, there is a proof from A implies B and A to B. The problem 
of detachment follows from the fact that it might happen that one does not 
want to conclude the normative consequent from the descriptive antecedent 
in a normative conditional. When modelling a conditional obligation through 
a material conditional, the problem of detachment arises from the fact that 
⊃ is the adjoint of ˄. As such, to solve this problem, one would need to 
define a connective  for conditional obligations which is not an adjoint to 
classical conjunction.22

All things considered, our analysis provides two arguments to support 
that ⊃ is not an adequate connective to model conditional obligations. 
On the one hand, a material conditional is not sufficient to represent con-
ditional obligations insofar as a connective for conditional obligations is not 
of the same syntactical type as a material conditional. On the other hand, the 
detachment problem shows that the connective for conditional obligations 

21 N ote that we are looking at the logical connectives from a categorical perspective 
rather than from the point of view of the syntactic calculus.

22 O n this subject, see Peterson (2014b)
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is not an adjoint to conjunction (˄), and hence that it cannot be represented 
by a material conditional.

4.4.  Action negation

Returning to the syntactic calculus, the analysis of the paradox enables us 
to specifically formulate one of the problem that dynamic deontic logic (and 
more generally action logics) faces. Consider the logical connective ‘not’, 
as it is used in (7a) and (7b). In the a-translations, ‘not’ can be considered 
as of two types: either it takes a (declarative) descriptive sentence and 
transforms it into a descriptive sentence or it takes a (declarative) normative 
sentence and turns it into a normative one. This is perfectly consistent with 
our assumption that normative inferences are governed by logical rules and 
that normative sentences are declarative. In this case, negation can be 
applied to both descriptive and normative statements. An interesting fact is 
that the b-translation admits a third type for ‘not’. Indeed, ‘not’ can be seen 
as something which takes an action verb (or an intransitive verb) and turns 
it into another action verb (or intransitive verb).

It seems fairly uncontroversial to assume that the ‘not’ of types sd /sd and 
sn /sn behave according to the same logical rule inasmuch as they both apply 
to declarative statements. In other words, this type of ‘not’ is a propositional 
negation that can be applied to declarative statements. But is this also the 
case for the ‘not’ of type a/a (or i/i)?

The work of Kanger (1957) and Pörn (1970) lead, with the help of 
Belnap and Perloff (1988) and Xu (1995), to a broad class of approaches 
that can be regrouped under the name action logics. Action logics in phi-
losophy can be divided in two main groups, namely the stit logics (where 
an agent sees to it that…) and dynamic logic, introduced in the deontic logic 
literature by Meyer (1988). The main difference between these approaches 
is that dynamic logic requires an algebra for actions and another for propo-
sitions, while stit logics only need truth functional connectives (dynamic 
deontic logics are of the Ought-to-do type while stit logics are of the Ought-
to-be). However, there are still problems regarding the behaviour of logical 
connectives when applied to actions (or descriptions of actions in the case 
of stit logics). While the tradition in deontic logic is to use Boolean algebras 
for actions (see for example Segerberg 1982), it is noteworthy that there are 
still problems regarding the formalization of action negation.23

In short, the problem revolves around the interpretation of the negation 
of an action: must the negation of an action be considered as something 
which is simply not done or as something which is deliberately not done? 

23 S ee Broersen (2004) for a definition of action negation within the framework of dynamic 
deontic logic.
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This problem becomes clear when one introduces a deontic operator. There 
is a distinction between not doing an action and doing the negation of an 
action, and so O¬p will mean two completely different things depending 
on how one interprets the action negation ¬p. Does O¬p mean that one 
must do ¬p or does it mean that one must not do p? Although it is not the 
aim of the present paper to argue in favour of that point (this is the subject 
of another paper, see Peterson 2014a), we think that a monoidal deductive 
system weaker than intuitionistic logic would be better suited than a 
Boolean algebra to represent the formal behaviour of complex actions. The 
main reason for this assumption is that the equivalence a ≡ ¬¬a is dubious 
when a is considered as an action proposition. Is doing a equivalent to 
refraining from refraining from doing a? If it is false that one did not do a, 
then can we conclude that one actually did a? In a nutshell, the negation of 
an action proposition does not seem to have a classical behaviour. As a 
result, the negation of a declarative sentence and the negation of an action 
proposition should not be considered as of the same syntactical type. While 
the ‘not’ of types sd /sd or sn /sn are truth functional and classical, it is unclear 
whether the ‘not’ of type a/a is truth functional or classical.24

4.5.  Deontic entailment

So far, we have seen how our analysis sheds light upon Chisholm’s paradox 
and the Ought-to-be/Ought-to-do distinction, and moreover it has shown us 
how to formulate precisely the problems of action negation and detachment 
of conditional obligations. In addition to these points, our analysis also 
enables us to see the good Samaritan paradox from a different perspective. 
The paradox of the good Samaritan in Forrester’s argument can be seen 
through the step from (4) to ().

() Jones ought to murder Smith gently implies
n (n\ sn) /i i/n n i\i (sn\ sn) /sn

Jones ought to murder Smith
n (n\ sn)/i i/n n

Although this is not mentioned in Forrester (1984), the step from (4) to () 
is an instance of the principle of deontic consequences, as stated in Casta
ñeda (1968, p.13):

If an act A entails an act B, then (1) the obligatoriness of A entails the obliga-
toriness of B and (2) the forbiddenness of B entails the forbiddenness of A.

24 S ee Peterson (2014a) for a discussion.
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Clearly, if Jones ought to murder Smith in a gentle fashion, then obviously 
he also ought to murder Smith. We argued elsewhere (cf. Peterson and 
Marquis 2012) that, contra Forrester, this paradox is not problematic at  
all since despite its validity, the argument is not sound. But still, one could 
wonder whether there is something that can be done via the syntactical 
types to solve that problem. La Palme Reyes et al. (1994) used category 
theory to analyze the relations between types, nouns and properties. One of 
their example shows how some properties cannot be passed between two 
nouns, although these two nouns are related somehow. For instance, 
although a baby is a person, a big baby is not a big person. So perhaps the 
same kind of phenomenon is at work here. Although a gentle murder is a 
murder, it does not necessarily follows that a gentle murder which is oblig-
atory is also a murder which is obligatory. The question would thus be to 
determine how one can represent this phenomenon through the syntactic 
calculus. One way of answering this problem is to fix a primitive class of 
types A = {a1, …, an} (replacing i) which would be composed of a finite 
number of types of action verbs. It is thus possible to obtain ( ).25

( ) Jones ought to murder Smith gently
n (n\ sn)/a2 a1/n n a1\a2

On these grounds, one could then argue that the step from (4) to ()    requires 
that both actions in the scope of ‘ought’ be of the same type, which is not 
the case in Forrester’s paradox. Indeed, the action of ‘murdering Smith’ is 
of type a1 while ‘murdering Smith gently’ is of type a2. Therefore, the step 
from (4) to () is illegitimate insofar as the property ‘obligatory’ cannot be 
passed between action verbs that are not of the same type.

The same strategy can be applied to solve the good Samaritan paradox, 
which goes from (10) to (11).26

(10) �T he good Samaritan binds the traveler’s wounds implies the traveler 
is wounded

(11) �T he good Samaritan ought to bind the traveler’s wounds implies the 
traveler ought to be wounded

In this case, it is easy to argue that the action ‘binding the traveler’s wound’ 
is not of the same type as ‘the traveler is wounded’. Indeed, the action of 
being wounded only concerns the traveler while the action of binding the 
traveler’s wound is performed by the good Samaritan. Hence, this use of 

25  Here, we are not following the solution proposed by La Palme Reyes et al. (1994).
26 T his version is taken from Garson (2006, p.46). Note, however, that thus formulated 

it is not derivable neither in K or KD. That said, the formulation of Åqvist (1967) can be 
derived.
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(ROM) is illegitimate: in order to be correct, its use must be restricted  
to action verbs that are of the same type in both the antecedent and the 
consequent of the conditional. As such, the application of (ROM) requires 
that the action verbs in the scope of the deontic operator are of the same 
syntactic type, otherwise the application is illegitimate.

4.6.  Propositions and actions

Finally, it is worth mentioning that our approach implicitly incorporates 
Castañeda’s (1986) distinction between propositions and practitions. In 
showing that the syntactical type of the ‘ought’ operator in the English 
language behaves according to the Ought-to-do interpretation, our approach 
implies a distinction between declarative statements and action statements. 
Since the syntactical type of ‘ought’ is (n\ sn) /ai rather than sn /sd, it follows 
that Castañeda’s distinction is implicit to our framework. However, there is 
more to our approach than that. Indeed, in addition to distinguishing between 
declarative statements and action statements, our approach also allows us 
to distinguish between different types of declarative statements, namely 
descriptive propositions of type sd and normative propositions of type sn. 
To the best of our knowledge, this is something that has not been previously 
done within the literature. Thus, our framework incorporates Castañeda’s 
distinction and goes beyond: it also incorporates Hume’s semantical dichot-
omy between facts and norms, which is important if one wants to apply 
logic to normative inferences. Furthermore, although Castañeda distinguishes 
between propositions and practitions, he still uses the same logical rules 
to govern both, and as we saw this is problematic if we consider action 
negation and conditional obligations.

5.  Conclusion

Summing up, the contribution of the present paper was to open the dialog 
between three disciplines that were otherwise blind to each other. Although 
the bridge between category theory and linguistics was made by Lambek 
and further developed by Moot and Retoré (2012)27, category theory and 
categorial grammar remained unrelated to deontic logic. The present paper 
contributes to the literature given that it provides new conceptual insights 
on many important features of deontic logic. First, we showed how one 
can formally explain the problems regarding the Ought-to-be/Ought-to-do 
distinction, the connective for conditional obligations and action negation. 

27  The use of deductive systems in categorial grammar is actually an active field of study 
and developments were made by many authors. See Moortgat (2012) for an overview.
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In a nutshell, these issues arise since they involve different syntactical types. 
We showed that the Ought-to-do interpretation of normative sentences is a 
more faithful representation of the English language, and thus that it is the 
one that should be adopted. Moreover, we showed how our approach implic-
itly involves Castañeda’s distinction between propositions and practitions, but 
goes further insofar as it distinguishes between different syntactical types for 
declarative statements. Incidentally, it enables us to give a formal representa-
tion of Hume’s semantical dichotomy. Our framework also provided a differ-
ent perspective on Forrester’s and the good Samaritan paradoxes, showing 
that they only arise when (ROM) is applied to a conditional that contains 
different types of actions. Hence, the analysis of deontic logic via Lambek’s 
syntactic calculus shed light upon many issues that it faces.

As a result of our analysis, we can see that the problems concerning con-
ditional obligations and action negation could benefit from category theory. 
For instance, we saw that the detachment problem happens when the con-
nective for conditional obligations is considered as an adjoint to conjunction. 
Although the main aim of this paper was to expose that deontic logic can 
benefit from Lambek’s type theory, we also saw a glimpse of how deontic 
logic could benefit from a categorical analysis. As such, it opens the door to 
the application of category theory to deontic logic. Since categorical logic 
is in the first place a theory of types, our analysis suggests that deontic logic 
could benefit from the formal framework of category theory. For future 
research, we intend to provide a categorical analysis of deontic and action 
logics in order to precisely define the categories within which their connec-
tives behave (cf. Peterson 2014a). Furthermore, we intend to analyze the 
problems regarding conditional normative inferences through the framework 
of categorical logic (cf. Peterson 2014b;d). Now that the dialog between 
deontic logic, category theory and linguistics is open, we face a broad, rich 
and interesting research avenue for deontic logic.
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