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Yablo’s Paradox as a Theorem of Modal Logic

Thomas Forster and Rajeev Goré

Abstract

We (further) demystify Yablo’s paradox by showing that it can be thought of as 
the fact that the formula (p ↔ ¬p) is unsatisfiable in the modal logic KD4 
characterised by frames that are strict partial orders without maximal elements. 
This modal treatment also unifies the two versions of Yablo’s paradox, the original 
version and its dual.

1.  Introduction

This paper is meant as a follow-up to [For04]. We reinforce the message 
from that paper that Yablo’s striking puzzle is really — despite the name — 
no paradox at all. In corollary 1 below we show that if we think of the infinite 
family of propositions in the puzzle as possible worlds then the moral is that 
Yablo’s paradox is simply a theorem in a particular modal logic.

Initially, before invoking any modal machinery, we consider Yablo’s 
paradox [For04] in the form:

	 (∀i) [P(i) ↔ (∀j > i)¬P( j) ]� (A)

We will deduce a contradiction from (A), and make a note of what 
assumptions we had to make to secure that outcome.

Proof.  Let i be arbitrary. We will prove both P(i) and ¬P(i).
Assume P(i), and let j > i be arbitrary. Then ¬P( j). Then (∃k > j) P(k). 

But k > i by transitivity of >, and P(k) contradicts (∀j > i)¬P( j) and hence 
contradicts P(i). So ¬P(i).

Now assume ¬P(i). Then there is j >  i with P( j). But in the preceding 
paragraph we refuted P( j) for arbitrary j > i, so this case is impossible too, 
whence P(i).


The only assumptions we have used are as follows:

1.  > is transitive
2.  > is irreflexive 
3.  (∀i) (∃ j) ( j > i).



266	 thomas forster and rajeev goré

That is to say: the minimal nonlogical assumption needed to obtain a 
contradiction from (A) is that > should be a strict partial order with no 
maximal element. Condition 3 above, is sometimes called seriality by modal 
logicians.

Introducing a modal logic allows for an object-level and finitary proof 
of the unsatisfiability of the formula labelled A.

2.  The Propositional Modal Logic KD4

The thought now is that we can make progress by thinking of the P(i) in 
the statement of Yablo’s paradox not as an infinite family of atomic propo-
sitions but as a single proposition evaluated in lots of worlds in a Kripke 
model. Thus the derivability of Yablo’s paradox should be the same fact as 
the theoremhood of a particular formula in the normal modal logic charac-
terised by frames whose accessibility relation satisfies 1-3 above.

That logic is normal modal logic KD4 where K is ( p → q) → 
(p → q), D is p → ◊p and 4 is p → p. The axiom D character-
ises seriality ∀x.∃y. R(x, y) and the axiom 4 characterises transitivity ∀x, y, z. 
R(x, y)&R(y, z) ⇒ R(x, z). Although irreflexivity is not actually character-
ised by any of the axioms, it is known that the class of irreflexive, transitive 
and serial frames also characterises this logic [PB02].

Now what, exactly, is the formula we are trying to prove? Our first 
thought was that we should be able to refute p ↔ ¬p, and thereby obtain 
a proof of

	 ¬( p ↔ ¬p)� (F)

However, this cannot be right, for formula (F) easily implies p ↔ p, and 
this is certainly not a theorem of KD4.

Consider now the standard translation [PB02] of propositional modal 
logic into first-order logic given below with one free variable x:

ST (x, p) =  p(x)
ST (x, ϕ ∧ ψ) =  ST (x, ϕ) ∧ ST (x, ψ)
ST (x, ϕ ∨ ψ) =  ST (x, ϕ) ∨ ST (x, ψ)
ST (x, ϕ → ψ) =  ST (x, ϕ) → ST (x, ψ)
ST (x, ϕ) =  ∀y.R(x, y) → ST (y, ϕ)
ST (x, ◊ϕ) =  ∃y.R(x, y) ∧ ST (y, ϕ)

Replacing R(x, y) by y > x and replacing ∀y.y > x → ϕ by ∀y > x.ϕ gives:

ST (0, (p ↔ ¬p))	= ∀y.R(0, y) → (p(y) ↔ ∀z.R(y, z) → ¬p(z))
	 = ∀y > 0.(p(y) ↔ ∀z > y.¬p(z))
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                    id
 Γ, ϕ  ϕ, ∆

   Γ, Γ  X   KD4  X = ∅  or  X = {ϕ}Γ, Σ  X, ∆ 

  Γ  ϕ, ∆   
¬L  Γ, ¬ϕ  ∆  

  Γ, ϕ  ∆   
¬R Γ  ¬ϕ, ∆   

 Γ  ϕ, ∆  Γ, ψ  ∆    → L	 Γ, ϕ → ψ  ∆
  Γ, ϕ  ψ, ∆   → R Γ  ϕ → ψ, ∆

 Γ, ϕ  ∆  Γ, ψ  ∆    
∨ L	 Γ, ϕ ∨ ψ  ∆

  Γ  ϕ, ψ, ∆   
∨ R Γ  ϕ ∨ ψ, ∆

  Γ, ϕ, ψ  ∆   
∧ L Γ, ϕ ∧ ψ  ∆

 Γ  ϕ, ∆	 Γ  ψ, ∆  
∧ R	 Γ  ϕ ∧ ψ, ∆

 Γ, ϕ, ψ  ∆  Γ  ϕ, ψ, ∆  ↔L	 Γ, ϕ → ψ  ∆
Γ, ϕ  ψ, ∆  Γ, ψ  ϕ, ∆  ↔ R	 Γ  ϕ ↔ ψ, ∆

Figure 1:  Cut-free complete sequent calculus for the modal logic KD4.

which is the essence of A. Thus the modal formula we want is the formula 
Y below and this is a theorem of KD4, as we will now show:

	 ¬(p ↔ ¬p)� (Y)

3.  A Sequent Calculus for KD4

There are now two ways to proceed. One is to argue semantically that for-
mula Y is valid, for example, by arguing semantically that its negation is 
unsatisfiable. The other is to give a syntactic proof of Y in an appropriate 
proof calculus for the modal logic KD4.

When we take into account the previous work on this topic [For04], 
the route via a proof calculus has two virtues: (i) the reasoning is at the 
object-level, and (ii) the proof is finitary. We therefore follow the syntactic 
route.

The sequent calculus rules for the logic KD4 are shown in Figure 1 
where each of Γ and ∆ and Σ are finite sets of formulae and X is a set con-
taining at most one formula. The only odd rule is the rule KD4, which is 
applicable to any -formula on the right-hand-side of the sequent, but 
which is also applicable if there are no such -formulae. The rule has 
similarities to a modal rule, often called (T), that captures reflexivity, but 
reflexivity is too strong since KD-frames need not be reflexive.

The easiest way to read the KD4 rule is to see it as a move from a world w 
(the conclusion) to an R-accessible v (the premise). For suppose that w makes 
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all the formulae in Γ, Σ true and makes all the formulae in X, ∆ false. 
If X = {ϕ} then w must have an R-successor v which makes Γ true and ϕ 
false since ϕ false at w is the same as ◊¬ϕ true at w. Else if X = ∅, then 
again some R-successor v must exist by seriality of R. By transitivity, v 
must also make Γ true. But it need not make the formulae in Σ true 
nor make the formulae in ∆ false, which is why they both “disappear” in 
passing from the conclusion w to the premise v This is essentially the 
soundness of the KD4 rule with respect to KD4-frames.

More generally, the sequent calculus is sound and cut-free complete for 
the logic KD4 in the following sense [Gor99].

Theorem 1.  A formula ϕ is KD4-valid iff there is a derivation of the  
sequent   ϕ in the sequent calculus from Figure 1.

Proposition 1.  The rule ↔L shown in Figure 1 is derivable by defining 
ϕ ↔ ψ as (ψ → ϕ) ∧ (ϕ → ψ) as shown below:

id  Γ, ϕ, ψ  ∆	 Γ, ϕ  ϕ, ∆  →L
id  Γ, ψ  ψ, ∆	 Γ  ϕ, ψ, ∆   → L

	 Γ, ϕ, ϕ →  ψ  ∆		  Γ, ϕ → ψ  ψ, ∆ 
→ L

  Γ, ψ → ϕ, ϕ → ψ  ∆       ∧ L
  Γ, (ψ → ϕ) ∧ (ϕ → ψ)  ∆  

defnΓ, ϕ ↔ ψ  ∆

4.  Formalising Yablo’s Paradox in KD4

The proof object is a bit too large for comfort, so we start in a small way 
by proving a fragment of it that has more than one occurrence in the main 
proof.

Proposition 2.  The sequent p, ¬p, (p ↔ ¬p)¬ is derivable in KD4:

____________________ id

id   p, ¬p, p ↔ ¬p, (p ↔ ¬p)  p  
¬p, ¬p, p ↔ ¬p, (p ↔ ¬p)  ¬p  

KD4
¬p, p, (p ↔ ¬p)  6 p 	 ¬p, (p ↔ ¬p) 7 p, ¬p  ↔L

  ¬p, p ↔ ¬p, (p ↔ ¬p) 5 p 
 ¬L

 ¬p, ¬p, p ↔ ¬p, (p ↔ ¬p) 4   
KD4

p, ¬p, (p ↔ ¬p) 3

Proposition 3.  The formula ¬(p ↔ ¬p) is KD4-valid.

¬R; ¬L
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Proposition 2  id
p, ¬p, (p ↔ ¬p) 11	 p, (p ↔ ¬p) 12 p, ¬p  ↔L

 p, p ↔ ¬p, (p ↔ ¬p) 10 
 ¬R

 p ↔ ¬p, (p ↔ ¬p) 9 ¬p  
KD4

(p ↔ ¬p) 8 p, ¬p

Proposition 2  See above
p, ¬p, (p ↔ ¬p) 3	 (p ↔ ¬p) 8 p, ¬p  ↔L

 p ↔ ¬p, (p ↔ ¬p) 2 
 KD4

  (p ↔ ¬p) 1  
¬R

0 ¬(p ↔ ¬p)

We will explain the in-line numerical annotations on  in Section 5.

Corollary 1.  No modal formula obeys Yablo’s Paradox.

5.  Reading off the Proof from the Derivation

Here is an attempt to read off the natural language proof of Yablo’s Paradox 
from the derivation of the formula ¬(p ↔ ¬p).

We view the derivation upwards, from the end-sequent up to the leaves, 
as a proof by contradiction. Each sequent Γ  ∆ in the derivation is given 
the following semantic reading: if every member of Γ is true then every 
member of ∆ is false. Thus the (id) leaves are all obviously contradictions 
of the form: if all members of the left hand side (including p) are true then 
all the members of the right hand side (including p) are false.

Now consider the sequents, numbered by the superscript on their turnstile 
and look at the derivation of Proposition 2 for the sequents numbered 4-7:

  0. S uppose that ¬Y is false
  1.  Then Y is true
  2.  Then p ↔ ¬p must be true at i = 0
  3. S o suppose p is true and ¬p is true at i = 0
  4.  Pick any j > 0. It must make ¬p and ¬p and p ↔ ¬p true
  5.  That is, j > 0 must make p false and ¬p and p ↔ ¬p true
  6.  �One way for j > 0 to make p ↔ ¬p true is to make p true and ¬p 

true. But this gives a contradiction since it makes p both true and false
  7.  �Else j > 0 makes both p and ¬p false, which again gives a contradiction 

since it already must make ¬p true



270	 thomas forster and rajeev goré

  8. E lse suppose that p is false and ¬p is false at i = 0
  9.  Pick any j > 0. It must make ¬p false and p ↔ ¬p true
10.  �That is, j > 0 must make p true and p ↔ ¬p true
11. �I f j > 0 makes both p and ¬p true then we have a contradiction via 

Proposition 2 as before
12. � Else if j > 0 makes both p and ¬p false then we again have a contra-

diction since it already makes p true.

6.  A dual version

There is also a dual version of Yablo’s paradox, although not much is usually 
made of this fact:

	 (∀i)[P(i) ↔ (∃ j > i)¬P ( j)]� (A*) 

We can deduce a contradiction from (A*) too.

Proof.  Let i be arbitrary.

Suppose ¬P(i). Then ∀j > i. P( j). Let j be an arbitrary j > i. Then we have 
P(j), which implies that ∃k > j. ¬P(k). But this k must satisfy P(k) since 
k > j > i and ¬P(i). Contradiction: hence P(i).

So P(i) holds. Hence there is j > i such that ¬P( j). But we have already 
shown that ¬P( j) for arbitrary j in the previous paragraph.



The modal analysis dual to that for the original version (A) of Yablo’s 
paradox will throw up a corresponding modal principle ¬(p ↔ ◊¬p). 
Pleasingly this turns out to be the same modal principle as ¬(p ↔ ¬p), 
and we need no more than the duality of  and ◊, captured by p ↔ ¬◊¬p, 
to establish this equivalence:

¬(p ↔ ◊¬p)� (1)
↔ ¬(¬p ↔ ¬◊¬p)� (2)

↔ ¬(¬p ↔ p)� (3)
i.e. ¬(q ↔ ¬q)� (4)

7.  Conclusion

The debate over Yablo’s puzzle has taken its cue from Yablo’s original 
motivation of studying the rôle of self-reference. This preoccupation with 
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a narrow syntactic question has tended to distract attention from the ques-
tion — which we think is more interesting — of what this very interesting 
paradox actually means.
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