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Abstract

We refine the interpolation property of the {˄, ˅, ¬}-fragment of classical propo-
sitional logic, showing that if   ¬φ,   ψ and φ  ψ then there is an interpolant , 
constructed using at most atomic formulas occurring in both φ and ψ and negation, 
conjunction and disjunction, such that (i) φ entails  in Kleene’s strong three- 
valued logic and (ii)  entails ψ in Priest’s Logic of Paradox.
Keywords: Interpolation theorem for classical propositional logic. Kleene’s strong 
3-valued logic. Priest’s Logic of Paradox.

1. Introduction

Suppose that φ classically entails ψ, that φ is not a classical contradiction 
and that ψ is not a classical tautology. Then φ and ψ must share non-logical 
vocabulary, for else one could make φ true and ψ false at the same time. 
That there must be some overlap in non-logical vocabulary between premise 
and conclusion is obvious. Possession of the interpolation property takes 
this line of thought much further:

If    ¬φ,   ψ and φ  ψ then there is a formula  containing only atomic 
formulas common to φ and ψ and such that φ   and   ψ.1

Now, as is well known, many logics fail to possess the interpolation property 
— see, e.g., (Schumm 1986) and the references therein, (Renardel de Lavalette 
1981), (Urquhart 1993), (Roorda 1994). On the other hand, many logics do 
share the interpolation properties exhibited by classical propositional logic or 
close analogues thereof. Two that do are Kleene’s strong three-valued logic 
(K3; Kleene 1952, §64) and Priest’s Logic of Paradox (LP ; Priest 1979). 
To be exact, abbreviating ‘atomic formula’ to ‘atom’ we have

1 Surprisingly few textbooks prove this theorem. (Hodges 2001) and (Hunter 1971) 
are exceptions. They prove it in the slightly stronger form

if φ  ψ and at least one atomic formula is common to φ and ψ then there is a formula  
containing only atomic formulas common to φ and ψ and such that φ   and   ψ.
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if φ K3 and φ K3 ψ then there is a formula containing only atoms 
common to φ and ψ and such that φ K3  and  φ K3 ψ2

and

if  LP ψ and φ LP ψ then there is a formula  containing only atoms 
common to φ and ψ and such that φ LP  and  LP ψ.

That Kleene’s logic has this interpolation property was shown by Kamila 
Bendová (2005).3 That Priest’s logic has the stated interpolation property 
follows immediately via the Duality Principle that links K3 and LP, 
namely,

¬φ K3 ¬ψ  iff ψ LP φ  and  ¬φ K3 iff  LP φ,

and the fact that Double Negation Introduction and Elimination are sound 
in K3.4

Although K3 and LP have the indicated interpolation properties which 
are the minimal modifications of the classical case to, respectively, a logic 
without theorems (K3) and a logic without anti-theorems (LP), it’s worth 
noting that the logic whose valid inferences are exactly those common to 
K3 and LP does not. This logic, called Kalman implication in (Makinson 
1973), has neither theorems (since K3 has none) nor anti-theorems (since 
LP has none), but since φ ˄ ¬φ is (classically hence) K3-unsatisfiable and 

2 For a logic X, by φ X we mean that φ X  for all  and call φ an anti-theorem of the  
logic X. Classically, φ  iff   ¬φ; in K3, φ K3 iff φ K3 ¬φ. LP has no anti-theorems.

3 A proof that propositional K3 possesses the interpolation property, different in approach 
to Bendová’s in that it is modelled on the proof for classical propositional logic in (Hunter 
1971), is to be found in the Appendix.

4 The interpolation theorem for classical propositional logic is equivalent to the following: 
if ¬φ and ψ are not classical tautologies but ¬φ ˅ ψ is then there is a formula  containing 
only non-logical vocabulary common to φ and ψ such that ¬φ ˅  and ¬ ˅ ψ are both 
classical tautologies. Since all and only classical tautologies are theorems of the Logic of 
Paradox, we immediately obtain one form of interpolation theorem for LP. But this does not 
translate back into the form given in the text because, as Priest notes (Priest 1979, §III.9), 
LP lacks Disjunctive Syllogism.

Beall et al. (2013, p. 18, n. 5) say, ‘As the referee noted, Takano’s result in (Takano 1989) 
immediately delivers interpolation for LP.’ If so, it is in the form just noted, i.e., for theorems 
of LP of some fixed logical form. Takano provides a condition that is sufficient on the 
assumption of expressive completeness, namely, in the case of LP, that there be some 
function f : {0, ½, 1}2 → {0, ½, 1} which satisfies the constraints (i) that, for any x, y, z ∈ 
{0, ½, 1}, if f (x, y) ≥ ½ and f (y, z) ≥ ½ then f (x, z) ≥ ½ and (ii) that, for all x, y ∈ {0, ½, 1},  
f (x, y) ≥ ½ or f (y, x) ≥ ½. As is clear from the truth-tables in Section 2 in the light of 
Lemma 1, any formula built up from atoms using at most ˄, ˅, and ¬ that expresses a 
function satisfying these constraints is a classical tautology in two propositional variables 
and, classical tautologies being theorems of the Logic of Paradox, the resulting “interpolation 
property” is entirely trivial.
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ψ ˅ ¬ψ is a (classical hence) LP logical truth, φ ˄ ¬φ Kalman ψ ˅ ¬ψ for 
any φ and ψ.5

In the classical case, as φ is not a contradiction, any interpolant  is 
likewise not a contradiction and, since ψ is not a tautology,  is not a 
tautology. That aside, the statement of the interpolation theorem gives us 
little to go on. Here I prove a refinement of the theorem for the {˄, ˅ , ¬}-frag-
ment of classical propositional logic which tells us a little more: we can 
construct an interpolant that is entailed by φ in K3 and entails ψ in LP. This 
is not a trivial consequence of the interpolation properties of Kleene’s and 
Priest’s propositional logics, not least because there are classically valid 
entailments that hold in neither K3 nor LP. ¬φ ˄ (φ ˅ ψ)  ¬ ˅ (  ˄ ψ) 
is one such. The result is more than a mere novelty, for, arguably, K3 is 
what survives of classical propositional logic when one gives up the joint 
exhaustiveness of truth and falsity and LP is what survives when one gives 
up their mutual exclusivity.

2. Kleene’s and Priest’s three-valued logics

Kleene’s strong three-valued logic and Priest’s Logic of Paradox share the 
same three-valued truth-tables for negation, conjunction and disjunction. 
These are:

φ ¬φ φ ˄ ψ 1 ½ 0 φ ˅ ψ 1 ½ 0
1 0 1 1 ½ 0 1 1 1 1
½ ½ ½ ½ ½ 0 ½ 1 ½ ½
0 1 0 0 0 0 0 1 ½ 0 .

The logics differ in that Kleene’s takes 1 to be the only designated value, 
Priest’s takes 1 and ½ to be designated.

Following the notation of (Priest 1979), an assignment u of values to 
atomic formulas extends to a valuation u+ on all formulas constructed 
employing negation, conjunction and disjunction in accordance with the truth-
tables. We consider no other formulas in what follows and no other valuations. 
(+ is an injective function from assignments to valuations.) We restrict attention 
to inferences with at most a single premise and take ‘’ to stand for classical 
consequence, ‘K3’ to stand for preservation of the value 1 from premise to 
conclusion under all valuations, and ‘LP’ to stand for preservation of the 
value 0 from conclusion to premise under all valuations.6

5 Bendová (2005, p. 130, Remark 1) notes that requiring premise and conclusion to share 
an atom does not remove all failures of interpolation in Kalman implication.

6 φ Kalman ψ iff, under all valuations u+, u+(φ) ≤ u+(ψ).
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The Duality Principle stated above is an immediate consequence of these 
definitions.

Looking at the truth-tables two points leap to the eye and can be shown 
more formally by induction on length of formula:

• an assignment which assigns only 0 and/or 1 to atoms extends to a valu-
ation which assigns only 0 and 1 fully in classical fashion;

• an assignment which assigns only ½ to atoms extends to a valuation 
which assigns only ½.

This second observation shows that Kleene’s logic (K3) has no theorems 
— no formula must take the value 1 — and that Priest’s logic (LP ) has no 
anti-theorems — no formula must take the value 0.

A third fact is almost equally obvious:

Lemma 1. Given assignments u and v, if v differs from u only in assigning 
the value ½ to one or more atoms to which u assigns either 0 or 1, then, for 
all formulas φ, v+(φ) = u+(φ) or v+(φ) = ½.

Proof. The claim holds trivially for atoms. Suppose that it holds for all 
formulas with k or fewer occurrences of connectives, and let φ contain k + 1 
occurrences of connectives. Proof is by cases.

• φ is ¬ψ. Then v+(φ) = 1  −  v+(ψ) and, by the induction hypothesis, 
v+(ψ) = u+(ψ) or v+(ψ) = ½. Consequently, v+(φ) = 1  −  u+(ψ) = u+(φ) or 
v+(φ) = 1  −  ½ = ½.

•  φ is ψ ˄ . Then v+(φ) = min{v+(ψ), v+()} and, by the induction hypo-
thesis, v+(ψ) = u+(ψ) or v+(ψ) = ½ and v+() = u+() or v+() = ½. Con-
sequently, v+(φ) = 1 = u+(φ) if v+(ψ) = u+(ψ) = 1 and v+() = u+() = 1, 
v+(φ) = 0 = u+(φ) if v+(ψ) = u+(ψ) = 0 or v+() = u+() = 0, and otherwise 
v+(φ) = ½.

• φ is ψ ˅ . Then v+(φ) = max{v+(ψ), v+()} and, by the induction 
hypothesis, v+(ψ) = u+(ψ) or  v+(ψ) = ½ and v+() = u+() or v+() = ½. Con-
sequently, v+(φ) = 0 = u+(φ) if v+(ψ) = u+(ψ) = 0 and v+() = u+() = 0, 
v+(φ) = 1 = u+(φ) if v+(ψ) = u+(ψ) = 1 or v+() = u+() = 1, and otherwise 
v+(φ) = ½. 

An immediate consequence of this last lemma will do some work in what 
follows:

Corollary 1.1. If a valuation u+ assigns only the values 0 and/or 1 to the 
members of some set of formulas X then any valuation which agrees with 
u+ on those atoms occurring in members of X to which the latter assigns 0 
and 1 agrees with u+ on all members of X. 
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This corollary yields a criterion for the existence of classical (two-val-
ued) valuations on sets of formulas:

Observation 1. If a valuation u+ assigns only the values 0 and/or 1 to the 
members of some set of formulas X, there is a classical valuation which 
agrees with u+ on those atoms occurring in members of X to which the 
latter assigns 0 and 1 and agrees with u+ on all members of X.

From this it follows that all classical tautologies are theorems of LP (cf. Priest 
1979, §III.8) and all classical contradictions are anti-theorems of K3.

3.  The refinement

Lemma 2. If φ  ψ then, when the valuation u+ assigns the value 1 to φ 
and the valuation v+ assigns the value 0 to ψ, there is an atom p, common 
to φ and ψ such that either u(p) = 1 and v(p) = 0 or u(p) = 0 and v(p) = 1.

Proof. u /= v, for were the same valuation to assign 1 to φ and 0 to ψ, by 
Observation 1 there would be a purely classical valuation making φ true 
and ψ false, contrary to hypothesis.

u and v must, then, disagree but were their disagreement limited to these 
four forms —

• u and v disagree on one or more atoms that occur in φ but not in ψ
• u and v disagree on one or more atoms that occur in ψ but not in φ
• u assigns the value ½ to one or more atoms common to φ and ψ to which 

v assigns either 0 or 1
• v assigns the value ½ to one or more atoms common to φ and ψ to which 

u assigns either 0 or 1

— we could define this assignment w:

• w agrees with u on atoms that occur in φ but not in ψ;
• w agrees with v on atoms that occur in ψ but not in φ;
• w assigns what v assigns when u assigns the value ½ to one or more 

atoms common to φ and ψ to which v assigns either 0 or 1;
• w assigns what u assigns when v assigns the value ½ to one or more 

atoms common to φ and ψ to which u assigns either 0 or 1;
• elsewhere w agrees with u and v.

w extends to the valuation w+. As w differs from u on atoms occurring in 
φ at most by assigning 0 or 1 where u assigns ½, by Corollary 1.1, 
w+(φ) = u+(φ) = 1. Similarly, as w differs from v on atoms occurring in ψ 
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at most by assigning 0 or 1 where v assigns ½, by Corollary 1.1 again, 
w+(ψ) = v+(ψ) = 0. And then, by Observation 1 and contrary to hypothesis, 
there is a classical valuation under which φ is true and ψ is false.

Consequently, as claimed, there must be at least one atom p, common 
to φ and ψ such that either u(p) = 1 and v(p) = 0 or u(p) = 0 and v(p) = 1.
 

Theorem 1. If   ¬φ,  ψ and φ  ψ then there is a formula  containing 
only atoms common to φ and ψ and such that φ K3  and  LP ψ.

Proof. Firstly, since  ¬φ and  ψ, φ and ψ have at least one atom in 
 common. Secondly, as  ¬φ, there is a classical valuation u+ such that 
u+(φ) = 1; likewise, as  ψ, there is a classical valuation v+ such that 
v+(ψ) = 0. In the light of this and Lemma 2, any valuation assigning either 
1 to φ or 0 to ψ must assign either 0 or 1 to an atom common to φ and ψ.

Let p1, p2, …, pn be the atoms common to φ and ψ. Corresponding to an 
assignment u, let u be a conjunction of literals containing pi if u(pi) = 1, 
¬pi if u(pi) = 0, and simply ignoring pi if u(pi) = ½. By what has just been 
observed, there is always at least one conjunct when a valuation assigns 
either 1 to φ or 0 to ψ.

For each assignment u of values to just the atoms occurring in one or 
other or both of φ and ψ, label it with a 1 if u+(φ) = 1, label it with a 0 if 
u+(ψ) = 0. (As φ  ψ, each assignment bears at most one label). Let 1 be 
the disjunction of those conjunctions u for which u is labelled with a 1 and 
let 0 be the disjunction of those conjunctions u for which u is labelled 
with a 0.

Now, let u+ be a valuation for which u+(φ) = 1 and let u be the induced 
assignment to just the atoms occurring in one or other or both of φ and ψ. 
By construction, u+(u) = 1 and hence u+(1) = 1. Thus φ K3 1. Next, let 
v+ be a valuation for which v+(ψ) = 0 and let v be the induced assignment 
to just the atoms occurring in one or other or both of φ and ψ. It remains 
to show that v+(1) = 0. By Lemma 2, for any valuation w+, inducing the 
assignment w on the atoms occurring in one or other or both of φ and ψ, 
for which w+(φ) = 1 there is an atom p, common to φ and ψ, such that either 
w(p) = 1 and v(p) = 0 or w(p) = 0 and v(p) = 1. In the first case, w contains 
p and v+(w) = 0; in the second, w contains ¬p and again v+(w) = 0. 
As this holds for all assignments w labelled with a 1, v+(1) = 0. Thus 1 
LP ψ.

We have shown that

φ K3 1 and 1 LP ψ.

¬0 (and thus 1 ˄ ¬0 and 1 ˅ ¬0) serves equally well as an interpolant 
with the properties we seek. 
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4. Conclusion

We have strengthened one form of the interpolation theorem for the 
{˄, ˅, ¬}-fragment of classical propositional logic: when φ  ψ and when 
φ is not a classical contradiction and ψ is not a classical tautology, we have 
shown how to construct an interpolant  such that

φ K3  and  LP ψ.

This cannot be further strengthened so as to read

if φ  ψ and at least one atom is common to φ and ψ then there is a 
formula  containing only atoms common to φ and ψ and such that 
φ K3  and  LP ψ.

(φ ˄ ¬φ) ˅ ψ  (φ ˅ ¬φ) ˅  but when φ, ψ and  are distinct atoms, no 
formula containing φ as sole atom is a K3-consequence of (φ ˄ ¬φ) ˅ ψ.
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Appendix 
Interpolation Theorem for K 3

Theorem 2. If φ K3 and φ K3 ψ then there is a formula  employing only 
atoms common to φ and ψ such that φ K3  and  K3 ψ.

Proof is by induction on the number of atoms occurring in φ that do not 
occur in ψ. If that number is zero, φ itself serves as an interpolant, and this 
provides the base case of the induction. Now suppose that an interpolant 
exists when at most m atoms occur in the premise but not in the conclusion 
— the induction hypothesis — and suppose too that no more than m + 1 
atoms occur in φ but not in ψ. Let q be one of these and let p1, p2, …, pn 
be all other atoms occurring in φ, at most m of which do not occur in ψ.

Let φ1 be the formula obtained by replacing all occurrences of q in φ 
with (p1  ˅   ¬p1)  ˅   (p2 ˅  ¬p2)  ˅   …  ˅   (pn  ˅   ¬pn); let φ2 be the formula 
obtained by replacing all occurrences of q in φ with (p1  ˄   ¬p1)  ˄   (p2  ˄   ¬p2) ˄ 
…  ˄   (pn   ˄   ¬pn). We show, first, that φ1  ˅   φ2  K3  ψ, then that φ  K3 φ1  ˅   φ2.

A valuation only assigns 1 to φ1 ˅ φ2 if it assigns 1 to one or other of 
φ1 and φ2. Suppose first, then, that it assigns 1 to φ1. It can only do this by 
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assigning 0 or 1 to at least one of p1, p2, …,   pn, thus assigning 1 to (p1  ˅   
¬p1)  ˅   (p2  ˅   ¬p2)  ˅   …  ˅ (pn  ˅   ¬pn); the valuation that differs at most by 
assigning 1 to q also assigns 1 to φ, and hence to ψ; as q doesn’t occur 
in ψ, the original valuation must also assign 1 to ψ. Suppose next that our 
original valuation assigns 1 to φ2. It can only do this by assigning 0 or 1 to 
at least one of p1, p2, …, pn, thus assigning 0 to (p1  ˄   ¬p1)  ˄   (p2  ˄   ¬p2)  ˄  
…  ˄   (pn  ˄   ¬pn); the valuation that differs at most by assigning 0 to q also 
assigns 1 to φ, and hence to ψ; again, as q doesn’t occur in ψ, the original 
valuation must also assign 1 to ψ. Hence φ1  ˅   φ2 K3 ψ.

It remains to show that φ  K3 φ1  ˅   φ2. Suppose that an assignment to p1, 
p2, …, pn and q leads to assigning 1 to φ. At least one of the atoms must 
be assigned 0 or 1. Were q alone to take one of these values, as it does not 
occur in ψ the assignment which assigns ½ to all atoms save q leads to ψ 
itself taking the value ½, contradicting our starting point that φ  K3  ψ. So 
at least one among p1,  p2, …, pn takes one of the values 0 and 1 and hence 
(p1  ˅   ¬p1)  ˅   (p2  ˅   ¬p2)  ˅   …  ˅   (pn  ˅   ¬pn) takes the value 1 and (p1  ˄   ¬p1) 
˄  (p2  ˄   ¬p2)  ˄   …  ˄   (pn  ˄   ¬pn) takes the value 0. If 1 is assigned to q, φ1 
and hence φ1  ˅   φ2 takes the value 1; if 0 is assigned to q, φ2 and hence 
φ1  ˅   φ2 takes the value 1; if q is assigned the value ½ then, by Lemma 1, 
φ1 and φ2 and a fortiori their disjunction all take the value 1. This completes 
the proof that φ K3 φ1  ˅  φ2.

Were it the case that φ1 ˅ φ2 K3, so too would we have that φ K3, but 
by hypothesis this is not so. Hence, by the induction hypothesis, as φ1  ˅   φ2 
contains no more than m atoms that do not occur in ψ, an interpolant exists 
for φ1  ˅   φ2 and ψ and the same formula suffices for φ and ψ. This com-
pletes the proof of the Interpolation Theorem for propositional K3. 
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