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Splitting and Relevance: 
Broadening the Scope of Parikh’s Concepts*

Frederik Van De Putte

Abstract

When our current beliefs face a certain problem – e.g. when we receive new infor-
mation contradicting them –, then we should not remove beliefs that are not related 
to this problem. This principle is known as “minimal mutilation” or “conservativity” 
[21]. To make it formally precise, Rohit Parikh [32] defined a Relevance axiom for 
(classical) theory revision, which is based on the notion of a language splitting.

I show that both concepts can and should be applied in a much broader context 
than mere revision of theories in the traditional sense. First, I generalize their 
application to belief change in general, and strengthen the axiom of relevance in 
order to make it fully syntax-independent. This is done by making use of the least 
letter-set representation of a set of formulas [27]. Second, I show that the logic 
underlying both concepts need not be classical logic and establish weak sufficient 
conditions for both the finest splitting theorem from [25] and the least letter-set 
theorem from [27]. Both generalizations are illustrated by means of the paraconsistent 
logic CLuNs and compared to ideas from [14, 36, 24].

1.  Introduction

Since the publication of [32], Parikh’s definition of a language splitting 
and the related axiom of Relevance have received quite some attention in 
the literature on belief revision – see e.g. [25, 28, 40, 48, 42, 43]. Although 
this axiom has not yet the same status as the AGM postulates for belief revi-
sion, many authors find it useful to prove that the revision operations they 
define obey this additional axiom – see e.g. [8, 33, 49, 43].

The main motivation for the Relevance axiom is that, when incorporating 
new information, we should remove as few beliefs as possible; hence we 
should certainly not remove any beliefs that have nothing to do with this 
new information. This principle is widely known as that of “minimal muti-
lation” or “conservativity” – see [21, p. 12]. The Relevance axiom turns this 
principle into a formally precise requirement.

*  Research for this paper was funded by subventions of Flemish Research Foundation 
(FWO-Vlaanderen). I am greatly indebted to Peter Verdée, David Makinson and Neil Coleman 
for their helpful comments and suggestions.
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Let me briefly explain how it works, referring the reader to Section 3 for 
the exact definitions. Suppose you initially believe each of p ∧ ∼q, r ∨ s, 
q ∨ t. Then your beliefs can be represented equivalently (modulo classical 
logic) by the union of the sets {p}, {∼q}, {r  ∨ s}, {t}. Accordingly, we say 
that the beliefs split the language into mutually disjoint letter sets: {p}, 
{q}, {r, s}, {t}. Now if you learn that ∼p ∧ ∼r is the case, then the Rel-
evance axiom states that this should not alter your (implicit) belief in ∼q 
or t. So although you have to abandon the belief in p, you will stick to ∼q 
and t.

Both the concept of language splitting and relevance are originally based 
on the traditional AGM model of belief revision, and hence also on classical 
logic as the underlying logic of our beliefs. However, as I will argue in this 
paper, they can and should be applied to various other types of belief change 
and to the dynamics of non-classical theories. This way we can combine 
Parikh’s original idea with a pragmatic, less idealized account of belief 
change. As a result, we obtain a formally precise explication of the principle 
of minimal mutilation, which can be used to compare various operations of 
belief change.

Outline of this paper.  I recapitulate the original definition of the finest 
splitting and the axiom of relevance in Section 3. After this preparatory 
work, I discuss how we can broaden their range of application in two ways:

i(i)  by applying them to other types of belief change (Section 4)
(ii)  by considering beliefs whose underlying logic is non-classical (Section 5)

In both cases, I argue that the resulting generalizations yield promising and 
very flexible syntactic characterizations of relevant belief change. As shown 
in Section 6, a few basic properties suffice in order to generalize the finest 
splitting theorem and the least letter-set theorem to non-classical logics – 
both properties are crucial in order to obtain a suitable axiom of relevance 
based on such logics. 

In Section 7, the paraconsistent logic CLuNs is used to illustrate the 
main ideas of this paper at the object-level. Next, these ideas are compared 
to related work (Section 8). The paper ends with conclusions and prospects 
for future research (Section 9).

2.  Preliminaries

As announced, this paper generalizes some theorems that hold for propo-
sitional classical logic (henceforth CL) to a large class of logics. So let us 
start with the former. The language of CL is built up from the set of ele-
mentary letters E = {p, q, r, …, p1, …}, the constant ⊥, and the connectives 
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∼, ∧, ∨, ⊃, ≡. Using the regular formation rules of classical logic, we obtain 
the set of formulas WCL.

Occasionally, I shall use CL to denote a more general consequence rela-
tion, obtained by applying all CL-rules to any set of symbols in a specified 
formal language. With this broader notion of classical consequence, one 
can write such things as A ∨ B, ¬B CL A and A ∧ B CL B. Under 
this reading, any formula whose outermost connective or operator is non- 
classical, is treated as primitive (e.g. A is primitive for all A).

In the remainder, I use L as a metavariable for any logic, i.e. a function 
that maps any set of formulas in a given language LL to a consequence set. 
Let WL be the set of closed formulas associated with L. Where L is given, 
I use A, B, C, … as metavariables for formulas in WL, Γ, ∆, Θ, … as meta-
variables for sets of formulas and A, B, C,… as metavariables for sets of 
sets of formulas. E(A), E(∆) are used to denote the set of elementary letters 
that occur in A, resp. ∆.

Where the consequence relation L is given and Γ ⊆ WL, let CnL(Γ) = 
{A | Γ L A}. Slightly abusing notation, I write Γ L ∆ whenever Γ L A 
for every A ∈ ∆. I write Γ L ∆ as an abbreviation for (Γ L ∆ and ∆ L Γ), 
and A L B for {A} L B.

As customary, a distinct set of metavariables Υ, Υ, … is used to refer to 
sets of beliefs. In this notation, Υ may be closed under a logic L or not.

3.  Splitting and Relevance: the Classical Version

In this section, I recapitulate the definitions of language splitting and rele-
vance from  [32], and recall the finest splitting theorem from [25]. This 
section contains no new results but sets the stage for the remainder of this 
paper.

Intro.  Belief revision became a subject of intensive research since the 
middle of the 1980s. I refer to [23] for a more gentle introduction, and will 
only mention some of the basic concepts here. The most common starting 
point for the logic of belief revision is the following question: given a set 
of initial beliefs Υ, and some piece of new information A that possibly 
contradicts Υ, how are we to revise Υ such that A can be incorporated? 
This is typically done by defining a revision operation ⊕, which is a func-
tion that maps every couple Υ, A to a set of formulas Υ ⊕ A, called the 
revision set of Υ by A. We will consider other types of belief change from 
the next section onwards; however, as Parikh confines his discussion to 
revision, so will we in this section.

One may understand the logic of belief revision as a two-sided endeavour: 
at the “syntactic” level, one formulates postulates (also called axioms) that 
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any operation of belief change should obey, whereas at the “semantic” 
level, one gives generic definitions of revision operations. An example of a 
postulate is the Success postulate for revision, which requires that for all 
sets of beliefs Υ and all formulas A, A ∈ Υ ⊕ A. An example of a “generically 
defined” revision operation is that of partial meet contraction – see [1]. One 
of the main formal challenges for the logic of belief revision is to prove 
representation theorems, which link these two characterizations of revision 
operations to each other. In addition, several scholars study the relations 
between various ways to define revision operations – e.g. revision opera-
tions based on entrenchment levels [16], those based on kernel contraction 
[20], partial meet revisions [1], model-based revision operations [18], etc.

The current paper focuses on the syntactic side of belief change. In par-
ticular, it discusses a specific rationality postulate for (classical) belief 
revision, and asks how we may generalize it to other types of belief change. 
It would be interesting to consider the question of how one may append 
existing semantic constructions, in such a way that this postulate can be 
obeyed together with a list of other standard desiderata – see [25] where 
this is done for classical belief revision and contraction – or whether one 
may even obtain representation theorems in this context. Such work requires 
that we consider the specific types of belief change one by one, as one can 
obviously not construct a single semantics for all of them.

Splitting and Relevance.  In [1], eight rationality postulates for the revision 
of CL-theories, i.e. sets Υ = CnCL(Υ) are presented. As Parikh remarks in 
[32], these postulates are still too weak, in that they allow for the “trivial 
update” (henceforth ⊕T). This operation is defined as follows: if Υ CL ¬A, 
then Υ ⊕T A = CnCL(A); otherwise, Υ ⊕T A = CnCL(Υ ∪ {A}). As Parikh 
notes, ‘this is unsatisfactory, because we would like to keep as much of the 
old information as possible [even when A contradicts the new information]. 
Hence the above list [= the list of postulates] needs to be supplemented to 
rule out the trivial update’ [32, p. 3].

Parikh’s positive contribution consists in the formulation of an additional 
postulate, i.e. the axiom of Relevance. The basic idea behind it is that a 
theory can be cut up into smaller parts which can be conceived as independ-
ent from one another [32, pp. 3-4]:

The existing set of beliefs T may contain information about various matters. 
E.g. my current state of beliefs contains beliefs about the location of my chil-
dren, the state of health of my teeth, and beliefs about the forthcoming election 
in India. In case one of my beliefs about the location of my children turns out 
to be false, it surely ought not to affect my beliefs about the election, since the 
subject matters of the two beliefs do not interact in any way.

More generally, when we are forced to change one part of a theory, this 
does not imply that we should do anything with the rest of the theory; we 
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may just as well leave it unaltered. If we receive information that relates to 
only some parts of our theory, then the relevance axiom stipulates that we 
should leave the rest of the theory as it is.

To turn this idea into a formally precise concept, Parikh defines the so-
called splitting of a theory Υ. This name may be somewhat misleading, as 
a splitting is in fact a partition1 of the letter set E rather than of Υ; however, 
E is split in a way that is relative to the specific theory under consideration.

Definition 1 ([28]: Def. 3.1).  Let E = {Λi}i∈I be a partition of E. We say that 
E is a splitting of  Γ iff there is a ∆ = 


i∈I ∆i such that each E(∆i) ⊆ Λi 

and ∆ CL Γ.2

Example 1.  Let Υ = {( p ∨ q) ∧ r, ∼r ∨ s, q ∨ t, r ∨ u}. Note that this set 
is CL-equivalent to each of the following sets:

Υ = { p ∨ q, q ∨ t, r, ∼r ∨ s}
Υ = { p ∨ q, q ∨ t, r, s}

From Υ, ΥI and ΥII respectively, we may generate the following partitions 
of E:

E1(Υ) = {{ p, q, r, s, t, u}} ∪ {{A} | A ∈ E − { p, q, r, s, t, u}}
E2(Υ) = {{ p, q, t}, {r, s}} ∪ {{A} | A ∈ E − { p, q, t, r, s}}
E3(Υ) = {{ p, q, t}, {r}, {s}} ∪ {{A} | A ∈ E − { p, q, t, r, s}}

Consequently, each of these are splittings of Υ.

E is at least as fine as E iff every cell of E is the union of cells of E; 
E is finer than E iff it E is at least as fine as E but the converse fails. Note 
that if E is a splitting of Γ, and E is finer than the partition E of E, it 
immediately follows that E is also a splitting of Γ (see [32, pp. 4-5]). We say 
that E is a finest splitting of Γ iff there is no splitting E of Γ that is finer 
than E.

Example 2.  Take Υ from Example 1. Note that E2(Υ) is finer then E1(Υ), 
and E3(Υ) is finer then E2(Υ). Provably, E3(Υ) is a finest splitting of Υ.

Parikh shows in [32] that every finite set Γ ⊆ WCL has a unique finest 
splitting. Kourousias and Makinson generalized this result to the infinite 
case, thus obtaining the following crucial theorem:

1 A   partition A = {Λ i}i ∈  I of a set Θ is a set of non-empty, pairwise disjoint sets such that 
i ∈  I{Λ i} = Θ. In this notation, the sets Λ i are called the cells of A.
2  The idea of a splitting originates in [32]. I use Makinson’s definition because it includes 

the case where Γ is infinite.
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Theorem 1  ([25]: Th. 2.4).  Every Γ ⊆ WCL has a unique finest splitting.
On the basis of this fact, we may use the notion of a finest splitting to 

define relevance in the context of belief revision:

Definition 2.  Let E be the finest splitting of Υ. We say that a formula B 
is irrelevant to A modulo Υ iff for every cell Λi ∈ E: Λi ∩ E(A) = ∅ or 
Λi ∩ E(B) = ∅.

Parikh himself only considers the case where Υ is a theory, i.e. Υ = 
CnCL(Υ) – I return to this point in the next section. His axiom of relevance 
reads as follows:

Por   � Original Relevance: If B ∈ Υ is irrelevant to A modulo Υ, then 
B ∈   Υ ⊕ A.

As shown in [32], postulate Por is compatible with the six basic AGM pos-
tulates for theory revision from [1], whenever Υ is consistent.3 The basic 
idea behind the proof of this fact is that one defines a revision operator ⊕P 
from an AGM-obedient revision operator ⊕ as follows:

Υ ⊕P A = CnCL(Υ1 ∪ (Υ2 ⊕ A))

where Υ1 consists of all beliefs in Υ that are not relevant to A modulo Υ, 
and Υ2 consists of all beliefs in Υ that are relevant to A modulo Υ. We refer 
to [32] for the exact details. In [43], eight distinct revision operations are 
defined, each of which satisfy all the six AGM postulates and Por.

We finish this section with an example that illustrates the power of this 
relevance axiom.

Example 3.  Consider the revision of CnCL(Υ) by ∼r. If Por is obeyed, then 
p ∨ q, p ∨ t and s are in the revision set, since all of them are in CnCL(Υ), 
and none of them are relevant to ∼r modulo Υ. However, r ∨ u may not 
be in the revision set, as this formula shares letters with r itself.

Consider now the revision of CnCL(Υ) by ¬p ∧ ¬q. In this case, both 
p ∨ q and p ∨ t are relevant to ¬p ∧ ¬q modulo Υ, whence they are not 
required to be in the revision set. On the other hand, the belief r is not rele-
vant to ¬p ∧ ¬q modulo Υ, and should be upheld in order to satisfy Por .

4.  Generalization 1: Belief Change

In this section, I will show that the concepts of splitting and relevance have 
interesting applications in various kinds of belief change other than revision 

3 I n case Υ is consistent, Por clashes with the Consistency requirement; we return to this 
point in Section 5.2.
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of theories in the traditional sense, generalizing some of the definitions 
from the preceding section accordingly. In addition, it is shown that one 
may strengthen the Relevance axiom and thereby make it fully syntax-
independent in each of its three arguments, making use of Makinson’s least 
letter-set theorem [28, 27].

4.1.  Belief Bases

It is well-known that the research on belief revision is divided into two 
competing approaches: one in terms of theories (sets that are closed under 
classical logic), and the other in terms of belief bases (arbitrary sets of 
formulas). The latter is obviously more general, and several authors have 
argued why it is more suitable for certain purposes. So a first question that 
arises is whether we can also apply the relevance axiom to belief base revi-
sion. I will not be able to answer this question in full here, but point at some 
interesting problems that arise, which should be tackled in future work.

Kourousias and Makinson [25] explain that the problem of trivial updates 
is easily transposable to belief bases, i.e. (in their framework) sets Υ that 
are not closed under CL. For example, when revising the base Υ1 = {p ∧  q} 
by ∼p, there are “rational” (in the sense of [21, Chapter 3, Section 1]) belief 
operations that yield ∼p as the only resulting belief, hence removing both 
the implicit beliefs p and q.

However, Parikh only intends to apply this axiom to CL-theories – for 
bases, it does not solve the above problem. Let Υ = {p ∧ q}. Then the 
formula p ∧ q ∈   Υ is relevant to ∼p modulo Υ. Hence if we take Por liter-
ally, there is no problem in dropping p ∧ q, which is the only belief in Υ. 
Nevertheless, Kourousias and Makinson continue to work with the original 
version of Parikh’s relevance axiom, even though they apply it to belief bases 
in general.

In order to deal with belief bases in a more appropriate way, we may 
generalize the axiom as follows:4

Pb � Relevance for Bases:  If B ∈     CnCL(Υ) is irrelevant to A modulo Υ, 
then B ∈    CnCL(Υ ⊕ Ψ).

Before we consider it in more general terms, let us show how Pb works by 
means of a simple example.

Example 4.  Consider the revision of  Υ = {(p ∨ q) ∧ r, ∼r ∨ s, q ∨ t, r ∨ u} 
by ∼r. If  Pb is obeyed, then this implies that p ∨ q, p ∨ t and s are CL-
derivable from the revision set.

4  Whenever Υ and Υ ⊕ A are closed under CL, as in the traditional AGM-approach, this 
formulation reduces to Parikh’s original axiom.
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Note that if Υ and Υ are CL-equivalent belief bases, then they have the 
same finest splitting, whence relevance modulo a revision of Υ by A is 
equivalent to relevance modulo a revision of Υ by A. Hence relevance is 
independent of the way we represent Υ. It is not independent of the way 
we represent A – I return to this point in Section 4.3.

However, Pb does not imply that the revision of distinct, yet equivalent 
belief bases will always bring us into one and the same end state. It poses a 
lower bound on the revised base, but depending on the initial belief base, one 
may prefer specific ways to satisfy this lower bound. In Hansson’s terms, this 
means that the “dynamic difference” between two (classically equivalent) 
belief bases is not contradicted by Pb.

For instance, compare the belief base Υ from Example 4 to Υ = 
{( p ∨ q) ∧ r, ∼r  ∨ s, q  ∨ t}. If we revise Υ by ∼r, then we may have good 
reasons to uphold the belief in r ∨ u (e.g. because we had independent 
reasons for this belief ), and hence we may have u in the revised belief base. 
On the other hand, if we revise Υ by ∼r, then we are in a very different 
situation (even though Υ and Υ are classically equivalent), and we have 
no reasons to put u in the revised belief base.

Another point to note is that Pb is not in general compatible with the 
postulates of Inclusion (I), Success (S) and Consistency (C) for belief base 
revision from Hansson’s [21]. These can be spelled out as follows:

I	 Υ ⊕ A ⊆ Υ ∪ {A}
S	 A ∈ Υ ⊕ A
C	 if A is consistent, then Υ ⊕ A is consistent

For instance, suppose that Υ = { p ∧ q} and A = ∼p. Let ⊕ be a revision 
operation on belief bases that satisfies each of I, S and C. By I and S,  
{∼p} ⊆ Υ ⊕ A ⊆ { p ∧ q, ∼p}. So by C, Υ ⊕ A = {∼p}. But this means 
that ⊕ does not validate Pb, since q is lost, although it is not relevant to  
A modulo Υ.

One way to combine (the spirit of ) the axioms for belief base revision 
and that of Relevance, is by reformulating Inclusion as follows:

I	 CnCL(Υ ⊕ A) ⊆ CnCL(Υ ∪ {A})

With this axiom, we still ensure that the revised belief state can never 
contain more than what is contained in the combination of the old beliefs 
and the new information. It remains an open problem whether this change 
suffices in order to restore compatibility with all of Hansson’s postulates 
for base revision with Pb.

In any case, the incompatibility of Pb with existing postulates for belief 
base revision should not be seen as a sufficient reason to reject the former 
in favour of the latter. Indeed, a relevant revision may require us to analyse 
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and “reformulate” some of our initial beliefs. But this does not imply that 
the central unit of change is really a theory, or that P only makes sense in 
the context of theory revision. Consider the paper you are reading at the 
moment, supposing that it represents my current beliefs. Obviously, it con-
sists of a finite stock of statements and not every logical consequence of it 
is (or can be) made explicit. If I were to revise this paper upon learning new 
information, the result would still be a finite entity. Still, it makes perfect 
sense for me to revise the paper in such a way that I rescue as much of it 
as possible – even if this means that I have to reformulate some of my 
earlier statements, to analyse certain previous claims in order to keep parts 
of them, etc.

This observation opens up the space for a new question: how can we 
revise a given belief base Υ in such a way that (i) we obey Relevance 
(as specified by Pb), and (ii) we perform a minimal analysis on Υ? This 
is a difficult problem, and it seems to lead us far beyond the constructions 
in terms of maximal consistent subsets that are common in the logic 
of belief revision. It seems particularly important for the implementa- 
tion of the Relevance axiom in computationally feasible models of belief 
revision.

4.2.  Beyond Revision

A second generalization concerns the notion of revision itself. In the belief 
revision literature, there are three classical operations of belief change: revi-
sion, contraction and expansion. Roughly speaking, contraction is the 
(mere) removal of beliefs from Υ; expansion is (merely) adding beliefs to Υ. 
Revision is usually reduced to a combination of contraction and expansion – 
see e.g. [21] for the many details.

Obviously, for the case of expansion, the Relevance axiom makes little 
sense, as none of the initial beliefs are in danger of being removed. As for 
contraction, it should be noted that Kourousias and Makinson [25] already 
apply the relevance axiom to this operation, showing that any operation of 
revision that is based on a relevant operation of contraction warrants rele-
vance of the former.

However, apart from the three standard operations, there is a whole range 
of other operations as well [22]: semi-revision (which is itself a generaliza-
tion of screened revision from [26]), impure contraction, (various sorts of ) 
consolidation, abduction, …. In each of these cases, the main idea is still 
that we work on the basis of a set of (propositional) formulas Υ, which we 
have to change in view of a given formula A – the latter may either represent 
new information, a formula which we want to contract, a phenomenon which 
we want to explain, etc. So we may represent belief change operations by 
Υ • A, where the reading of • is disambiguated by the context.
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One may also consider the contraction of or (semi-)revision by sets of 
formulas Ψ instead of just single formulas A. Such operations have been 
called multiple contraction and multiple revision, and were studied in detail 
in [15].

This brings us to the following, general notion of belief change. We have 
a set of initial beliefs Υ ⊆ WCL, and a set of formulas Ψ ⊆ WCL that urge 
us to change Υ. Put differently, one way or another, Ψ constitutes a problem 
for Υ. Finally, the set Υ • Ψ, again a subset of WCL, represents the solution 
of this problem.

Obviously, not all the standard AGM postulates apply to belief change 
in general. One can distinguish between postulates that highlight particular 
features of a certain operation, and postulates which seem to work for any 
type belief change. Examples of the former are the Succes postulate (which 
obviously fails for semi-revision) and the Closure postulate (which makes 
little sense for base revision); examples of the latter are the principle of 
categorical matching mentioned above and certain requirements that con-
cern the non-triviality and consistency of the outcome of a belief change.5

The Relevance axiom is rather of the second type, even though it is a 
very precise requirement. It relies essentially on the notion of language 
splittings in view of Υ – which has nothing to do with the kind of change 
we are dealing with – and the basic principle of minimal mutilation, which 
is itself a universal, yet rather vague principle of belief change.

It should be stressed that this last point only applies to belief change, 
conceived as the change of a belief state, where the subject of the beliefs 
is supposed to remain the same. This is different from belief update, where 
it is assumed that the beliefs concern a changing world – we refer to [23] 
for a discussion of this distinction. As shown in [31], Parikh’s relevance 
axiom is not as easily applicable in the context of belief update.

4.3.  Full Syntax-Independency

In this short section, I introduce a variant of the relevance axiom, which 
has to do with the specific role of E(A) in the definition of relevance, given 
an operation of belief change. Consider the revision of Υ = { p ∧ q} by 
∼q ∧ ( p ∨ ∼p). Note that the new information is CL-equivalent to ∼q, and 
hence one would expect that in this situation, the relevance axiom requires 
that p is upheld. However, since E(∼q ∧ ( p ∨ ∼p)) = { p, q}, both p and q 
are relevant to ∼q ∧ ( p ∨ ∼p) modulo Υ.

5  It is difficult to be more precise here, since the exact formulations diverge again from 
one operation to the other: for revision, consistency is usually required as long as the new 
information is consistent; for contraction, it is required whenever the contraction formula is 
not tautological.
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As this example may seem rather simplistic, recall that we are not only 
considering belief change in view of single formulas, but also in view of 
(possibly complex, infinite) sets of formulas Ψ. One can easily imagine that 
such Ψ contain certain redundant letters, which we want to ignore in our 
concept of relevant belief change.

This problem is solved by making use of the notion of a least letter-set 
representation from [27, 28], which may be conveniently formulated as 
follows:6

Definition 3.  Ψ∗ is a least letter-set representation of Ψ iff (i) Ψ∗ CL Ψ 
and (ii) for every ∆ such that ∆ CL Ψ, E(∆) ⊆ E(Ψ∗). Let E∗(Ψ) = E(Ψ∗), 
where Ψ∗ is an arbitrary least letter-set representation of  Ψ.

We call E∗ (Ψ) the least letter-set of Ψ. As shown in [27], every set of 
formulas Ψ has a least letter-set representation Ψ∗. For instance, in CL, 
a least letter-set representation of Θ = { p, ¬p ∨ q, q ∨ r, s ⊃ t} is Θ = 
{ p, q, s ⊃ t}. The corresponding least letter-set is thus { p, q, s, t}.

If Γ CL ⊥, then Γ has only one least letter-set representation, viz. {⊥}, 
and hence its least letter-set is empty. On the other hand, every contingent 
set of formulas Γ has infinitely many least letter-set representations but only 
one least letter-set. For instance, { p}, { p ∧ p}, { p ∧ p ∧ p}, … are all least 
letter-set representations of {p}.

By adding the idea of a least letter-set representation to our previous 
definition, we make sure that only those letters in Ψ that are non-redundant, 
will be taken into account. This way we obtain the following axiom:

P � Relevance: Where Ψ∗ is an arbitrary least letter-set representation of Ψ: 
if B ∈   CnCL(Υ) is irrelevant to Ψ∗ modulo Υ, then B ∈ CnCL(Υ • Ψ).

5.  Generalization 2: Non-Classical Logics

In this section, I argue for a pluralistic approach towards the underlying 
logic of belief change (Section 5.1). In Section 5.2 it is shown that the clas-
sical Relevance axiom leads to absurdities in the case of inconsistent theo-
ries. I proceed by showing what a relativized axiom of L-Relevance looks 
like, where L is an arbitrary logic (Section 5.3). Finally, I discuss the rela-
tion between language splittings that are defined in terms of different logics 
(Section 5.4).

6  We refer to Section 6.4 for some more details on this definition and the related least 
letter-set theorem.
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5.1.  Theory Dynamics and Pluralism

There are several types of (logical) pluralism in the literature and various 
ways to motivate these – see [10] for a short overview. As this is not the 
main topic of the current paper, I will just state my own position and omit 
many details, referring to the literature for more elaborate discussion.7

In his [10], Cook distinguishes (inter alia) between two kinds of pluralism:

• � dependent logical pluralism – whether or not a logic is suitbale, is 
relative to certain conditions, e.g. the type of reasoning we want to 
explicate, where we draw the boundary between logical and non-logical 
entities in the language, etc.

• � simple logical pluralism – even if we have an exact application in mind, 
and if we have fixed the boundary between logical and non-logical 
language, there may still be different logics that adequately capture our 
notion of logical consequence in this context.

What I am after is merely a dependent pluralism with regards to the under-
lying logic of beliefs. This suffices for present needs, whence I remain 
neutral concerning the second kind of pluralism.

Following [39], logics can be conceived as models that represent certain 
types of reasoning. Under this interpretation, taking L as the underlying 
logic of our beliefs, implies that one assumes L to be representative of the 
way we should interpret these beliefs and reason with them. Note the nor-
mative component – it is not because models represent something, that they 
are confined to merely representing reasoning as a psychological phenom-
enon. However, to serve as an interesting model, L should itself of course 
also somehow relate to “actual reasoning”, or at least to what we consider 
as “good examples” of it.

Given this general aim of logic, there are good reasons to be pluralistic 
concerning what counts as a correct logic. That is, models, and a fortiori 
logics, abstract from and idealize certain aspects of the phenomena which 
they represent. This is what makes logic interesting in the first place. However, 
it is not always clear where to abstract and what to idealize; this usually 
depends on the specific problem at hand, what we want to achieve by our 
formalism. As concerns abstraction, there is e.g. no unique best way to draw 
the boundary between logical and non-logical parts of the language (cf. [44]). 
As for idealization, certain presuppositions may be harmless given a certain 
application, but may significantly distort our picture of other types of rea-
soning. For instance, in one context, one may safely ignore the possibility 
of inconsistent beliefs, whereas in others want may consider this as an 
unjustified idealization.

7 I  am indebted to Neil Coleman for his helpful suggestions concerning this section.
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So in general, what counts as a sufficiently suitable model depends on 
the specific desiderata one has in mind for that model. Consequently, sev-
eral criteria will play a role when we pick a logic: it should be strong and 
rich enough, yet still not trivialize certain types of belief sets; it should have 
certain meta-properties; it should handle certain connectives in a specific 
way; it should be transparent and easy to work with, etc.

In other words, the kind of logical pluralism I have in mind boils down 
to the following claim: there just seems not to be one single logic that 
can do all the jobs we expect from logical models in the context of belief 
revision, in a satisfying and interesting way. If we want to model the way 
humans should reason with theories, with the tools that are currently availa-
ble, then we cannot content ourselves with the study of one single logic such 
as CL.

Note that this pluralism does not say anything about the metaphysical 
question whether there is one “correct” logic of beliefs, or one relation 
we can truly call “logical consequence”. It also does not prohibit that one 
confines oneself to CL for the sake of argument – this is perfectly alright, 
as long as one is aware that this rests on a pragmatic decision of the logician, 
not on some a priori valid principles.

Once we grant that the logic of belief change should be based on the 
underlying logic of our beliefs, then in view of the preceding, we should 
also be pluralistic with regards to the logic of belief change. Indeed, one 
can easily think of richer theories based on a modal logic, theories in which 
probabilities can be expressed, etc. In either case, CL seems just too poor 
to explicate why and how we may change our theories.

In fact, the standard AGM approach already envisions certain non-classical 
theories. In [1], the underlying logic is just assumed to be a compact supra
classical Tarski-logic L which satisfies “introduction of disjunction in the 
premises”.8 So at least in this sense, the idea of logical pluralism was 
embraced from the start.9

But there are also good reasons to consider beliefs whose logic does not 
validate certain classical inferences. As pointed out by several authors, 
inconsistent belief bases are a fact of life – see e.g. [24, 14, 36, 11, 34, 41]. 
Especially when large databases are constructed, it becomes very hard to 
avoid inconsistencies altogether. Likewise, it is commonly acknowledged 
that even our most reliable scientific theories can turn out to be inconsistent. 
As CL trivializes such theories, one has to work with a weaker underlying 
logic to make meaningful use of these theories, at least until one has been 

8  This property reads as follows: if B ∈ CnL(Γ) ∪ {A1}) and B ∈ CnL(Γ ∪ {A2}), then  
B ∈ CnL(Γ ∪ {A1 ∨ A2}).

9  Renata Wasserman makes the same point in [46], which provides a tentative overview 
of non-classical approaches to AGM belief revision.
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able to replace them with new, consistent ones. Consequently, several 
scholars have tried to transfer formal results on belief revision to the para-
consistent setting – see the references at the start of this paragraph.

Some readers may wonder what paraconsistent belief revision would look 
like. That is, if contradictions do not result in triviality, then the difficulty 
of incorporating new, possibly conflicting information seems to disappear. 
I refer to Priest’s [34] for a lengthy discussion of this objection. The bottom 
line of his argument is that, even though adding new, conflicting infor
mation does not lead to triviality in the context of paraconsistent logic, one 
may still have good (epistemological) motivations to avoid making one’s 
theory (more) inconsistent, and hence to withdraw certain beliefs when 
incorporating new ones. In fact, going paraconsistent seems to be the only 
way one can model the fact that sometimes, we remove one contradiction 
from a theory, whereas we leave other contradictions unaltered – I return 
to this point in Section 7.

Let us now return to the axiom of Relevance. As I will show in Section 5.3, 
this axiom can work perfectly well without the presupposition that our 
theories are based on CL. It only depends on the intuition of minimal change 
and the concept of a language splitting. As will become clear, the latter can 
be easily relativized to any underlying logic L.

It should be noted that such a relativization is not just straightforward, but 
also necessary, if we want to apply Parikh’s concept of relevance to non-
classical theories. For theories based on a paraconsistent logic, classical rel-
evance is too strong – this will be explained in detail below. For theories based 
on extensions of CL, the classical relevance axiom is too weak, since CL is 
not able to analyze formulas whose outermost connective is non-classical.

5.2.  Relevance and Inconsistency

In this section I briefly explain why the classical relevance axiom P leads 
to absurdities, when applied to inconsistent theories or belief bases. This 
fact motivates the search for variations on P, in terms of a different (para-
consistent) underlying logic L.

I start with theories. Let W  l denote the set of literals, i.e. propositional 
letters and their negation. Suppose now that Υ = CnCL(Υ) and Υ CL ⊥. 
Note that A ∈  Υ for every A ∈ W  l, whence W  l CL Υ. It follows that 
the finest splitting of Υ is E = {{A} | A ∈ E}. This means that relevance 
modulo Υ reduces to mere letter-sharing: B ∈  Υ is relevant to A modulo Υ 
iff E(B) ∩ E(A) !   ∅. As a result, a revision operation Υ ⊕ A that obeys P 
would result in (a superset of) the set {B ∈  W⊥ | E(B) ∩ E∗(A) = ∅}. Hence, 
such a revision operation would result in something close to plain triviality.

So how about belief bases? Suppose again that Υ CL ⊥. By the same 
reasoning as in the previous paragraph, W  l CL Υ and the finest splitting 
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of Υ is E = {{A} | A ∈ E}. If P is obeyed, this means that for every B ∈ W l, 
B has to be in the CL-consequence set of Υ  ⊕  A whenever E(B)  ∩ 
E∗(A) !   ∅. Hence it is required that Υ ⊕ A is inconsistent; but more impor-
tantly, it suffices to take any inconsistent set Υ, in order to obey the axiom P. 
Arguably, this requirement is far too liberal to receive the status of a ration-
ality postulate.

This does not mean that the intuition behind Parikh’s relevance axiom is 
not applicable to inconsistent sets of beliefs. Consider the belief base Υ = 
{ p ∧ q, r, ∼r}, and suppose we have to contract it by q ∨ r. Even though 
one has to remove both q and r, one can readily argue that p is not relevant 
to this particular contraction. This has little to do with the fact that Υ is 
inconsistent. 

Note that even a very weak paraconsistent logic will usually validate 
Simplification (from A ∧ B, infer A and B).10 Hence in the above example, 
every such logic will allow us to derive p from p ∧ q, and hence consider 
p as separable from q in Υ. More generally, a logic can be (fully) paracon-
sistent, yet still allow us to analyse our set of initial beliefs to some extent, 
and hence obey a certain degree of relevance. So we can obtain a strong, but 
also non-trivializing relevance axiom, if we weaken our standard of deduc-
tion in such a way that inconsistencies do not cause us to believe anything. 
This will be illustrated in Section 7 by means of the strong paraconsistent 
logic CLuNs.

5.3.  Generalizing the Definitions

To obtain a non-classical concept of relevance, we first need to relativize 
the definition of a splitting and the least letter-set set, as follows:

Definition 4  (L-splitting).  Let E = {Λi}i∈I be a partition of E. We say that 
E is a L-splitting of  Γ iff there is a ∆ = 


i∈I ∆i such that each E(∆i) ⊆ Λ i 

and ∆ L Γ.

Definition 5.  Ψ∗ is a least letter-set representation of  Ψ in L iff (i) Ψ∗ L Ψ 
and (ii) for every ∆ such that ∆ L Ψ, E(Ψ∗) ⊆ E(∆). Let E∗

L (Ψ) =df E(Ψ∗), 
where Ψ∗ is an arbitrary least letter-set representation of Ψ in L.

Note that these definitions are identical to Definitions 1 and 3 respectively, 
in case L = CL.

Suppose now that every Γ ⊆ WL has a finest L-splitting. We may then 
define L-relevance simply by replacing CL with L in Definition 2:

10 F or some examples of logics that do not validate Simplification, see [3] – this paper 
contains an interesting classification of logics in which some connectives other than ∼ 
behave non-classically in various ways.
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Definition 6  (L-relevance).  Let E be the finest L-splitting of Υ. We say 
that a formula B is L-irrelevant to Ψ modulo Υ iff for every cell Λi ∈ E: 
Λi ∩ E(Ψ) = ∅ or Λi ∩ E(B) = ∅.

The above ingredients finally allow us to define an axiom of L-relevance:

PL � Where Ψ∗ is a least letter-set representation of Ψ in L: If B ∈ CnL(Υ) 
is not L-relevant to Ψ modulo Υ, then B ∈ CnL(Υ • Ψ).

The crucial properties we need for these definitions to be consistent, is that 
every Υ ⊆ WL has a finest L-splitting, and that each Ψ ⊆ WL has a least 
letterset representation. In Section 6, I establish and discuss sufficient con-
ditions for both these properties.

5.4.  Sufficient Criteria for (Ir)relevance

Once the notion of a splitting is generalized to a class of logics L, a ques-
tion that immediately comes to mind is when and how L-splittings relate 
to L-splittings, for two logics L and L. As may be expected, the stronger 
the underlying logic, the finer it allows us to split E in view of Γ:11

Theorem 2.  If L is at least as strong as L, then any L-splitting of Γ is a  
L-splitting of  Γ.

Proof.  Suppose the antecedent holds and E = {Ei}i∈I is an L-splitting of Γ. 
Hence there is a ∆ = 


i∈I ∆i such that ∆ L Γ and each E(∆i) ⊆ Ei. 

It follows from the supposition that ∆ L Γ. But then E is a L-splitting 
of Γ.� 

Example 5.  Let Υ = {( p ∨ q) ∧ ∼s, (¬q ∧ r), (s ∨ t), (s ⊃ t)}. We 
consider splittings of Υ modulo four logics: CL, the minimal modal logic K 
(obtained by adding the necessitation rule and the distribution axiom to CL), 
Feys’ logic T (obtained by adding the truth axiom to K), and S4 (obtained 
by adding A ⊃ A to T). I refer to [17] for the full axiomatic charac-
terizations and semantics of each of these systems.

Note that each of the following holds:12

  (i)  Υ CL { p ∨ q, (¬q ∧ r), ∼s, (s ∨ t), (s ⊃ t)} (by Simplification)
(ii) � Υ K { p ∨ q, ¬q, r, ∼s, (s ∨ t),   (s ⊃ t)} (by (i) and since 

(A ∧  B) K {A, B})

11 As usual, we say that a logic L is at least as strong as a logic L iff for all Γ ⊆ WL, 
CnL (Γ) ⊆ CnL(Γ).

12 A s explained in Section 2, we use CL in a more general sense here, so that it can also 
range over richer languages.
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(iii) � Υ T { p, ¬q, r, ∼s, (s ∨ t),   (s ⊃ t)} (by (ii) and since 
{A ∨  B, ¬B} T {A, ¬B})

 (iv) � Υ S4 { p, ¬q, r, ∼s, t} (by (iii), since S4 A ≡   A, and by 
modal inheritance)

In view of these facts, we can verify that each of the following holds:13

{{p, q, r}, {s, t}} is a CL-splitting of Υ
{{p, q}, {r}, {s, t}} is a K-splitting of Υ
{{p}, {q}, {r}, {s, t}} is a T-splitting of Υ
{{p}, {q}, {r}, {s}, {t}} is a S4-splitting of Υ

Although the proof for Theorem 2 is very short, this is a noteworthy result. 
Recall that in order to avoid that relevance results in triviality for inconsist-
ent Υ, it was necessary to use subclassical splittings. Theorem 2 indicates 
that the stronger the paraconsistent logic of our choice, the better we may 
approximate the finest CL-splitting without ending up with triviality in the 
case of an inconsistency.

Another important consequence of Theorem 2 is the following:

Corollary 1.  Suppose that there is a finest L-splitting and a finest L-splitting 
of Υ. If L is at least as strong as L and B is L-relevant to Ψ modulo Υ, 
then B is L-relevant to Ψ modulo Υ.

Conversely, if L is at least as strong as L and B is not L-relevant to to 
Ψ modulo Υ, then B is also not L-relevant to to Ψ modulo Υ. So we obtain 
sufficient criteria to determine whether a certain belief is (ir)relevant to the 
current operation of belief change. This is particularly important since, 
as argued e.g. in [42], to compute the finest splitting of a certain theory 
(modulo CL) is a very arduous task; however, it may often suffice to show 
irrelevance at a lower level already, which may be significantly easier.

6.  Some Technical Results

In this section, the finest splitting theorem from [25] and the least letter-set 
theorem from [27, 28] are generalized to a broad range of non-classical 
logics. Before doing so, I discuss some basic properties that are needed to 
get the generalization going, mentioning some examples of well-known 
logics that satisfy each of those properties. Eventually, this yields a partial 
answer to the question posed in the concluding section of [25]:

[…] how far can the results [of our paper] be established for sub-classical, 
(e.g. intuitionistic) consequence relations or supraclassical ones (e.g., 

13 T o avoid clutter, I will henceforth only mention the letters that are explicit in Υ.
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preferential consequence relations or the relation of logical friendliness of 
Makinson [8])?

The proof of the existence of the finest L-splitting makes essential use of 
two ingredients: (i) the parallel interpolation theorem (see Section 6.5), 
which generalizes standard (Craig) interpolation and was shown for L = CL 
in [25]; and (ii) the definition of a specific set MinL(Γ), which has a number 
of interesting properties (see Section 6.2). Using (ii), we can also obtain a 
generalization and very elegant proof of the least letter-set theorem from 
[27], which is spelled out and discussed in Section 6.4.

6.1.  Some Basic Properties

The following properties are very well-known, and require little explanation:

Reflexivity:	 Γ ⊆ CnL(Γ)
Transitivity:	 if Γ ⊆ CnL(Γ), then CnL(Γ) ⊆ CnL(Γ)
Monotonicity:	 CnL(Γ) ⊆ CnL(Γ ∪ Γ)
Compactness:	� Γ L A iff there are B1, …, Bn ∈ Γ such that {B1,…, 

Bn} L A.
Standard Interpolation:	� If Γ L A, then there is a B s.t. Γ L B, B L A, 

and E(B) ⊆ E(Γ) ∩ E(A).

If a logic has the first three properties, we say that it is a Tarski-logic.
For the proof of the parallel interpolation property (cf. supra, ingredient (i)) 

I will also need to rely on the assumption that the language of L contains 
an implication ⊃ which satisfies two well-known requirements.14

Deduction Theorem:	 If Γ ∪ {A} L B, then Γ L A ⊃ B 

Modus Ponens:	 {A, A ⊃ B} L B

Let us briefly look at some well-known logics, to see whether these do or 
do not satisfy each of the above properties.

First of all, numerous normal modal logics satisfy them. Each of these 
have a classical implication, for which Modus Ponens is obviously valid. 
To obtain the Deduction Theorem for modal logics, we need to define the 
derivability relation L in such a way that the necessity rule (where A is a 
theorem, to infer A) can only be applied to formulas that have no premises 
in their path. This way of defining a “local” consequence relation for modal 

14 O f course, nothing excludes the existence of other implications besides ⊃ – one may 
for instance have an additional relevant implication →, like in the supraclassical relevant 
logics discussed in [29].
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logics is fairly standard – see [19] for a lengthy discussion.15 Finally, for 
the Interpolation property, we refer to [30] for an overview of some results 
in this area.

Let us now turn to sub-classical (compact) Tarski-logics. It is well-known 
that the above properties hold for intuitionistic logic I.16 It was shown 
by Maksimova that only eight of the infinitely many intermediary logics  
(logics “between” I and CL) have the Interpolation property – see again [30] 
for a discussion of these results.

In [5], one may find the definition of nine compact Tarski-logics that are 
paraconsistent, paracomplete, or both.17 As shown there, each of these logics 
satisfy Standard Interpolation. Moreover, each of them uses a classical impli-
cation, whence they have each of the above seven properties. One of these 
logics, viz. Schütte’s system CLuNs, will be discussed in Section 7 below.

Some well-known subclassical systems fail to have some of the proper-
ties mentioned above. As already pointed out, only finitely many intermedi-
ary logics satisfy Standard Interpolation, which seems almost indispensable 
for the proof of the finest splitting theorem. Also, since in Priest’s logic LP 
[35], A ⊃ B =def ∼A  ∨ B, and since ∼ behaves paraconsistently, this logic 
does not satisfy Modus Ponens. I will mention some other examples in  
the concluding section. It seems plausible that the current results can be 
generalized to some of these, but the proofs may rely on more case-specific 
properties.

6.2.  The Set of L-minimal Formulas

As noted, a crucial element in my proof of the finest splitting theorem is 
the definition of a unique set MinL(Γ) for every Γ.18 More precisely, I will 
use MinL(Γ) in order to obtain an L-splitting of Γ, after which I show that 
this splitting is in fact the finest L-splitting of Γ.

Definition 7.  A is a minimal L-consequence of Γ, A ∈ MinL(Γ) iff A ∈ CnL(Γ) 
and there is no Γ ⊆ CnL(Γ) such that (i) Γ L A and for every B ∈ Γ, 
E(B) ⊂ E(A).

15 T he bottom line is that from an arbitrary premise A, we should of course not be able 
to derive A in a normal modal logic – otherwise  becomes a meaningless operator. So 
one needs to distinguish between derivability of a formula from a given set of (contingent) 
premises (local derivability) and derivability of a theorem from the axioms of a modal logic 
(global derivability).

16  See e.g. [12, Chapter 4] where this is shown for I.
17 A  logic L is paracomplete if A ∨ ∼A is not an L-theorem.
18  The precise formulation in the definition of MinL(Γ) benefited from a suggestion made 

by David Makinson (personal correspondence).
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For instance, where Γ = { p ∧ r, ∼p ∨ q, s ⊃ q, r ∨ s}, we have that 
p, r, q ∈    MinCL(Γ), but p ∧ r, p  ⊃  q, r   ∨  s  MinCL(Γ). More generally, the 
set MinL(Γ) corresponds to the maximal level of analysis (in terms of  
the seperation of letters) the logic L allows us to perform. Note that this 
does not imply that each A ∈    MinL(Γ) is also minimal in terms of logical 
symbols: e.g. if p ∈    MinL(Γ) and the conjunction ∧ behaves classicaly in L, 
then also p ∧ p, p ∧ ( p ∧ p),  …  ∈    MinL(Γ).  

MinL(Γ) can be thought of as a generalization of the notion of prime 
implicates from the context of classical logic.19 However, in view of the 
preceding paragraph, MinL(Γ) is much larger than the set of prime implicates 
of Γ. Also, in the context of modal logics, the concept of prime implicates 
becomes problematic, as shown at length in [7]. In contrast, MinL(Γ) is well-
defined for arbitrary logics L.  

Lemma 1.  MinL(Γ)  L Γ

Proof.  In view of Definition 7, it suffices to prove the left-right direction. 
Suppose A ∈    Γ, whence by the reflexivity of L, A ∈    CnL(Γ). I prove by an 
induction that A ∈    CnL(MinL(Γ)). If A ∈    MinL(Γ), then by the reflexivity 
of L, A  ∈   CnL(MinL(Γ)). If  A   MinL(Γ), then since A ∈  CnL(Γ) and by 
Definition 7, there is a Γ ⊆  CnL(Γ), such that (i) Γ L A and (ii) for every 
B ∈ Γ, E(B) ⊂ E(A). For every B ∈    Γ such that B  MinL(Γ), we repeat 
the same reasoning: since B ∈  CnL(Γ), there is a Γ ⊆ CnL(Γ) such that 
(i) for every C ∈    Γ, E(C) ⊂ E(B) ⊂ E(A) and (ii) Γ L B, whence by the 
transitivity and monotonicity of L, (Γ − {B}) ∪ Γ L A. Since A contains 
finitely many letters, we will at a finite point arrive at a set ∆ ⊆ MinL(Γ) 
such that ∆ L A. By the monotonicity of L, MinL(Γ) L A.� 

Note that I only used the three Tarski-properties in the above proof; 
compactness and interpolation are not required.

6.3.  The Finest L-splitting

In Section 6.5, I will generalize the parallel interpolation theorem from [25] 
to all logics L that satisfy each of the seven properties mentioned at the start 
of this section. However, to obtain the finest splitting theorem, it turns out 
that a slightly weaker property suffices, viz.

Non-compact Parallel Interpolation:  Let ∆ = 


i∈I {∆i} where the letter 
sets E(∆i) are pairwise disjoint, and suppose ∆ L A. Then there are sets 

19 A  prime implicate of Γ ⊆ WCL is a minimal disjunction of literals that follows clas-
sically from Γ. See [42] and [8] where the notion of prime implicates is related to Parikh’s 
axiom of relevance.
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Θi such that (1) each E(Θi) ⊆ E(∆i) ∩ E(A), (2) each ∆i L Θi, and  
(3) 


i∈I Θi L A.

In this section, I presuppose that L is a Tarski-logic that has the Non-com-
pact Parallel Interpolation property. Thus compactness need not be pre-sup-
posed, and we need not make any assumptions about the connectives of L.

To obtain an L-splitting of Γ from the set MinL(Γ), I first define a rela-
tion ∼∆ over the members of ∆, for every ∆ ⊆ WL:

Definition 8.  A is path-relevant to B modulo ∆ (A ∼∆ B) iff there are C1,…, 
Cn ∈ ∆ such that E(A) ∩ E(C1) !   ∅, E(C1) ∩ E(C2) !   ∅, …, and E(Cn) ∩ 
E(B) !   ∅.

For instance, where ∆ = { p ∨ q, r ∨ q, r ∨ s, t}, we can say that p ∼∆ s 
and p ∧ t ∼∆ s, but p  /∼∆ t. Note that in general, ∼∆ can also hold between 
formulas that are not members of ∆.

On a historical side-note, ∼∆ coincides with what Makinson calls path-
relevance (modulo a set of formulas ∆) [28]. It was introduced by Rodrigues 
in his thesis [37] and also apppears the work of Wassermann, see e.g. [47].

It will be convenient to rely on the following property specific to ∼∆ 
defined only over the members of ∆:

Fact 1.  ∼∆ is transitive, reflexive and symmetric with respect to all A, B, 
C ∈ ∆, whence ∼∆ is an equivalence relation on the members of ∆.

Definition 9. ML(Γ) is the quotient set of MinL(Γ) by ∼MinL(Γ).20 Where ML(Γ) = 
{∆i}i∈I , EL(Γ) = {E(∆i)}i∈I ∪  {{A} |  A ∈   E − E(MinL(Γ))}.

Note that for no ∆ ∈  ML(Γ): ∆ = ∅, whence for no E ∈  EL(Γ): E = ∅. Also, 
in view of Definition 9, 

 
EL(Γ) = E. To prove that EL(Γ) is a partition of E, 

it thus suffices to show the following:

Lemma 2.  For every E, E ∈    EL(Γ): E !   E iff E ∩ E = ∅.

Proof.  Let E, E ∈    EL(Γ). The right-left direction is obvious since no E ∈  
EL(Γ) is empty. For the left-right direction, suppose that for E, E ∈    EL(Γ), 
E ∩ E !   ∅. I only consider the case where E = E(∆) and E = E(∆) for ∆, 
∆ ∈   ML(Γ) – in the other case, it follows immediately that E = E = E ∩ 
E = ∅. Suppose that E(∆) ∩ E(∆) !   ∅. This implies that there are A  ∈  ∆, 
B ∈  ∆: E(A) ∩ E(B) !   ∅, whence A ∼MinL(Γ) B, hence A and B are in the 
same equivalence class. As a result, ∆ = ∆, whence E = E.� 

20 T his is the set of all equivalence sets of MinL(Γ), given the equivalence relation 
∼MinL(Γ) on MinL(Γ).
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Since ∼MinL(Γ) is an equivalence relation on MinL(Γ), ML(Γ) is a partition 
of MinL(Γ). Hence, from Lemma 1 and the fact that EL(Γ) is a partition 
of E, we can infer that EL(Γ) is an L-splitting of Γ. It remains to show that 
EL(Γ) is the finest L-splitting of Γ:

Theorem 3.  EL(Γ) is the finest L-splitting of Γ.

Proof.  Assume that there is a splitting E of Γ, such that E is finer than 
EL(Γ). Hence for some E  ∈  EL(Γ), there is an E ∈ E: ∅ ⊂  E ⊂  E. This 
means that E !   ∅, and hence E = E(∆) for some ∆ ∈  ML(Γ). So we have:

(†)  For a ∆ ∈  ML(Γ), there is an E ∈    E: ∅ ⊂ E ⊂ E(∆)

Let A ∈ ∆ be such that E(A) M E and let B ∈ ∆ be such that E(B) ∩ E = ∅. 
To see why A exists, assume that for every A ∈    ∆, E(A  ) ⊆ E. In that case, 
E(∆) ⊆ E, which contradicts (†). To see why B exists, assume that for 
every B ∈    ∆, E(B) ∩ E  = ∅. In that case, E(∆) ∩ E = ∅, which again 
contradicts (†).

Since A, B ∈    ∆, A ∼MinL(Γ) B. Hence there are C1, …, Cn ∈   MinL(Γ) such 
that E(A) ∩ E(C1) !   ∅, E(C1) ∩ E(C2) !   ∅, E(C2) ∩ E(C3) !   ∅, …, and 
E(Cn) ∩ E(B) !   ∅. Let A = C0 and B = Cn+1.

Assume now that (‡) for every k with 0 ≤ k ≤ n + 1, either E(Ck) ∩ E = ∅ 
or E(Ck) ⊆ E. Then it can be shown by mathematical induction that

(*)  for every k with 0 ≤ k ≤ n + 1, E(Ck) ∩ E = ∅.

The base case (k = 0) is immediate, in view of (‡) and the fact that 
E(A) M E. For the induction step, suppose that E(Ck) ∩  E = ∅. Since 
E(Ck) ∩  E(Ck+1) !   ∅, it follows that E(Ck+1) M E. But then, in view of (‡), 
E(Ck+1) ∩ E = ∅.

From (*) and the fact that B = Cn+1, we can derive that E(B) ∩  E = ∅ –  
a contradiction. So assumption (‡) must be false: there is a k with 0 ≤ k ≤ 
n + 1, such that E(Ck) ∩ E !   ∅ and E(Ck) M E. Let l be such that E(Cl) ∩ 
E = ∅ and E(Cl) M E, and let D = Cl.

Since E is a splitting of Γ, {


 E − E, E} is also a splitting of Γ. Hence 
there are Θ, Θ such that Θ ∪ Θ L Γ, E(Θ) ⊆ 


 E − E and E(Θ) ⊆ E. 

It follows that (♣) E(Θ) ∩ E(Θ) = ∅. Moreover, since Γ L D, also Θ ∪ 
Θ L D, whence by (Non-Compact) Parallel Interpolation, there are two 
sets Λ and Λ such that (1) E(Λ) ⊆ E(Θ) ∩ E(D), (2) E(Λ) ⊆ E(Θ) ∩ E(D) 
and (3) Λ ∪ Λ L D.

Since Θ ∪ Θ L Γ, also Γ L Λ and Γ L Λ. By (♣), (1) and (2), 
E(Λ) ⊂ E(D) and E(Λ) ⊂ E(D). So for every F ∈ Λ ∪ Λ, E(F) ⊂ E(D). 
Hence by (3), D  MinL(Γ) — a contradiction.� 
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6.4.  The Least Letter-set Theorem

In this section, I generalize the least letter-set theorem to any Tarski-logic 
that satisfies the following variant of interpolation:21

Non-compact Standard Interpolation:  If Γ L A, then there is a Γ such 
that (i)  Γ L Γ, (ii) Γ L A and (iii) E(Γ) ⊆ E(Γ) ∩ E(A)

I refer to [28] for some more background on this theorem, and to [27, 
Appendix] for Makinson’s (semantic) proof. Both papers are restricted to 
the case where L = CL.

However, we must be careful: the exact formulation of the theorem in 
[27] is slightly different from the one in [28], because it is applied in a dif-
ferent context.22 My formulation is a variation on the one in [28]. The proof 
I will present is very short, thanks to the introduction of the concept of 
L-minimality in the preceding section.

Theorem 4.  For every Γ ⊆ WL , there is a unique ∆ ⊆ E such that (a) for every 
Γ that is L-equivalent to Γ: ∆ ⊆ E(Γ) and (b) for a Γ that is L-equivalent 
to Γ, ∆ = E(Γ). (Least Letter-set Theorem)

Proof.  Let ∆ = E(MinL(Γ)). (b) follows immediately by the construction 
and Lemma 1; hence it suffices to prove (a). Suppose (1) Γ L Γ, but 
∆ M E(Γ). Hence there is an A ∈    MinL(Γ): E(A) M E(Γ), whence also 
(2) E(A)  ∩  E(Γ)  ⊂  E(A). By (1) and Definition 7, Γ L A. By (non- 
compact) interpolation, there is a Θ such that (3) Γ L Θ, (4) Θ L A and 
(5) E(Θ)  ⊆  E(Γ)  ∩  E(A). By (1) and (3), it follows that Θ  ⊆  CnL(Γ), 
and by (2) and (5), it follows that E(B) ⊂ E(A) for all B ∈    Θ. But then by 
(3) and in view of Definition 7, A  MinL(Γ) — a contradiction.� 

6.5.  Parallel Interpolation for L

In this section, I presuppose that L satisfies all seven properties mentioned 
in the preceding section. The proof for Theorem 5 is obtained through a 
variation on the proof for Theorem 1.1 in [25]. One crucial difference is 
that, where Kourousias and Makinson also rely on certain properties of the 
classical conjunction ∧, I only use the aforementioned properties of ⊃ to 
run the central argument of the proof.

21  David Makinson pointed out to me that this weaker kind of interpolation suffices to 
run the proof.

22  In [27], a specific set Γ∗ is defined for every Γ, and it is shown that this set is a least 
letter-set representation of Γ. Γ∗ is defined in semantic terms, and the proof proceeds 
likewise. On the other hand, the formulation of the least letter-set theorem in [28] is a 
“bare statement of existence” (Makinson, personal correspondence), without reference to 
any specific least letter-set representation.
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Theorem 5.  Let ∆ = 


i∈I{∆i} where the letter sets E(∆i) are pairwise 
disjoint, and suppose ∆ L A. Then there are formulas Bi such that (1) each 
E(Bi) ⊆ E(∆i) ∩ E(A), (2) each ∆i L Bi, and (3) 


i∈I{Bi} L A. (Parallel 

Interpolation)

Proof.  Suppose the antecedent holds. By the compactness of L, there is a 
finite subfamily of finite subsets of the ∆i whose union implies A. Let these 
subsets be Θ1, …, Θn, and let for each k ≤ n, Θk = {Bk

1, …, Bk
mk}.

So we have:
{B1

1, …, B1
m1

}    ∪   …    ∪   {Bn
1,   …,   Bn

mn
} L A

By finitely many applications of the Deduction Theorem,

{B1
1, …, B1

m1
} L B2

1 ⊃ (B2
2 ⊃ (… ⊃ (Bn

mn  
⊃ A) …))

By Standard Interpolation, there is a formula C1 such that

(1.1)	 {B1
1,  …, B1

m1
} L C1,

(1.2)	 C1 L B2
1 ⊃ (B2

2 ⊃ (… ⊃ (Bn
mn

 ⊃ A) …), and
(2)	 E(C1) ⊆ E({B1

1,   …, B1
m1

}) ∩ E(B2
1 ⊃ (B2

2 ⊃ (…  ⊃ (Bn
mn

  ⊃ A) …)))

However, note that the sets E(Θi) are pairwise disjoint. From this together  
with (2), we can infer:

E(C1) ⊆ E({B1
1,   …, B1

m1
}) ∩ E(A)

and hence,
E(C1) ⊆ E(Θ1) ∩ E(A)

By (1.2), modus ponens and the monotonicity of L, we can derive:

{C1} ∪ {B2
1,…, B2

m2
} ∪   …    ∪ {Bn

1,…, Bn
mn

} L A

We may now repeat the same procedure, pushing all formulas C1, B3
1, …, Bn

mn
 

to the right side of the turnstile by means of the Deduction Theorem. From 
this, we obtain an interpolant C2 such that E(C2) ⊆ E(Θ2) ∩ E(A) and {C1, 
C2} L B3

1 ⊃ (B3
2 ⊃ (… ⊃ (Bn

mn
 ⊃ A) …)). After n iterations of this reason-

ing, we have obtained  C1,…, Cn, where each E(Cj ) ⊆ E(Θj ) ∩ E(A), and 
{C1, …, Cn} L A. The rest is immediate in view of the construction.� 

6.6.  Summary of the Results

The following three corollaries summarize the main results of the current 
section:

Corollary 2.  If L is a Tarski-logic that satisfies (Non-compact) Parallel 
Interpolation, then every Γ ⊆ WL has a finest L-splitting.
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Corollary 3.  If L is a Tarski-logic that satisfies (Non-compact) Standard  
Interpolation, then every Γ ⊆ WL has a least letter-set representation in L.
Corollary 4.  If  L is a compact Tarski-logic that satisfies Standard Inter-
polation, and if one can define an implication ⊃ in L that satisfies Modus 
Ponens and the Deduction Theorem, then L satisfies Parallel Interpolation.

7.  Example: CLuNs-relevance

7.1.  The Paraconsistent Logic CLuNs

To explain the idea behind a non-classical relevance axiom, I will use the 
paraconsistent logic CLuNs, as axiomatized in [5]. The choice for this 
system is motivated by two properties of the logic:

  (i)	 CLuNs is maximally paraconsistent, i.e. if we add an axiom to CLuNs 
that is not derivable in the logic, then we obtain full CL. As a result, 
the analytic power of CLuNs is very close to that of CL.

(ii)	 Nevertheless, CLuNs is also fully paraconsistent, i.e. there are no Γ such 
that CnCLuNs(Γ) = WCLuNs. Hence CLuNs-relevance will not trivialize 
any belief set.

Each of these advantages will be illustrated below. However, as explained 
in Section 5, the choice for a specific logic L as the underlying logic of a 
relevance axiom will depend on the specific application – this is not the 
place to argue for one logic in favor of others.

The propositional fragment of CLuNs is one of the three systems devised 
by Schütte in [38]. All three of these systems are particularly strong in that 
they allow us to drive the paraconsistent negation inwards; e.g. it is possible 
to derive ∼A, ∼B from ∼(A ∨ B), and similarly to derive A ∧ ∼B from 
∼(A ⊃ B). A distinctive feature of CLuNs is that it is paraconsistent but not 
paracomplete (unlike the other Schütte systems): it can model cases where 
both A and ∼A are true, but it cannot model cases in which both are false.

The logic CLuNs is based on the language of CL. It is axiomatized by 
the rule MP (from A, A ⊃ B to infer B), the axioms of full positive CL:

A ⊃ 1	 A ⊃ (B ⊃ A)
A ⊃2	 ((A ⊃ B) ⊃ A) ⊃ A)
A ⊃ 3 	 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
A ⊥	 ⊥ ⊃ A
A ∧ 1	 (A ∧ B) ⊃ A
A ∧ 2	 (A ∧ B) ⊃ B
A ∧ 3	 A ⊃ (B ⊃ (A ∧ B))
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A ∨ 1	 A ⊃ (A ∨ B)
A ∨ 2	 B ⊃ (A ∨ B)
A ∨ 3	 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))
A ≡ 1	 (A ≡ B) ⊃ (A ⊃ B)
A ≡ 2	 (A ≡ B) ⊃ (B ⊃ A)
A ≡ 3	 (A ⊃ B) ⊃ ((B ⊃ A) ⊃ (A ≡ B)) 

the rule of excluded middle:

EM	 A ∨ ∼A

and the following axioms that drive negation inwards:
A ∼ ∼	 ∼∼ A ≡ A
A ∼ ⊃	 ∼ (A ⊃ B) ≡ (A ∧ ∼ B)
A ∼ ∧	 ∼ (A ∧ B) ≡ (∼ A ∨ ∼ B)
A ∼ ∨	 ∼ (A ∨ B) ≡ (∼ A ∧ ∼ B)
A ∼ ≡	 ∼ (A ≡ B) ≡ ∼ (A ⊃ B) ∨ ∼ (B ⊃ A))

Let Γ CLuNs A iff there are B1, …,  Bn  ∈  Γ such that CLuNs (B1 ∧  …  ∧  
Bn) ⊃ A.23

For reasons of space, I will not discuss the various semantic charac-
terizations of CLuNs – see e.g. [5, 4, 45]. Note that since ⊃ and ⊥ behave 
classically in CLuNs, it is possible to define a classical negation ¬ in this 
system by ¬A = def (A ⊃ ⊥).

CLuNs is an extension of Priest’s logic LP [35] with the classical 
implication ⊃ (note that ⊃ can not be defined from ∼ and ∨ in CLuNs, 
since ⊃ satisfies detachment and since ∼ is paraconsistent in this logic). 
Alternatively, LP reduces to the ∼-∨- ∧-fragment of CLuNs.

To see how CLuNs behaves, consider Υ = {∼( p ⊃ (q ∨ r)), (∼s ∨ (t ∧ 
∼∼u)) ∧ p, ∼(∼q ∧ p), v, ∼v ∧ ∼q}. Each of the following holds:

(1)	 Υ  CLuNs p ∧ ∼(q ∨ r) (by A  ∼⊃)
(2)	 Υ  CLuNs p, ∼q, ∼r (by (1) and A   ∧  1, A  ∧  2)
(3)	 Υ  CLuNs ∼s ∨ (t ∧ u) (by A   ∧  1 and A  ∼∼)
(4)	 Υ  CLuNs ∼s ∨ t, ∼s ∨ u (by (3) and A  ∧  1, A  ∧  2)
(5)	 Υ  CLuNs ∼∼q ∨ ∼p (by A∼∧)
(6)	 Υ  CLuNs q ∨ ∼p (by (5) and A∼∼)
(7)	 Υ  CLuNs ( p ∧ ∼p) ∨ (q ∧ ∼q) (by (2), (6))

23  It is also possible to define a natural deduction system for CLuNs, but this would 
merely distract us from the main purpose of the current paper.
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Υ is clearly classically inconsistent. Since CLuNs invalidates disjunctive 
syllogisme, it is not possible to CLuNs-derive e.g. ∼p from ∼q and q ∨ ∼p. 
Hence Υ ECLuNs ∼p.

7.2.  CLuNs-relevance

I will now illustrate the idea of non-classical relevance by means of CLuNs. 
Consider Υ = {p, ∼q, ∼r, ∼s ∨ t, ∼s ∨ u, ∼p ∨ q, v, ∼v}. In view of  
(1)-(7), it follows immediately that Υ CLuNs Υ. I leave it as an exercise 
to the reader to prove that also Υ CLuNs Υ.

Note that Υ can be partitioned into three subsets: ∆1 = {p, ∼q, ∼p ∨ q}, 
∆2 = {∼r}, ∆3 = {∼s ∨ t, ∼s ∨ u} and ∆4 = {v, ∼v}. Note also that the 
sets E(∆i) (i ∈ {1, 2, 3, 4}) are pairwise disjoint. Hence E(Υ) = {{ p, q}, {r}, 
{s, t, u}, {v}} is a CLuNs-splitting of Υ.

Suppose that we contract Υ by p ∨ ∼s. Note that { p, q} and {s, t, u} are 
the only sets Λ in E(Υ) for which Λ  ∩  E( p  ∨  ∼s) !  ∅. The axiom of 
CLuNs-relevance tells us the following: a formula A ∈  CnCLuNs(Υ) is rel-
evant to the p ∨ ∼s modulo Υ iff E(A)  ∩  {p, q} = ∅ or E(A)  ∩  {s, t, u} = ∅. 
Hence the following CLuNs-consequences of Υ are not relevant to p ∨ ∼s 
modulo Υ: ∼r, v, ∼v.

This immediately brings us to the axiom of relevance. In the current case, 
this axiom stipulates that the beliefs ∼r, v, ∼v should be upheld. Note that 
this means that a contradiction has to be upheld, in order to obey PCLuNs. 
However, the axiom does not require us to believe just anything: e.g. if we 
remove p from Υ, we obtain a non-trivial yet fairly rich belief set that does 
not CLuNs-entail p ∨ r.

So, on the one hand, we are able to separate ∼r from p, notwithstanding 
the fact that in the initial formulation of Υ, these formulas are tied to 
each other. On the other hand, some beliefs are still considered relevant to 
the new information, and removing some of these results in a reasonable 
contraction set. In short, we obtain a non-trivial, yet also non-trivializing 
relevance axiom for inconsistent belief sets.

One could ask oneself: should the beliefs v and ∼v be upheld? If so, the 
resulting contraction set will remain inconsistent. But is this a sufficient 
reason to remove (either of) these beliefs from Υ? Clearly, they have little 
to do with the formula by which we are contracting, no matter whether we 
consider Υ in its initial formulation, or a more analysed version of it, such 
as Υ.

According to the standard AGM approach, inconsistencies cannot occur 
in any contraction set. This also applies to the more recent approaches in 
terms of belief bases: in both cases, it is required that Υ Ө A ECL A. Hence 
any contradiction is removed from Υ whenever this set is contracted by a 
formula A. In contrast, if we combine the idea of a language splitting with 
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a subclassical logical framework, we can model the intuition that our incon-
sistencies should be removed only locally. I return to this point in the next 
section.

8.  Related Work

Paraconsistency and (Ir)relevance.  In [36, p. 10], it is argued that a para-
consistent approach to belief revision allows us to model processes in which 
inconsistencies are removed one by one, such that the intermediary belief 
states remain inconsistent. The authors quote Fuhrmann, who writes the 
following in a section of his [14] titled “Local Inconsistency”:

[...] Thus, in the face of inconsistent theories we should want two things:
(a)  localise inconsistencies – an inconsistent theory should not be rendered 
totally corrupt just because some inconsistency has crept into the theory; and
(b)  locally restore consistency – we should be able to resolve one inconsistency 
at a time by contracting an inconsistent theory such that other inconsistencies, 
which we cannot yet resolve, may be carried over into the contraction theory.

In order to obtain (a) and (b), Fuhrmann recommends that “theories be 
generated from bases by means of a consequence operation induced by 
some paraconsistent logic.” [14, p. 187]

Recall that in our example, the axiom stipulated that the inconsistency v, 
∼v is upheld, since it is not relevant to the formula p ∨ ∼s by which we ought 
to contract. More generally, the axiom of CLuNs-relevance does not dis-
tinguish between formulas that behave consistently and those that behave 
inconsistently; all that matters is whether formulas are relevant to the infor-
mation that triggers the revision or contraction, modulo the initial belief 
state. If an inconsistency is not relevant in this sense, then it is upheld.

In Fuhrmanns terms, the axiom of CLuNs-relevance requires that we 
should restore consistency only locally. However, Fuhrmann still argues 
that one should “restore consistency as soon as one can” [14, p. 187]. On 
his view, whether or not we should remove a contradiction A ∧ ∼A, depends 
on the question whether we have clear evidence that favors A over ∼A or 
vice versa, or that shows that neither A nor ∼A rely on reliable information. 
The Relevance axiom is more abstract: the need to restore consistency is 
replaced by the need to solve any type of problem with our beliefs. It is 
also more precise than Fuhrmann’s position: it uses a very exact notion of 
what it means that our evidence relates to A ∧ ∼A (in terms of letter sets).

Parikh and Chopra: Multi-sets.  In [9], a theory of belief revision is pro-
posed in which the unit of change is a multi-set {Υ1, …, Υn}. Each Υi is 
closed under classical logic, but the various Υi are not put together into one 
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single theory. This way, global inconsistency – the fact that 


i ≤ n Υi  is incon-
sistent – does not trivialize the belief state.

In this model, the sets E(Υi ) need not be mutually disjoint, though in 
the principle case, it is assumed that they are at least distinct. The idea is 
that each Υi concerns a specific topic, yet some of them may be related to 
others. Chopra and Parikh also motivate their model in terms of minimal 
mutilation: when we perform a revision, we should only revise those theo-
ries Υi that are relevant to the new information, and leave all other sets Υj 
unchanged. Here, relevance is spelled out in a more direct way, i.e. as the 
overlap of letter sets E(Υi) and E(A) where A is the new information.

Although this approach is well-motivated from the point of view of con-
crete applications, it seems to put the cart before the horse from a logical 
viewpoint. That is, the biggest advantage of the notion of a language splitting 
is that it is the logic itself that determines which parts of a theory are related 
to others. Our beliefs need not be “prepared” or “split” in any sense; whether 
or not a belief B ∈   Υ is L-relevant to Υ • A depends solely on CnL(Υ).

Relevance and Local Change.  In their [24], Hansson and Wassermann 
have introduced “localized” versions of well-known operations of belief 
change. These include the following two [24, p. 51]:

Local Consolidation. Inconsistencies are removed from some part of the belief 
base. The rest of the agent’s beliefs may well be inconsistent. For instance, 
I can make my beliefs about biological evolution consistent, while retaining 
global inconsistency between biological and religious beliefs.
Local Revision. A new belief is added to the belief base in such a way that a 
certain part of the resulting base is made (kept) consistent. If I see, for example, 
that it is a sunny day in Amsterdam, then this contradicts my belief that it is 
always raining in Holland, and leads to revision. This can be done without 
checking whether my beliefs about Brazilian politics are consistent with the 
new belief.

Hansson and Wassermann refer to the work of Parikh (see [24, p. 69]), but 
although they start from the same intuitions, the notion of local change is 
rather different from the idea of relevant belief change modulo a splitting. 
First and foremost, Hansson and Wassermann first localize the consequence 
relation , after which they “localize” both syntactic and semantic charac-
terizations of belief change operations – they do not define a general relevance 
axiom. Second, it can be easily verified that their operations of local change 
do not always obey the Relevance axiom from the current paper. The main 
reason for this is that they are still highly syntax-sensitive. That is, to per-
form a local revision of Υ by A, one considers all consistent minimal subsets 
of Υ that either imply A or ∼A, and only revises beliefs B that occur in those 
subsets. Although this makes it possible to leave some inconsistencies 
unchanged, a lot still depends on the exact way we formalize our beliefs.
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For instance, let Υ = {p ∧ q, r, ∼r} and let A = {∼q}. Then if we “local-
ize” the revision to ∼q, the inconsistent behaviour of r is simply ignored; 
the revision set will be {∼q, r, ∼r}. On the other hand, should we “locally” 
revise Υ = { p, q, r, ∼r} by ∼q, then the resulting revision set would be 
{p, ∼q, r, ∼r}, and hence p would be rescued.

9.  In Conclusion

In this paper, it was shown how one can sensibly apply the relevance axiom 
and the related notion of a language splitting in a very broad range of con-
texts, beyond the traditional focus on classical theory revision. Upon inspec-
tion of the proofs from Section 6, the results easily generalize to the first 
order predicative level, with “elementary letters” understood as elementary 
predicate and function symbols.

As indicated before, the focus of this paper was on syntactic characteri-
zations of belief change. It remains an open question how one can obtain 
semantic constructions that warrant certain forms of the relevance axiom 
in specific cases. The notion of a canonical form from [25, 28] could be 
crucial in such constructions.

A related problem concerns the compatibility of (variants of) P with 
existing postulates and axioms for operations of belief change. Recall that 
Parikh proved the compatibility of the standard AGM axioms for theory 
revision with his relevance axiom. As explained in Section 4, Pb is incon-
sistent with some well-known postulate for the revision of belief bases. 
In [31] it was shown that also in the context of belief update, Parikh’s axiom 
cannot easily be combined with existing postulates (i.c. the KM-postulates 
for belief update). Finally, the AGM axioms for belief contraction are only 
consistent given certain minimal requirements on the underlying logic L  
of beliefs [13]. Similarly, one can ask which conditions on L warrant com-
patibility of a given set of postulates with P.

In view of the technical results from Section 6, one may also ask whether 
it is possible to further generalize the results from this paper to other non-
classical (Tarski-)logics such as LP or Brazilian anti-intuitionistic logic.24 
To the best of my knowledge, no interpolation results are available yet for 
these systems. Moreover, for LP, Parallel Interpolation cannot be obtained 
from Standard Interpolation in the way it was done here, as the implication 
does not satisfy Modus Ponens.

Another interesting topic would be non-monotonic splittings. For instance, 
within the adaptive logic programme, quite a few systems have been devel-
oped that allow one to interpret a set of beliefs “as consistently as possible”, 

24  See [35], resp. [2] for a characterization of these systems.
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without trivializing inconsistent beliefs.25 Some of these systems are equivalent 
to CL whenever the belief set is consistent, and most of them are usually 
much stronger than the existing monotonic and transitive paraconsistent 
logics. It would hence be worthwhile to see whether such non-monotonic 
logics also yield a finest splitting for every set – in that case, the associated 
relevance axiom would be very strong, but it would still not trivialize 
inconsistent belief sets.
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