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Formal philosophy and legal reasoning: 
The validity of legal inferences
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Abstract

The aim of the present paper is to introduce a method to test the validity of legal 
inferences. We begin by presenting the rationale of our method and then we expose 
the philosophical foundations of our analysis. If formal philosophy is to be of help 
to legal discourse, then it must first reflect upon the law’s fundamental character-
istics that should be taken into account. Our analysis shows that (Canadian) legal 
discourse possesses three fundamental characteristics which ought to be considered 
if one wants to represent the formal structure of legal arguments. These charac-
teristics are the presupposed consistency of legal discourse, the fact that there is 
a hierarchy between norms and obligations to preserve this consistency and the 
fact that legal inferences are subjected to the principle of deontic consequences. 
We present a formal deontic logic which is built according to these characteristics 
and provide the completeness results. Finally, we present a semi-formal method 
(based on the proposed deontic logic) to test the validity of legal inferences. This 
paper contributes to the literature insofar as it provides a method that covers a 
portion of the intuitive validity of legal inferences which is not covered by other 
frameworks.

Keywords: L egal obligations, Legal discourse, Normative consistency, Deontic 
consequence, Non Kripkean semantics, Deontic logic, Contingency.

1.  Introduction

Deontic logic began with the work of von Wright (1951) and has since been 
interpreted in many different ways.1 Although the approaches that we find 
nowadays within the literature vary significantly, most share a common 
feature: the use of possible world semantics and the interpretation of deon-
tic logic as a modal logic.2 Among these approaches the reader will find 
monadic, dyadic, temporal, non-monotonic, first-order, dynamic and stit 

1  There was also a previous proposal made by Mally (1926), but it did not have as much 
impact as von Wright’s at the time.

2 S ome approaches do not use possible world semantics, see for instance Makinson and 
van der Torre (2000).
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deontic logics (for an overview, see Peterson 2011; 2014d).3 The modal 
interpretations are usually characterized by the fact that the truth value of 
a normative proposition depends upon the truth value of the descriptive 
proposition in the scope of the deontic operator. Modal interpretations are 
usually of the Ougth-to-Be type, as opposed to the Ought-to-Do interpreta-
tion of deontic modalities (for the distinction, see von Wright 1999). In the 
modal interpretations, a deontic proposition Oϕ usually expresses that a 
specific description ϕ of the world ought to be the case, or that the world 
ought to be in a specific state. However, one can nonetheless find some 
modal interpretations of the Ought-to-Do type, which are characterized by 
the fact that the proposition in the scope of a deontic operator is instead 
interpreted as the name of an action. This kind of interpretation can be found 
notably within the dynamic approach to deontic logic4, where an action is 
forbidden when its performance implies that the world is in a state within 
which there is a violation V.5 It can also be found in deontic logics based 
upon a Boolean algebra.6

The present paper does not aim at criticizing these approaches but rather 
aims at providing a new one, based on different philosophical foundations. 
We propose an interpretation of deontic logic based upon the analysis of 
(Canadian) legal norms. Our goal is not to provide an analysis of how we 
use ‘ordinary deontic language’ or how ‘ordinary deontic reasonings’ work, 
as Castañeda (1981, p. 38) would say, but is rather to show how a normative 
reasoning should work. The objective is to define a proper consequence 
relation according to some basic properties that govern a ‘correct’ use of a 
(legal) normative inference. We begin by exposing the rationale behind 
our framework and present the philosophical foundations of our system. 
The formal deontic logic and the completeness results are then presented. 
On these grounds, a semi-formal method that can be used to analyze the 

3 S ee for example Castañeda (1981), Schotch and Jennings (1981), Jones and Pörn 
(1985, 1986), Hansson (1990) or Jones (1991) for monadic deontic logic; Al-Hibri (1978), 
Chellas (1974), Mott (1973) and van Fraassen (1972) for dyadic deontic logic; Chellas (1969), 
McKinney (1977), Åqvist and Hoepelman (1981), Thomason (1981), van Eck (1982a, 1982b) 
or Bailhache (1991, 1993) for temporal deontic logic and Nute (1997) for non monotonic 
deontic logic. See also Broersen (2011a), Carmo and Pacheco (2001), Carmo and Jones 
(2002), Horty (2001) for multi-modal deontic logics, and Belnap and Perloff (1988), Bro-
ersen (2008, 2009, 2011a, 2011b), Carmo and Pacheco (2000, 2001), Horty and Belnap 
(1995), Horty (2001), Pacheco and Carmo (2003), Pacheco and Santos (2004) and Xu (1995) 
for stit logics. The reader may consult Wolenski (1990) for a sketch of possible world seman-
tics in deontic logic.

4 S ee Meyer (1987; 1988) for the introduction of dynamic deontic logic and, among 
others, see Royakkers (1998), Broersen (2004), Hughes and Royakkers (2008), Segerberg 
(2009), Anglberger (2009), Demolombe (2014), Segerberg (2012) or Prisacariu and Schnei-
der (2012).

5  This type of reduction is inspired by the work of Anderson (1958).
6 S ee for instance Segerberg (1982) and Trypuz and Kulicki (2009, 2010).

99005_LogiqueAnalyse_234_05.indd   228 4/08/16   13:09



	 formal philosophy and legal reasoning � 229

validity of legal inferences is introduced. The method consists in testing the 
validity of an argument through its graphical representation. Some insights 
regarding the analysis of the premises of a legal argument are given and the 
paradoxes of deontic logic are discussed. We conclude in the last section 
by summarizing the limitations of our approach and we present avenues for 
future research.

2.  Philosophical assumptions

Contra the modal interpretation of deontic logic, we do not consider deon-
tic propositions as being of the Ought-to-Be type. Following Solt (1984, 
p. 350), the truth value of a normative proposition Oϕ for the actual world 
does not depend upon the truth value of ϕ at any ‘deontic alternative’. The 
truth value of a deontic proposition Oϕ does not rely on the performance 
value of ϕ in every accessible ‘deontically perfect world’. The fact that ϕ 
is obligatory depends upon the existence of a norm, which is established by 
some authority (Alchourrón and Bulygin 1981, pp. 97,102) and aims to 
guide one’s actions (Weinberger 2001, p. 134). This is consistent with the 
legal adage nullum crimen sine lege: there is no crime without law, nor 
any obligation without a norm. Therefore, the truth value of a norma-
tive proposition Oϕ does not depend upon the truth value of the descriptive 
proposition ϕ in the scope of the deontic operator but depends upon the fact 
that there is a norm which makes ϕ obligatory.7 Following the same reason-
ing, the truth value of a deontic proposition does not depend upon the fact 
that there is a ‘violation’ in every state where the action is performed.

We do not wish to analyze legal obligations within the framework of 
modal logics since the operator Oi does not behave as a modality of the 
type i. Although Oi marks the property of an action, this operator is not 
interpreted as a predicate since it can be applied to combinations of actions, 
which are expressed by molecular compounds of descriptive formulas. The 
operator Oi is not interpreted as a modality of type i since we do not wish 
to obtain formulas such as Oi (A  ∨  ¬A) or Oi A  ⊃  Oi (B  ∨  ¬B), which are 
dubious from a legal point of view. 

It is noteworthy that we are not considering legal discourse as a norma-
tive system, that is a “set of agents (human or artificial) whose interactions 
can fruitfully be regarded as norm-governed (Carmo and Jones 2002, 
p. 265)”. This point is important: we are not trying to describe how agents 
interact within a normative system. Rather, we wish to define a semantical 
consequence relation for the validity of legal inferences. Our approach is 
normative rather than descriptive. It concerns the analysis of legal reasoning 

7  This position is also consistent with the legal literature. See Baudoin (2010).
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from a critical point of view. This is mainly why we will not use stit or 
dynamic logic: we are not focusing on the notion of agency. Rather, we are 
analyzing the semantical consequence relation within a legal argument.

According to the semantical dichotomy between facts and norms (cf. Jør-
gensen 1937), descriptive and normative propositions are not true in the 
same conditions. While a descriptive proposition is true or false with regard 
to the world it describes, the truth of a normative proposition (which says 
how the world should be or how people should act, rather than how the 
world is) depends on the existence of a norm, which is established by some 
authority. We distinguish between a norm and a normative proposition: the 
former is neither true nor false while the latter can be true or false (the truth 
value of the normative proposition depending upon the existence of a 
norm). A normative proposition expresses that an action (either a specific 
action or a class of specific actions) possesses a deontic property. For exam-
ple, from the Canadian Criminal Code we can conclude that the action 
‘stealing a red bicycle’ possesses the propriety ‘forbidden’ or, equivalently, 
that the action negation ‘not stealing a red bicycle’ possesses the property 
‘obligatory’. Assuming that an action possesses a deontic property, we want 
to develop a basic logic that can represent how this property can be trans-
mitted from one action to another.

One property of legal discourse is that there are no obligations without 
norms. Following Chellas (1974, p. 24), we want to be able to represent 
situations where there are no obligations, and thus our system must not 
include ‘absolute’ or ‘unconditional’ obligations. Likewise, following Jones 
and Pörn (1985, p.279), it is always possible for someone to act against 
one’s obligations. Hence, tautologies are not obligations unless there is a 
norm that makes it so. This is the principle of normative contingency, first 
introduced by von Wright (1951). Formally, we do not want our system 
to validate theorems of the form  Oi or  A ⊃ Oi (with  a tautology). 
Also, since the meaning of a deontic operator changes when it is iterated 
(Jones and Pörn 1985, p. 286), it follows that, according to Castañeda (1981, 
p. 66), it must not be possible to iterate the same deontic operator. For now, 
our system will concentrate on propositions within which there is only one 
type of deontic operator (one authority) that cannot be iterated. Finally, we 
will not be considering mixed propositions (i.e., propositions composed with 
both descriptive and normative atoms). Indeed, it is unclear whether or not 
a material conditional is sufficient to represent the transmission of truth 
value between descriptive and normative propositions since the truth-value 
assignment for a descriptive proposition differs from the truth-value assign-
ment of a normative one. The connective ‘⊃’ does not preserve truth from 
a descriptive proposition to a normative one. When one tries to model deon-
tic conditionals and contrary-to-duty reasoning, one faces the problems of 
augmentation and detachment (cf. Jones 1991). For example, it is possible 
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to have a situation where p ⊃ Pi q is true but (p ∧ p) ⊃ Pi q is false.8 
Hence, the descriptive antecedent of a deontic conditional cannot be aug-
mented, as the normative consequent cannot always be detached.9 These are 
also arguments in favour of non-monotonic foundations for deontic logic.10 
This, however, will be the topic of another paper.11 For now, we will not be 
considering mixed formulas and will only concentrate on normative ones.

The deontic logic we propose is based upon an analysis of Canadian 
legal discourse. Since legal norms are meant to guide one’s actions, it fol-
lows that norms must be consistent since it would be impossible to act 
accordingly with an inconsistent set of norms. Thus, we assume the crite-
rion of normative consistency: obligations are supposed to be consistent (at 
least after interpretation) since the legislator is presupposed to be rational, 
meaning that it is assumed that he thinks rationally and logically (Côté 
2006, p. 387). The set of norms created by the legislator is therefore presup-
posed to be consistent, and thus legal obligations must not be interpreted 
as contradictory. Consistency is a rational criterion that ensures the acces-
sibility, the authority and the equity of the law (Côté 2006, p. 387). Cana-
dian legal discourse is considered as forming a ‘logical system’ which is 
horizontally and vertically consistent (after interpretation). As such, obliga-
tions from the same set of norms must be consistent with each other, as are 
the different sets of norms (Côté 2006, p. 388). In other words, the set of all 
legal laws is presupposed to form a consistent whole (Côté 2006, p. 433). 
Consistency is a rational criterion that enables one to judge the value of a 
set of norms, which can be examined through the consistency of the set of 
obligations that it generates.12

The relation of hierarchy between norms is meant to preserve a legal 
system’s consistency. It is necessary to insure vertical and horizontal con-
sistency. Since there can be (a priori) contradictions between different sets 
of laws or different laws within a set of norms, hierarchy enables us to 
preserve the consistency of the whole system by resolving potential con-
flicts of obligations. Moreover, laws are constructed in an hierarchical man-
ner. For example, in Canada, no legislation can go against the Canadian 

8 I f Paul has a driver’s license, then he is permitted to drive, but if in addition he is 
drunk, then he is not.

9  This is why dyadic deontic logics were introduced. See Loewer and Belzer (1983) and 
Vorobej (1986) for a discussion.

10 A s a result, we will not be considering defeasible reasoning (see for example 
Horty (1994), Sartor (1994), van der Torre and Tan (1997) or Governatori and Rotolo (2004)).

11 S ee Peterson (2014b, 2014c).
12  The fact that many deontic logics that satisfy the axiom schema (D) cannot represent 

conflicting obligations is often seen as an argument in favour of non-monotonic deontic logic 
(see for example Horty 1997). Since we only concentrate on one authority, normative con-
sistency can be assumed, otherwise the legal authority would force us to act within an 
impossible frame.
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Constitution. The fact is that  there are sets of laws that are superior to 
others by construction, although these relations of hierarchy can also be 
explicitly mentioned in the law itself (Côté 2006, p. 45 and p. 450).13

Legal reasoning is characterized by the fact that it is hypothetical: a legal 
conclusion cannot be drawn without a legal premise. This is consistent with 
semantical dichotomy. A valid legal inference implies that there is a set 
of hypothetical norms (or obligations) from which legal conclusions are 
drawn. Thus, an obligation is conditional to a set of norms (or principles), 
which is established by some authority. The fact that obligations are derived 
from norms implies that normative inferences are governed by a specific 
criterion of validity. Since there is a finite number of norms, it would seem 
that there is also a finite number of obligations that will derive directly from 
these norms. For example, we can derive from the law that it is forbidden 
to steal. However, norms are often formulated in order to be applied to a 
class of specific actions. The obligation that derives directly from the law 
is to not steal, but clearly it is meant to be applied to a class of actions: not 
stealing a car, not stealing money, not stealing Paul’s money, not stealing 
Peter’s car, not stealing Paul’s car and Peter’s bicycle, etc. In other words, 
there is a much greater number of obligations that can be derived from a 
specific norm. But how do we legitimately conclude them since they are 
not explicitly mentioned by the norms?

To answer this question, we follow Alchourrón and Bulygin (1981, 
p. 102) and distinguish between fixed and derived obligations. A fixed obli-
gation stems from a norm and can be general in order to be applied to a 
class of specific actions. A finite number of norms will hence entail a finite 
number of fixed obligations. A derived obligation can be inferred from a 
fixed one. From it is forbidden to steal we can derive Paul has the obliga-
tion to not steal Peter’s money. The rule which governs this type of infer-
ence is the principle of deontic consequences (Castañeda 1968, p. 13)14: if 
A is an obligation and A implies B, then B is also an obligation. The mere 
formulation of the law implies that there are derived obligations. In French 
Civil Law it is obvious since the law is formulated in a general way and 
applies implicitly to each particular case that falls within its scope. Even though 
it seems to be the contrary in Common Law, where the law is constructed 
upon each particular judgment, the same principle applies nonetheless since 
a judgment applies to a class of particular actions.15 Even if a judgment 
comes from a particular action, the case law applies to other similar cases. 

13 T he use of hierarchy to solve normative conflicts was advocated by Alchourrón and 
Makinson (1981).

14 S ee also van Fraassen (1972, p. 421).
15 N ote that Quebec’s legislation (in Canada) is composed of both French Civil Law and 

Common Law.
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Put differently, there are actions that are obligatory (or forbidden) even 
though they are not mentioned explicitly by the law (or the case law). 
The law is not an enumeration of all possible cases. The law says that it is 
forbidden to steal. What it means is that it is forbidden to do any action that 
implies (or counts-as) stealing.16 Furthermore, normative consistency implies 
that legal obligations are governed by the principle of deontic consequences. 
Indeed, assuming that the legislator is rational, it is possible to deduce from 
the law certain things that logically follow (Côté 2006, p. 422). The aim of 
the present paper is to define this consequence relation.

To sum up, the analysis of Canadian legal norms brought to light three 
fundamental characteristics of legal discourse, namely its presupposed con-
sistency, the fact that hierarchy is meant to preserve that consistency and 
the validity of the principle of deontic consequences, which enables one to 
infer derived obligations from fixed ones. If one is to apply formal philosophy 
to law, then one must take these characteristics into account.

3.  The logic of legal obligations

According to these characteristics, the logic we propose relies upon a con-
sequence relation which is defined as a function of normative consistency 
and deontic consequences. For now, we do not need to include hierarchy 
within the formal definition since we are only considering one type of deon-
tic operator which cannot be iterated. However, as we will see, hierarchy 
will play a role for the analysis of the soundness of an argument. The basic 
idea of our approach is to define a consequence relation which can represent 
how the property ‘obligatory’ can be transmitted from an action (or a 
combination of actions) to another. We follow Castañeda (1981, p. 46) and 
assume a distinction between different types of obligations, where the type 
of an obligation depends upon the set of norms from which it can be derived 
(Alchourrón and Bulygin 1981, p. 120).

According to the semantical dichotomy between facts and norms, the idea 
is to develop a framework which distinguishes between factual and normative 
truth. As such, the language L will be divided in two sub-languages LPL 
and LOL, respectively representing the language of descriptive propositions 
expressed by propositional logic (PL) and the language of normative prop-
ositions expressed by the logic of (unconditional) obligations OL.17 Similarly, 

16  We are not pretending that logic can resolve the problem of interpreting the law. We 
only say that laws are formulated in order to include different kinds of actions, which has 
nothing to do with deciding whether the action falls within the scope of the law or not.

17 S ince we assumed that every obligation derives from a norm (established by some 
authority), it follows that every obligation is ‘conditional’ in nature (i.e., obligations are 
conditional to the existence of norms). This type of conditionality, however, is different from 
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the semantical model M will be divided in two sub-models M and N, the 
first being descriptive and the other normative. We assume that the model 
M of LPL is a standard model of propositional logic. A proposition is said 
to be derivable in L if and only if either it is a consequence of PL or it is 
a consequence of OL. Similarly, a proposition A is said to be valid for M 
if and only if either it is descriptively or normatively valid. For the rest of 
this paper, we concentrate only upon the normative fragments LOL and N.

3.1.  Syntax

The formulas of OL have the form Oi A, where Oi is a single type of obliga-
tion and A is a proposition that refers to an action or a combination of actions. 
We assume a language

L = {(,), Prop, ¬, ⊃, Oi}

where Prop = {p1, …, pn, …} is a denumerable set of propositional descrip-
tive atoms and descriptive propositions are understood as descriptions of 
actions (not any descriptions). The other logical connectives ∧, ∨, ≡, Fi and 
Pi are defined as usual, with:

	 Fi   A =def Oi ¬ A� (Interdiction)
	 Pi   A =def ¬Oi ¬ A� (Weak permission)

We use A, B and C as meta-variables. The set WFFL of well-formed formulas 
of L is defined recursively by:

	 pi ∈ WFFLPL
 for all pi ∈ Prop� (1)

	 if A, B ∈ WFFLPL
, then ¬A, A ⊃ B ∈ WFFLPL

� (2)
	 if A ∈ WFFLPL

, then Oi   A ∈ WFFLOL
� (3)

	 if A, B ∈ WFFLOL
, then ¬A, A ⊃ B ∈ WFFLOL

� (4)
	 if A ∈ WFFLPL

 or A ∈ WFFLOL
, then A ∈ WFFL� (5)

Thus defined, WFFL does not contain any mixed formulas or any formula 
where there is an iteration of a deontic operator. The axiom schema for 
normative consistency is represented by (A1), which is propositionally 
equivalent to the axiom (D) of standard deontic logic.

	 ¬(Oi A ∧ Oi¬A)� (A1)

the distinction between conditional and unconditional obligations. A conditional obligation 
is formulated in such a way that it specifies in which context the obligation holds. An uncon-
ditional obligation is understood  as an obligation that always holds, unless specified by 
another norm in some specific context. Note that in such a context, OL would not apply 
anymore and we would need a logic for conditional normative reasoning.
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The principle of deontic consequences is represented by the rule of infer-
ence (R1) and its use is restricted by two conditions.

1 h

(R1)
2 Oi A1 ∧ ·  ·  · ∧ OiAn (n ≥ 1)
3 (A1 ∧ ·  ·  · ∧ An) ⊃ B
4 OiB R1 l.2, 3

First, {A1, …, An} cannot be the empty set (n ≥ 1), otherwise B would be 
a theorem of PL and there would be a set of absolute obligations. Since every 
obligation is conditional to a norm, it follows that B must be a consequence 
that depends upon A1 ∧  ·  ·  · ∧ An. This condition is meant to preserve the 
principle of normative contingency. Put differently, (R1) cannot be used if 
there is no normative hypothesis. Second, the conditional

(A1 ∧ · · · ∧ An) ⊃ B

must be either a theorem of PL or a hypothesis. As a result, (R1) cannot be 
applied to any material conditional but can only be applied to a conditional 
which is either a theorem of PL or a hypothesis. For instance, the following 
use would be an incorrect application of (R1).

1 p H

2 Oiq H
3 p ⊃ (q ⊃ p) PL
4 q ⊃ p MP l,3
5 Oi p incorrect use of R1

Let us note that since (R1) can be applied to an hypothesis, it follows that 
this rule is invalid in a standard system such as KD. We introduce OL in a 
natural deduction system. We say that A is a theorem of OL, written OL A, 
when there is a proof of A without the use of any hypothesis. In addition to 
(R1), we assume the rules of PL (and hence also the derived rules of PL) 
of Garson (2006, p. 35), that is:

1.  hypothesis (H);
2.  reiteration (Reit);
3.  detachment (⊃ out);
4.  conditional proof (⊃ in);
5.  double negation (DN).
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Since negation is taken as a primitive, we also need a rule to govern its 
introduction:

1 A H

2 h

3 B
4 ¬B
5 ¬A (¬in)

Although OL contains only normative propositions, the proofs of the theo-
rems are done in L. Thus constructed, OL (and moreover L) behaves at the 
propositional level according to the rules of PL. We write ‘PL’ as a justifi-
cation in a proof when the formula is a theorem of PL.18

3.2.  Semantics

Let Act = {ΓA : ΓA is a positive action} be a denumerable set of positive 
actions (e.g., walking, talking, stealing, etc.), where ΓA stands for the action 
described by the proposition A, and Act = {ΓA  : ΓA is a negative action} a 
denumerable set of negative actions (e.g., not walking, not talking, not 
stealing, etc.). The set A = Act ∪ Act is thus the denumerable set of all 
possible actions (actions in Act do not need to be atomic).19 Each action 
in A can be described by a proposition of WFFPL.

Let the sequence sα = < sα1, …, sαn, …> be an arbitrary enumeration of 
Act and the sequence sα  =  < sα1,  …,  sαn,  … > an enumeration of Act , 
where sαi  refers to the negation of the action sαi . A propositional variable pi 
(or a molecular compound Ai) refers to an action sαi  member of an arbitrary 
sequence sα, while ¬pi (or ¬Ai) refers to sαi . If Ai refers to sαi , then sαi  is 
the action ΓAi

 (described by Ai), that is the i th member of sα. An arbitrary 
sequence sα (and its counterpart sα) is an interpretation of the language L. 
It assigns a descriptive proposition of WFFPL to each object of the domain 
(i.e., each action).20

18 O ne the one hand, it should be noted that our syntactical system is similar to that of 
von Wright (1951) (see the axiomatization in von Wright (1967)). However, the two are not 
equivalent, since OL Oi  (A  ⊃  A)  ⊃  Oi (A  ∨  ¬A). On the other hand, even if (R1) may look 
like the Rule 0 in Alchourrón (1990), they differ from the important fact that {A1, …,  An} 
cannot be the empty set. Also, his syntactical system is equivalent to K D, which is not 
equivalent to OL since (R1) is invalid in the standard system.

19 N ote that our understanding of ‘action’ includes both action types and action tokens.
20  To be precise, it assigns an equivalence class of propositions to an equivalence class 

of actions.
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In order to formalize semantically the principle of deontic consequences, 
we assume that the set A is pre-ordered by ‘’. For example, if we sup-
pose that

p1 = Peter steals a red bicycle
p2 = Peter steals a bicycle
p3 = Peter steals

then we have Γp1  Γp2  Γp3. This allows us to give a semantical account 
of the relation of implication between actions. If an action ΓA implies 
another action ΓB, then ΓA  ΓB. Thus, if we assume that ‘stealing implies 
not violating the law’ is true in some (descriptive) interpretation, then we 
assume that ‘stealing’  ‘not violating the law’ in some normative model. 
Let M be a standard model of PL. In other words, if tM p1 ⊃ p2 (i.e., p1 ⊃ p2 
is assumed to be true in M), then Γp1  Γp2 holds in the normative 
interpretation. We do not assume the converse because it would lead us 
to ideality. (It is not because an entailment between actions is assumed in 
a normative interpretation that it is necessarily true in the descriptive one. 
For instance, one can assume that ‘it is obligatory that if one is in a public 
place, then one is not naked’ holds in a normative model while the condi-
tional in the scope of the operator is false in a descriptive one.)

Let N = W, A, , a be a normative model, where W ! ∅ is the uni-
verse of discourse and contains normative propositions (which are members 
of WFFLOL

), A is a denumerable set of actions pre-ordered by ‘’ and 
a: W −→ {, ⊥} a function which assigns truth values to propositions in W. 
Let O be a proper subset of A (O  A). Informally, O is a set of actions 
which have the property ‘obligatory’, meaning that O is the extension of 
the concept ‘obligatory’ within a normative interpretation.21 The set has to 
satisfy three conditions:

If ΓA ∈ O, then ΓA " O� (C1)
If ΓA ∈ O, then ΓB ∈ O for any ΓA  ΓB� (C2)
such that FPL B
If ΓA ∈ O and ΓA  ΓB⊃C, then ΓB  ΓC� (C3)

The first condition represents normative consistency and the second implies 
that O is closed ‘upwards’ when B is not a tautology of the (classical) 
propositional calculus. The second part of C2 insures that normative con-
tingency is respected. The third condition says that if the action described 
by A is semantically linked to the action described by B  ⊃  C, then the 
action described by B is semantically linked to the action described by C 

21 I f there are more than one authority, O can be indexed by i.
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insofar as the action described by A is obligatory. C2 and C3 allow us to 
represent the principle of deontic consequences. For a normative interpreta-
tion N, aN (A) =  if and only if there is a sequence sα  =  <sα1,  …,  sαn,  …> 
which satisfies A. We now define satisfaction recursively.

Definition 1.  For any A, sα satisfies A if and only if

1.	 If A is Oi B, then
(a)	 If B is pi, then sα satisfies A iff sα satisfies pi iff sαi   ∈  O (i.e. the 

i th member of sα is a member of O).
(b)	 If B is ¬C, then sα satisfies A iff  sα satisfies C.

   i.	 sα satisfies pi iff sαi ∈ O
 ii.	 sα satisfies ¬D iff s=α = sα satisfies D
iii.	 sα satisfies D ⊃ E iff sα satisfies D and sα satisfies E

(c)	 If B is C ⊃ D, then sα satisfies A iff either
  i.	 there is sαm = ΓC ⊃D such that sαm ∈ O or
ii.	 sα satisfies D (provided that ΓC is not ΓD).22

2.	 If A is ¬B, then sα satisfies A iff sα does not satisfy B.
3.	 If A is B ⊃ C, then sα satisfies A iff sα does not satisfy B or sα satisfies 

C.23

We say that a normative proposition A is normatively valid, written tA, 
when it is true for any normative interpretation N.24

3.3.  Completeness

The following lemmas will be useful. As a notational convention, we will 
write sα A to refer to the action ΓA (i.e., the action described by the descrip-
tive proposition A), and which is the mth member of sα. We also write sα¬A 
instead of sαA.

Lemma 1.  If sα satisfies Oi A, then sαA ∈ O.

Proof.  We proceed inductively on the length of the formula. Suppose that sα 
satisfies Oi A but that sαA " O. (The inductive step (HI) is that if the property 
holds for l = n, then it also holds for l = n + 1).

22 I nformally, the first condition means that the conditional represents a fixed obligation 
while the second represents a derived obligation. The condition that ΓC is not ΓD is meant 
to preserve normative contingency.

23 L et us note that it would be incorrect to infer from the fact that sα satisfies pi that it 
also satisfies A ⊃ pi from condition 1c). Rather, if sα satisfies pi, then sα satisfies ¬ pi, and 
thus sα satisfies A ⊃ ¬pi.

24  There is an equivalence of notation between tN A and aN (A)  =  . Also, from this 
definition it follows that aN (A)  =   ⇔ aN (¬A)  =  .

99005_LogiqueAnalyse_234_05.indd   238 4/08/16   13:09



	 formal philosophy and legal reasoning � 239

1.	 A is pi, thus sα satisfies pi and sαpi ∈ O.
2.	 A is ¬B, thus sα satisfies B.

(a)	 B is pi, thus sα satisfies pi and sα¬pi ∈ O.
(b)	 B is ¬C, thus sα satisfies ¬C, meaning that sα satisfies C and by 

(HI) sαC ∈ O, and thus sα¬¬C ∈ O by C2 since tPL C ⊃ ¬¬C and 
ΓC  Γ¬¬C.

(c)	� B is C ⊃ D, thus sα satisfies C ⊃ D, meaning that sα satisfies 
C and sα satisfies D. But by (HI) sαC ∈ O and sα¬D  ∈  O, and since 
tPL C ⊃ (¬D ⊃  ¬(C  ⊃  D)), we have sαC  sα¬D ⊃¬(C⊃D), thus by 
C3 we have sα¬D    sα¬(C⊃D), and by C2 we obtain sα¬(C⊃D) ∈ O since 
sα¬D  ∈ O.

3. A is B ⊃ C, thus either
(a)	 sα satisfies Γm = B  ⊃  C and thus sαBC   ∈   O
(b)	sα satisfies C (ΓB ! ΓC) and by (HI) sαC     ∈     O and by C2 sαB⊃C      ∈     O 

since tPL C ⊃ (B ⊃ C) and thus ΓC  ΓB ⊃C.� 

Lemma 2.  If sαA ∈ O, then sα satisfies Oi A.

Proof.  We proceed inductively on the length of the formula. Suppose that 
sαA ∈ O but that sα does not satisfy Oi A.

1.	 A is pi, thus sαpi ∈ O and so sα satisfies pi.
2.	 A is ¬B, thus sα does not satisfy B.

(a)	 B is pi, thus sα¬pi  ∈  O and so sα satisfies pi
(b)	 B is ¬C, thus sα does not satisfy ¬C, meaning that sα does not 

satisfy C. Since tPL ¬¬C ⊃ C, we obtain sα¬¬C  sαC and by C2 
we have sαC  ∈ O, and by (HI) sα satisfies C.

(c)	 B is C ⊃ D, thus sα does not satisfy C ⊃ D, meaning that either sα 
does not satisfy C or sα does not satisfy D. By hypothesis, we have 
sα¬(C⊃D) ∈ O, and by PL we obtain sα¬(C⊃D)  sαC and sα¬(C⊃D)  sα¬D 
since tPL  ¬(C ⊃ D)  ⊃  C and tPL  ¬(C  ⊃  D)  ⊃  ¬D. Therefore, 
by C2 we obtain sαC  ∈ O and sα¬D  ∈ O, which by (HI) implies that 
sα satisfies C and sα satisfies D.

3.	� A is B ⊃ C, thus sα does not satisfy Γm = B ⊃ C and either sα does not 
satisfy C or sαB = sαC. However, by definition if sα does not satisfy Γm, it 
implies that sαm "O, that is sαB⊃C "O.� 

Lemma 3.  If  ΓA  ΓB, FPL B and sα satisfies Oi A, then sα satisfies Oi B.

Proof.  Assume ΓA  ΓB, FPL B and sα satisfies Oi   A but sα does not satisfy 
Oi B. By lemma 1 we have sαA ∈ O, thus by C2 sαB ∈ O and by lemma 2 
sα satisfies Oi B.� 
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Lemma 4.  (A1) preserves validity.

Proof. Suppose that (A1) does not preserve validity. Thus, we have 
OL ¬(Oi A  ∧  Oi ¬A) and FN ¬(Oi   A  ∧  Oi ¬A). However, if 
FN   ¬(Oi   A  ∧ Oi ¬A), then tN Oi A  ∧  Oi ¬A. It follows that sα satisfies 
Oi A and Oi ¬A, meaning that sα satisfies A and it satisfies ¬A. By lemma 
1, it implies that both sαA ∈ O and sα¬A ∈ O, which contradicts C1.� 

Lemma 5.  (R1) preserves validity.

Proof. Assume that (R1) does not preserve validity. This means that we 
have a situation where Oi A OL Oi B is obtained by the use of (R1) but 
Oi A FN Oi B, that is tN Oi A and FN Oi B, and so sα satisfies Oi A but 
does not satisfy Oi B. By the use of (R1), we know that A  ⊃  B is true by 
hypothesis and that FPL B, and moreover that ΓA  ΓB. Therefore, by 
lemma 3 sα satisfies Oi B.� 

Theorem 1.  (Adequacy).  If  OL  A, then t A.

Proof.  Since O L is based upon P L, it suffices to show that (A1) and (R1) 
preserve validity, which follows from lemmas 4 and 5.� 

Lemma 6.  (Lindenbaum’s lemma).  OL has a maximally consistent extension.

Suppose K = 
 ∞

0 Ki, with K0 = OL the smallest set of wffs of L closed under 
the rules of PL, (A1) and (R1). Let A1, …, An,… be an arbitrary enumera-
tion of OL’s wffs. If  Kn−1 ¬An, then Kn = Kn−1, else Kn = Kn−1 ∪ {An}. 
This way, we have Ki extension of OL for all i ≥ 0. It is obvious that K is 
maximal since by construction either Ai ∈ K or ¬Ai ∈ K for all i. We now 
show that K is consistent.

Proof.  Assume K  ⊥. Thus, there is a finite proof of ⊥ from a finite subset 
of K, meaning that there is Kn such that Kn  ⊂ K and Kn  ⊥. If Kn is incon-
sistent, it implies that by construction the proposition An added to Kn−1 
broke Kn’s consistency. However, such a situation is impossible. Indeed, this 
means that Kn  An  ∧  ¬An, with Kn = Kn−1  ∪  {An} and Kn−1    ¬An. But 
if Kn−1   ¬An, then Kn  =  Kn−1, thus Kn E ⊥. And if Kn−1 E ¬An, then 
Kn  =  Kn−1  ∪  {An}, thus KnE ⊥ since KnE¬An. Therefore, K is consistent.
� 

Lemma 7.  N is a model of K.

Proof.  Assume that N is not a model of some maximally consistent exten-
sion K. It follows that there is a proposition A such that K A and KFN  A. 
But if K A, it means that there is a finite proof of A from a finite subset 
of K, thus Kn

 A and KnFN A. However, since every subset of K is an 
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extension of OL, it implies that Kn OL A. By theorem 1, if Kn OL A, 
then KnFN A, which contradicts our first hypothesis. Therefore, N is a 
model of K.� 

Theorem 2.  (Completeness).  If H t  C, then H OL C.

Proof.  Assume that there is a maximally consistent extension of OL where 
H tN C and H EK  C. Since K is maximally consistent, it follows that 
H K ¬C, and since N is a model of K it implies that H tN ¬C. However, 
if H tN C, then H FN ¬C, which contradicts our first hypothesis. There-
fore, if H  tN C, then H   K  C for any N.� 

The reader may note that the deduction theorem does not need to be proven 
in a natural deduction system since it follows immediately from the condi-
tional proof rule.

4.  Validity of legal reasoning

4.1.  Graphical representation

The idea that lies behind this approach is that, according to the semantical 
dichotomy, a scenario w is divided in two parts: one descriptive (D) and 
the other normative (N), which contains a set of obligations O.25 A sce-
nario w is inconsistent if either D or N is. The scenario can be seen as a 
model M where the descriptive part represents M and the normative one N. 
The validity of an argument is tested via the notion of a counterexample, 
that is, a scenario w in which the premises are assumed to be true but the 
conclusion is false. Since a valid argument does not possess any counter-
example, it follows that if the scenario is consistent, then the argument is 
invalid. As such, if the scenario is consistent, there is a truth-value assign-
ment which makes the premises true but the conclusion false. Otherwise, if 
the scenario is inconsistent (i.e., it is impossible for the premises to be true 
while the conclusion is false), then the argument is valid. The propositional 
rules (figure  1) representing schematically truth conditions for complex 
propositions are quite straightforward (cf. Garson 2006, p. 91).

A  B (A  B) A  B (A  B) A  B (A  B)   A

A	 B A A A	 B A	 B A A
B B B

Figure 1: Propositional rules

25  This section summarizes the results presented in Peterson (2013b).
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The semantical dichotomy implies that normative and descriptive atoms 
are not true in the same conditions. Otherwise, complex normative formu-
las behave schematically as complex descriptive formulas since both are 
composed of the same logical connectives (figure 1). The difference between 
the truth value of normative and descriptive formulas can be seen at the 
atomic level. While the truth of a descriptive proposition can be represented 
by the fact that it belongs to the descriptive part of a scenario, the truth of a 
normative proposition depends upon a norm established by some authority. 
A normative proposition A is obligatory if and only if there is a norm which 
makes the action described by A (i.e., ΓA) an obligation. As such, if a nor-
mative proposition Oi   A is true for a scenario w, then there is a norm (estab-
lished by authority i) which makes ΓA obligatory and the action described 
by A pertains to a set of obligations. Considering that the logical connec-
tives can (classically) be reduced to compositions of ¬ and ⊃, we only 
represent schematically the truth conditions for Oi p, Oi¬A and Oi (A ⊃ B) 
(figure 2). Note, however, that derived rules could easily be constructed 
from the lemmas that the reader will find at the end of this section. These 
rules, combined with conditions C1, C2 and C3, allow us to test the valid-
ity of a normative inference. Their construction is possible according to 
lemmas 1 and 2.

As an example, let us test (R1)’s validity with n = 1 (figure 3). Assume 
that w is a counter-example for (R1). Then, place the assumptions in 
their respective descriptive or normative part of w. According to the rules 
for normative atoms, Γp is in O. Since p  ⊃  q is assumed to be true in 
the descriptive part of w, it follows that Γp  Γq holds in its normative part. 
By C2 we obtain Γq in O,

N

Oip
Γp

O

N

OiA

ΓA

O

N

Oip

Γp

O

N

Oi(A ⊃ B)

OiB    (ΓA!ΓB)
ΓAB

O

N

Oi¬¬A

OiA

N

Oi¬(A ⊃ B)

ΓA
ΓB

O

Figure 2:  Truth conditions of normative atoms
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hence Oq can be concluded in the normative part of w. The only branch in 
the normative part closes (schematically represented by ×) since it contains 
a contradiction (i.e., Oi q and ¬Oi q). Therefore, there is no possible sce-
nario in which the premises of (R1) are true while its conclusion is false, 
hence the proof of (R1)’s validity.

w

Oip

p ⊃ q
¬Oiq

D	 N

p ⊃ q

¬p	 q

Oip

Oiq

×

O

Γp

Γq

¬Oiq

Figure 3: T est of (R1)’s validity

We now list some semantical properties of the model. These properties are 
useful for both the formal semantical proofs and the graphical representa-
tion. The following lemmas can be used to construct derived rules.

Lemma 8.  If  ΓA  ∈  O, then ΓB⊃A  ∈  O for any B.

Proof.  Assume that ΓA  ∈  O. By PL we know that A  ⊃  (B  ⊃  A) is true in D, 
thus ΓA  ΓB⊃A holds in N. Hence, by C2 ΓB⊃A ∈ O.� 

Lemma 9.  If  ΓA  ∈  O and ΓB  ∈  O, then ΓA ∧ B  ∈  O.

Proof.  Assume ΓA  ∈  O and ΓB  ∈  O. By PL we have A  ⊃  (B  ⊃  (A  ∧  B)) true 
in D, thus ΓA  ΓB⊃(A ∧ B) holds in N. By C2, we obtain ΓB⊃(A∧B) ∈ O, 
and by C3 ΓB  ΓA ∧ B. Therefore, by C2 we have ΓA ∧ B  ∈  O.� 

Lemma 10.  If  ΓA ∧ B  ∈  O, then ΓA  ∈  O.

Proof.  Assume ΓA ∧ B  ∈  O. By PL we have (A  ∧  B)  ⊃  A true in D, thus 
ΓA ∧ B  ΓA holds in N, and by C2 ΓA  ∈  O.� 

Lemma 11.  (Deontic detachment).  If  ΓA  ∈  O and ΓA⊃B ∈ O, then ΓB ∈ O.

Proof.  Assume that ΓA  ∈  O and ΓA⊃B  ∈  O. Then by lemma 3 ΓA ∧(A⊃B) ∈ O. 
Since by PL (A ∧ (A ⊃ B)) ⊃ B is true in D, we have ΓA ∧(A⊃B)  ΓB in N, 
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and by C2 ΓB  ∈  O. Equivalently, assume that ΓA  ∈  O and ΓA⊃B  ∈  O. 
By C3 ΓA  ΓB holds in N and by C2 ΓB  ∈  O.� 

Lemma 12.  (De Morgan).  ΓA ∧B  ∈  O if and only if Γ¬(¬A ∨ ¬B)  ∈  O.

Proof.  (⇒) Assume ΓA ∧ B  ∈  O. Since by PL we have (A  ∧  B)  ⊃  ¬(¬A ∨¬B) 
true in D, we have ΓA ∧ B  Γ¬(¬A ∨ ¬B) in N, thus Γ¬(¬A∨¬B) ∈ O by 
C2.

(⇐)  Assume Γ¬(¬A ∨ ¬B)  ∈  O. Since by PL we have ¬(¬A  ∨  ¬B)  ⊃  (A  ∧  B) 
true in D, we have Γ¬(¬A∨¬B)  ΓA ∧ B in N, thus ΓA ∧ B ∈ O by C2.

Lemma 13.  The next lemmas are consequences of (De Morgan) or lemma 8.

If  ΓA  ∈  O, then ΓA ∨ B  ∈  O� (6)
If  ΓA  ∈  O, then Γ¬(¬A ∧ ¬B)  ∈  O� (7)
If  Γ¬A  ∈  O, then Γ¬A ∨ ¬B  ∈  O� (8)
If  Γ¬A  ∈  O, then Γ¬(A ∧ B)  ∈  O� (9)
If  Γ¬(A ∨ B)  ∈  O, then Γ¬A  ∈  O� (10)
If  Γ¬(¬A ∨ ¬B)  ∈  O, then ΓA  ∈  O� (11)

4.2.  Soundness of legal inference

Formal logic is relevant to legal discourse and critical thinking insofar as 
it enables one to have a well-defined concept of validity, and hereby to 
have a method to prove that inferences are valid or not. However, each 
formal framework that tries to model the validity of our natural language 
possesses its limits, the natural language being vast and rich and, as we will 
see below, ours possesses its limitations too. Hence, it might be useful to 
present some informal considerations one must take into account when 
analyzing normative inferences. A sound inference is valid and has true (or 
acceptable) premises (cf. Peterson 2013a). As such, not all valid inferences 
are sound. Without pretending to be exhaustive, we provide the reader with 
some philosophical insights regarding the acceptability of the premises 
within a legal argument (see also Peterson 2013b).

A sound inference must be valid. Note, though, that our framework pos-
sesses its limits (e.g., it cannot model deontic conditionals), and therefore 
it is not because an argument is invalid within OL that it must be rejected. 
When the logical form of the argument falls within the scope of OL, the 
second step after verifying its validity is to determine whether or not its 
premises are acceptable. Since the truth of a normative proposition depends 
upon a norm, which is established by some authority, the first thing to do 
is to contextualize the normative propositions to a legal authority: is it true 
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according to the Constitution? the Civil Code? the Criminal Code? the Cana-
dian Charter of Rights and Freedom? It is noteworthy that some inferences 
can be fallacious when the meaning of ‘ought’ is not the same throughout the 
argument.

In addition to the normative propositions, the descriptive propositions 
within the argument should also be contextualized to some authority. For 
instance, the meaning of ‘Paul respects his neighbour’ will vary depending 
whether the legal authority is the Civil Code or the Criminal Code or the 
Canadian Charter of Rights and Freedoms. Then, one must determine what 
legally counts as a lack of respect from the Civil Code’s point of view. In 
other words, one must answer the question ‘what action counts-as A from 
the authority’s standpoint?’.26

The context of the argument must also be considered to establish the truth 
of the normative premises. For example, if ‘ought’ is understood legally, the 
proposition ‘Paul ought to tell the truth’ is not true in general but is true if 
Paul is providing testimony in a court of justice. Furthermore, the descrip-
tive propositions used together with (R1) must be analyzed in terms of 
necessity and sufficiency. One must determine whether or not the conditional 
represents a semantical entailment between actions and see if the consequent 
is necessarily entailed by the action described in the antecedent.

Also, since our framework is not able to deal properly with contrary-to-duty 
reasoning and deontic conditionals, it might happen that conflicting obliga-
tions arise within a given situation. For example, consider the following 
argument (and assume a context in which premises 2 and 3 hold).

1. P aul ought to rescue Peter from drowning.
2. I f Paul rescues Peter, then Paul calls 911.
3. I f Paul calls 911, then Paul breaks into Sam’s house.
∴  Paul ought to break into Sam’s house.

Assuming that breaking and entering is legally forbidden, this yields a con-
flict of obligations when we add the following implicit premise.

4.  Paul ought to not break into Sam’s house.

Alchourrón and Makinson (1981) suggested that conflicts of obligations 
can be resolved by introducing a relation of hierarchy (or priority) between 
obligations. This idea was used by many logicians in non-monotonic deon-
tic logic. Among others, van der Torre and Tan (1997) provided an insight-
ful analysis of how conflicts of obligations can emerge in various situations. 
According to their analysis, the aforementioned example is a case of weak 

26  For an analysis of ‘count as’, see Jones and Sergot (1996) and Boella and van der 
Torre (2006).
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overridden defeasibility, where the contradiction appears because there is a 
conflict between the prima facie obligation to not break into Sam’s house 
and the obligation to rescue Peter under the circumstances that he is drown-
ing. Even though Paul has in general the obligation to not break into Sam’s 
house, there might be specific situations in which it can be excused (but not 
allowed nor justified), namely if it is necessary to save Peter’s life.

The assumption that premise 3 holds implies that Paul could argue that 
he should not be punished for breaking and entering since it was necessary 
to break into Sam’s house to save Peter’s life. Indeed, under specific cir-
cumstances, the defense of necessity can be invoked to excuse (but not 
justify) the violation of the law.27 In the aforementioned example, Paul’s 
actions are not morally voluntary given that he has no realistic choice: all 
things considered, it is reasonable to expect that Paul will break into Sam’s 
house to call 911 if it is indeed the only possible course of action he has to 
save Peter’s life. In such a context, the obligation to not break into Sam’s 
house is overshadowed (as opposed to cancelled) by the obligation to break 
into Sam’s house so that Paul can save Peter’s life. Hence, in this context, 
Paul can be excused to break into Sam’s house. Even though the obligation 
to not break into Sam’s house is still in force (i.e., it does not simply disap-
pear when a conflict arises), it is not actual in the sense that it should not 
be guiding Paul’s actions in that context. Having this information at hand, 
one can thus reject premise 4 and the argument can be formalized within 
our framework while avoiding the conflict.

At last, the premises of a normative inference can be analyzed in the light 
of the ought-implies-can principle. Instead of the aforementioned example, 
consider the following argument.

1. P aul ought to rescue Peter from drowning.
2. �I f Paul rescues Peter from drowning, then Paul jumps in the water to 

retrieve Peter.
∴ P aul ought to jump in the water to retrieve Peter.

If for some reasons Paul cannot swim (e.g., if Paul has two broken arms), 
then premise 2 is a violation of the ought-implies-can principle. Thus, it must 
be rejected since in this case ‘rescuing Peter from drowning’ does not entail 
that Paul jumps in the water to retrieve him.

4.3.  The paradoxes of deontic logic

Having presented some insights regarding the analysis of the soundness of 
legal inferences, let us now examine how our framework deals with the 

27  This has been accepted by the Supreme Court. See Perka c. La Reine, [1984] 2 R.C.S. 232.
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notorious paradoxes of deontic logic. Following Åqvist’s (2002) presenta-
tion, a formula A is a paradox for a deontic logic ∆ either if it is derivable 
in ∆ but its translation does not seem derivable within the natural normative 
language, or it is not derivable in ∆ but its translation seems derivable 
within the natural normative language. In other words, a formula is a para-
dox either when it can be derived but it should not, or when it cannot be 
derived but it should.

4.3.1.  Ross’s paradox

Ross’s (1941) disjunctive paradox appeared in reaction to Jørgensen’s (1937) 
dilemma and aimed to show that a logic for imperatives does not behave 
similarly to propositional logic. For instance, the satisfaction of the imper-
ative Mail the letter! does not imply that Mail the letter or burn it! is also 
satisfied.

Theorem 3.  OL  Oi p  ⊃  Oi (p ∨ q)

Proof.  Assume tN Oi p but tN ¬Oi (p ∨ q). Thus, sα satisfies Oi p but does 
not satisfy Oi (p ∨ q), which by definition is Oi (¬p ⊃ q). Thus, sα satisfies 
p and sα 

p ∈ O but sα does not satisfy ¬p ⊃ q, and so sα does not satisfy 
Γm = ¬p ⊃ q. By PL, we have Γp  Γm, and so by C2 sα satisfies Γm.

1 Oi p H
2 p ⊃ (p ∨ q) PL

3 Oi (p ∨ q) (R1) 1,2
4 OL Oi p ⊃ Oi (p ∨ q) ⊃ in 1-3  � 

4.3.2.  Prior’s paradox

Prior’s (1954) paradox of derived obligations was an objection against von 
Wright’s (1951) initial approach to deontic logic. It aimed to show that von 
Wright’s notion of commitment, represented by O(p ⊃ q), fails in contexts 
of derived obligations: it is not because p is forbidden that doing p commits 
one to do q.

Theorem 4.  OL Fi p ⊃ Oi (p ⊃ q)

Proof.  Assume tN Fi p but tN ¬Oi (p ⊃ q). By definition it means that sα 
satisfies Oi ¬p, thus sα satisfies ¬p, meaning that sα satisfies p, and sα does 
not satisfy Oi (p ⊃ q), thus does not satisfy p ⊃ q. Therefore, sα does not satisfy 
Γm = p ⊃ q and sαm  " O. However, we have sαp  Γm since tPL ¬p ⊃ (p  ⊃  q), 
and so by C2 sαm  ∈  O.
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1 Fi p H
2 Oi ¬p def F1
3 ¬p ⊃ (p ⊃ q) PL

4 Oi(p ⊃ q) (R1) 2,3
5 OL Oi p ⊃ Oi(p ⊃ q) ⊃ in 1-4� 

Theorem 5.  OL Oi p ⊃ Oi(q ⊃ p)

Proof.  Assume tN  Oi p but tN ¬Oi (q  ⊃  p). Thus, sα satisfies Oi p but 
does not satisfy Oi (q ⊃ p), meaning that sα satisfies p, and so sαp  ∈  O, but 
sα does not satisfy q ⊃ p. Therefore, sα does not satisfy Γm  =  (q ⊃ p) and 
sαm " O. However, sαp  sαm since tPL p ⊃ (q ⊃ p), and thus by C2 sαm ∈ O.

1 Oi p H
2 p ⊃ (q ⊃ p) PL

3 Oi (q ⊃ p) (R1) 1, 2
4 OL Oi p ⊃ Oi (q ⊃ p) ⊃ in 1-3� 

Although it might surprise the reader, we think that Ross’s and Prior’s 
paradoxes are both desirable consequences of OL. Both paradoxes can be 
compared with theorem 6 since there is an equivalence between Oi (p ∨ q) 
and Oi¬(¬p   ∧ ¬q), and between Oi(p  ⊃  q) and Oi ¬(p  ∧  ¬q).

Theorem 6.  OL Fi p ⊃ Fi (p ∧ q)

Proof.  Assume tN Fi p but tN ¬Fi (p ∧ q). By definition it means that sα 
satisfies Oi¬p but does not satisfy Oi¬(p ∧ q). Thus, sα satisfies ¬p, meaning 
that sα satisfies p and so sαp ∈ O, but sα does not satisfy ¬(p ∧ q), which 
by definition is p ⊃ ¬q. Therefore, sα does not satisfy Γm = p ⊃ ¬q, and so 
sαm  "  O. However, sαp    Γm since tPL  ¬p  ⊃  (p  ⊃ ¬q), and so by C2 sαm  ∈  O.

1 Fi p H 

2 Oi¬p def F1 
3 ¬p ⊃ ¬(p ∧ q) PL

4 Oi ¬(p  q) (R1) 2,3
5 Fi(p  q) def F4
6 OL Fi p ⊃ Fi(p  q) ⊃ in 1-5� 

Recall that OL aims to model how the property obligatory is transmitted 
from an action to another. Thus, while Ross’s paradox says that if the action 
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described by p is obligatory, then any conjunction of actions which includes 
the action described by ¬p is forbidden, Prior’s paradox says that if the 
action described by p is forbidden, then any conjunction of actions which 
includes the action described by p is also forbidden. Hence the comparison 
with theorem 6: if the action described by p is forbidden, then so is the 
action described by p ∧  q for any q. When considered from a legal point of 
view, these theorems are desirable. If an action is legally forbidden, then 
any conjunction of action which includes the forbidden action is also for-
bidden, notwithstanding the nature of the other action. If it is forbidden to 
steal a car, then it is also forbidden to steal a car while eating ice cream.

4.3.3.  Chisholm’s paradox

Chisholm’s (1963) contrary-to-duty paradox is the most damaging for 
monadic deontic logic. It shows that monadic frameworks are not able to 
properly represent conditional obligations. Although Prior’s paradox moti-
vated von Wright (1956, 1967) to introduce dyadic deontic logic (see Åqvist 
(2002) for an overview of dyadic deontic logic and Tomberlin (1981) for a 
discussion of conditional obligations), the need for a dydadic deontic logic 
arises when one considers Chisholm’s puzzle. While the following sentences 
are perfectly consistent within the natural normative language, the conjunc-
tion of their translation is inconsistent in standard monadic deontic logic, 
i.e., the modal logic KD (cf. Åqvist 2002, p. 155).28

1. P aul ought to not steal.
2. �I t ought to be that if Paul does not steal, then he does not give back what 

was stolen.
3. I f Paul steals, then he ought to give back what was stolen.
4. P aul steals.

These are translated in KD by:

O ¬p� (12)
O  (¬p ⊃ ¬q)� (13)
p ⊃ Oq� (14)
p� (15)

Propositions 13 and 14 must be translated differently since they are independ-
ent within the natural normative language (cf. Åqvist 2002). Translating 13 by

¬p ⊃ O ¬q� (16)

28 S ee Åqvist (1967), Decew (1981) or Tomberlin (1981; 1983) for a discussion of the 
paradox.
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would make 16 a consequence of 15, as translating 14 by

O( p ⊃ q)� (17)

would make 17 a consequence of 12.

We agree with the literature that material conditionals cannot adequately 
model deontic conditionals. As such, we do not think that O(p ⊃ q) is the 
appropriate formulation to model an obligation Oq conditional to a 
context p. Since mixed formulas are not available within our framework, 
it follows that Chisholm’s paradox cannot be formulated appropriately. The 
available translations are:

Oi ¬ p� (18)
Oi (¬ p ⊃ ¬ q)� (19)
Oi (  p ⊃ q)� (20)
p� (21)

Oi ¬ p� (22)
Oi ¬ p ⊃ Oi ¬ q� (23)
Oi (p ⊃ q)� (24)
p� (25)

Oi ¬ p� (26)
Oi (¬ p ⊃ ¬ q)� (27)
Oi p ⊃ Oi q� (28)
p� (29)

Oi¬ p� (30)
Oi¬ p ⊃ Oi¬ q� (31)
Oi p ⊃ Oi q� (32)
p� (33)

It is noteworthy that each of these translations is consistent within our 
language. All imply Oi¬q but none implies Oiq since Γp " O. However, 
they fail to model Chisholm’s paradox insofar as the propositions within 
these translations are not independent from each other. Indeed, 20 (=24) is a 
consequence of 18 (=22) in virtue of theorem 4, and 28 (=32) is a consequence 
of 26 (=30) and theorem 7.
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Theorem 7.  OL Oi¬p ⊃ (Oi   p ⊃ Oi q)

Proof.

  1 Oi¬ p H
  2  ¬ (Oi ¬ p ∧ Oi ¬¬ p) (A1)
  3 Oi  ¬ p ⊃ ¬ Oi ¬¬ p def ∧ 2
  4 ¬ Oi ¬¬ p ⊃ out 1,3
  5 ¬ Oi¬¬ p ⊃ (Oi ¬¬ p ⊃ Oi q) PL

  6 Oi ¬¬p ⊃ Oi q ⊃ out 4,5
  7 Oi p H
  8  p ⊃ ¬¬ p PL

  9 Oi ¬¬ p (R1) 5,6
10 Oi ¬¬ p ⊃ Oi q (Reit) 6
11 Oi q ⊃ out 4,5
12 Oi p ⊃ Oi  q ⊃ in 7-11� 

Chisholm’s paradox is thus a limitation of our framework. However, the 
aim of this paper was not to model deontic conditionals but was rather to 
define a proper consequence relation for inferences within which there are 
no mixed formulas. The aim was to model the transmission of the property 
obligatory between normative propositions. The discussion of contrary- 
to-duty reasoning and deontic conditionals goes far beyond this paper and 
is an avenue for future research (see Peterson 2014b).

4.3.4.  Detachment and Augmentation

Chisholm’s paradox is related to the problems of detachment and augmen-
tation of deontic conditionals (cf. Jones 1991).29 The problem of (factual) 
detachment can be summarized as follows: although the detachment of a 
conditional obligation from its context seems suitable, as in Chisholm’s 
paradox where we want to derive that Paul ought to give back what was 
stolen from the contrary-to-duty p ⊃ Oq and the fact that Paul stole, there are 
situations where some extra conditions can make detachment undesirable. 
For instance, even though Paul has the conditional obligation to drive his 
wife to the hospital if she is near delivering, he does not have this obligation 

29  There is a distinction between deontic detachment, which is expressed by lemma 11, 
and factual detachment, which is the detachment problem we are discussing within this 
section. See Loewer and Belzer (1983) for the distinction.
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under the conditions that she is near delivering and (for some reason) he is 
drunk. As such, only a form of restricted detachment seems desirable, namely 
when we can insure that no other information will thwart detachment.30

The problem of (unrestricted) detachment is related to the problem of 
augmentation. In a nutshell, the problem of augmentation comes from the 
fact that one cannot strengthen the antecedent of a deontic conditional. 
Hence,

p ⊃ Oq
(p ∧ r) ⊃ Oq

is not a valid inference pattern for deontic conditionals since the other 
conditions r might block the detachment of Oq. If one wants to model 
Chisholm’s paradox and contrary-to-duty reasoning, then one will need to 
address these problems. This, which is also why we only concentrated upon 
the consequence relation of normative inferences in which there are no 
mixed formulas, will be the subject of another paper.31

4.3.5.  Forrester’s paradox

Forrester’s (1984) paradox aims to show that (R1) is not an acceptable rule 
for normative reasoning. The paradox is similar to Prior’s (1958) initial 
good Samaritan paradox and Nozick’s and Routley’s (1962) robbery 
paradox.32Assume a legal system in which a murder must be gentle. The 
original formulation of the paradox uses a conditional obligation (i.e., if Jones 
murders Smith, then he ought to do it gently)33, but since in this respect it 
does not tell us more than what was already pointed out by Chisholm, we 
will only present the argument against (R1). The paradox follows from:

1.  Jones ought to murder Smith gently.
2. I f Jones murders Smith gently, then Jones murders Smith.
3.  Jones ought to murder Smith.

According to Forrester, (R1) must be rejected since it allows one to con-
clude that Jones ought to murder Smith in a context where gentle murders 
are preferable to violent ones. The validity of this inference in our frame-
work follows from lemma 14.

30 O n this point, see Decew (1981), Loewer and Belzer (1983), Vorobej (1986), Jones 
(1991), Alchourrón (1996) and Bonevac (1998).

31 S ee Peterson (2014b).
32 T he good Samaritan paradox was reformulated by Åqvist (1967).
33  The original paradox also insists on the contradiction between the assumption that Jones 

ought to not murder Smith and the conclusion from (R1) that Jones ought to murder Smith.
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Lemma 14.  If tN  Oi   p and tM p ⊃ q, then tN Oi q.

This represents the principle of deontic consequences. Notice that both 
tN Oi  p and tM p  ⊃  q say that the propositions are true (respectively in 
a normative model N and a descriptive model M), which does not mean 
that the propositions are valid, that is, true in every models.

Proof.  Assume tN Oi p and tM p  ⊃  q but tN ¬Oi q. Therefore, s α satis-
fies Oi p but does not satisfy Oi q, meaning that it satisfies p but not q, thus 
s αp  ∈ O but s αq  " O. However, by hypothesis tM p  ⊃  q, so Γp  Γq, and 
therefore sα satisfies q by C2.

However, despite its validity, this argument is not sound. As it was argued 
by Jacquette (1986, p.762), the first premise is to be rejected. Of course, if 
one accepts a legal system where Jones ought to murder Smith gently, then 
one accepts a system where Jones ought to murder Smith! But the obliga-
tion of ‘murdering gently’ must be rejected in favour of the obligation of 
‘not murdering violently’, and this does not lead to paradoxical results.34

4.3.6.  Lemmon’s paradox

Lemmon’s (1962) paradox insists on the possibility of moral dilemmas and 
conflicting obligations. Although it is possible to face conflicting obliga-
tions in real life situations, a deontic logic which accepts (A1) as an axiom 
for normative consistency cannot model such situations. Moreover, when such 
a conflict happens, a deontic logic which satisfies (A1) will dictate that 
anything is obligatory insofar as any extension of classical propositional 
logic validates  ⊥ ⊃ A for any A (cf. Horty 1997).35 Thus, from Paul’s 
obligation to pick up his kids at the kindergarten by 5 p.m. and from his 
obligation to help the victim of a car accident that just happened, Paul can 
conclude that he ought to commit adultery, assuming that he picks up his kids 
by 5 p.m. if and only if he does not help the victim.

This, however, is not a paradox for OL. Indeed, axiom (A1) says that an 
authority i cannot state that both A and ¬A are obligatory at the same time. 
This is acceptable insofar as norms are meant to guide one’s actions, and it 
would be impossible to act within the frame dictated by inconsistent norms. 
That being said, the obligation to pick up his kids in the aforementioned 
example is not of the same type as his obligation to help the victim of the 
car accident. Hence, the conflict can be translated by Oi p ∧ Oj ¬p, which 
is not inconsistent in OL. In the eventuality that the conflict arises from 

34  For an analysis of Forrester’s paradox, see Peterson and Marquis (2012).
35 S ee also theorem 7 above.
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contrary-do-duty reasoning or conditional obligations, it can be solved 
through the relation of hierarchy as we saw previously.

4.3.7.  Aggregation

Aggregation of obligations is sometimes contested insofar as it can lead to 
conflicting obligations (see for instance Schotch and Jennings (1981) and 
Horty (1997)). These conflicts, however, often arise from different types of 
obligations. Since OL concerns only one type of obligation, it is acceptable 
to accept that if an authority makes A and B obligatory, then it makes both 
obligatory together. This is represented by theorem 8.36

Theorem 8.  OL Oi(p ∧ q) ≡ (Oi p ∧ Oi q)

Proof.  It follows from theorems 9 and 10.� 

Theorem 9.  OL Oi(p ∧ q) ⊃ (Oi p ∧ Oi q)

Proof.  Assume tN Oi (p ∧ q) but tN ¬(Oi p ∧ Oi q). Thus, s α satisfies 
Oi (p ∧ q), which by definition means that s α satisfies ¬(p ⊃ ¬q), and so 
sα satisfies p ⊃ ¬q. Thus, s α satisfies p and sα satisfies ¬q, meaning that 
s α satisfies q. However, sα does not satisfy (Oi p ∧ Oi q), meaning that 
either (a) s α does not satisfy Oi p or (b) it does not satisfy Oi q.

(a) �I f s α does not satisfy Oi   p, it implies that it does not satisfy p, which 
is inconsistent with our hypothesis

(b) �I f s α does not satisfy Oi q, it implies that it does not satisfy q which 
is also inconsistent with our hypothesis

1 Oi (p ∧ q) H
2  (p ∧ q) ⊃ p PL

3 Oi p (R1) 1,2
4 (p ∧ q) ⊃ q PL

5 Oi q (R1) 1,4
6 Oi p ∧ Oi q ∧  in 3,5
7 OL Oi (p ∧ q) ⊃ (Oi p ∧ Oi q) ⊃ in 1-6� 

36 T his principle can be contested if we consider contrary-to-duty reasoning and condi-
tional obligations. As the reader will see, we will change our mind in Peterson (2014c) and 
reject the aggregation principle on the grounds that ∧ does not adequately represent action 
conjunction.
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Theorem 10.  OL (Oi p ∧ Oi q) ⊃ Oi (p ∧ q)

Proof.  Assume tN Oi p ∧ Oi q but tN ¬Oi (p ∧ q). Thus, sα satisfies Oi p 
and satisfies Oi q, meaning that it satisfies p and it satisfies q, and so 
s αp, s αq ∈ O, but it does not satisfy Oi (p ∧ q). By definition, it implies that 
sα does not satisfy ¬(p  ⊃  ¬q), thus sα does not satisfy p  ⊃  ¬q. Thus, 
either sα does not satisfy p, which is inconsistent with our hypothesis, or 
sα does not satisfy ¬q, meaning that sα does not satisfy q, which is also 
inconsistent with our hypothesis.

1 Oi p ∧ Oi q H
2 (p ∧ q) ⊃ (p ∧ q) PL

3 Oi (p ∧ q) (R1) 1, 2
4 OL (Oi p ∧ Oi q) ⊃ Oi(p ∧ q) ⊃ in 1-3� 

4.3.8.  Contingency

The principle of normative contingency was first advocated by von Wright 
(1951). It has since then been defended by Chellas (1974) and Jones and 
Pörn (1985). This principle implies that tautologies are neither uncondi-
tional nor derived obligations. As it is shown by the following lemmas, our 
approach respects contingency.

Lemma 15. EOL Oi p  ⊃  Oi(¬p ⊃ ¬p)

Proof.  We show that there is a model N such that tN ¬(Oi p  ⊃  Oi(¬p ⊃ ¬p)). 
Suppose tN Oi p and tN ¬Oi(¬p  ⊃  ¬p). So sα satisfies Oi p and thus 
s αp   ∈  O  but sα does not satisfy Oi(¬p ⊃ ¬p), meaning that sα does not 
satisfy ¬p ⊃ ¬p and either sα does not satisfy ¬p, thus sα does not satisfy 
p, or Γ¬p = Γ¬p. Both cases are consistent with C1–C3 and the definition 
of satisfaction.� 

Lemma 16. EOL Oi p  ⊃  Oi( p  ∨  ¬p)

Proof.  We show that there is a model N such that tN ¬ (Oi p ⊃ Oi ( p ∨ ¬ p)). 
Assume tN Oi p and tN ¬Oi(¬ p  ∨  ¬p). Thus, sα satisfies Oi p but does 
not satisfy Oi(  p ∨ ¬ p). By definition, it means that sα satisfies p but does 
not satisfy ¬ p ⊃ ¬ p (theorem 15).� 

Lemma 17. EOL Oi p  ⊃  Oi( p ⊃ p)

Proof.  We show that there is a model N such that tN ¬(Oi p ⊃ Oi( p  ⊃  p)). 
Assume tN Oi   p and tN ¬Oi ( p  ⊃  p). Thus, sα satisfies Oi p but does not 
satisfy Oi(p  ⊃  p), meaning that sα satisfies p and s αp   ∈  O, but sα does not 

99005_LogiqueAnalyse_234_05.indd   255 4/08/16   13:09



256	 clayton peterson and jean-pierre marquis

satisfy p  ⊃   p. Therefore, sα does not satisfy Γm  =  p  ⊃  p, which is consist-
ent with C2 since tPL p  ⊃  p, and either sα does not satisfy p, which is 
inconsistent with our hypothesis, or Γp = Γp, which is true. Therefore, it is 
possible that sα satisfies Oi p but does not satisfy Oi(p  ⊃  p).� 

Lemma 18. EOL Oi(p ∨ ¬p)

Proof.  It follows from theorem 16.� 

Lemma 19. EOL Oi(¬p ⊃ ¬p)

Proof.  It follows from theorem 15.� 

Also, it must be possible to represent that some actions are neither obliga-
tory nor forbidden, which follows from the following lemma.

Lemma 20. EOL Oi  p  ∨  Oi ¬p

Proof.  Assume tN ¬Oi p ∧ ¬Oi¬p. Thus, sα does not satisfy Oi p and does 
not satisfy Oi ¬p, meaning that sα does not satisfy p and does not sat-
isfy ¬p. Therefore, sα does not satisfy p and s αp " O and s  αp " O, which 
is not inconsistent.� 

This would have been violated if we had assumed an ‘if and only if’ instead 
of a simple ‘if then’ in condition C1.

4.3.9.  Disjunctive permission

A consequence of OL is that if an action is permitted, then a disjunctive 
action which includes said action is also permitted. Hence, if it is permitted 
to walk in the park, then it is permitted to either walk in the park or rob a 
bank. This reasoning, which follows from theorem 11, is also derivable in 
standard deontic logic (it is actually derivable in a normal deontic logic, in 
the sense of Åqvist (2002, p. 155), i.e., an extension of the modal logic K). 
But this paradox is no more puzzling than the fact that from p’s truth one 
can infer the truth of p ∨ q in PL. Moreover, theorem 11 appears as a desir-
able consequence when one considers theorem 12.

Theorem 11.  OL Pi  p  ⊃  Pi(p ∨ q)

Proof.  It follows from theorem 12 by contraposition.� 

Theorem 12.  OL Fi(p ∨ q) ⊃ Fip

Proof.  Assume tN Fi(p ∨ q) but tN ¬Fip. By definition it means that sα 
satisfies Oi¬(p  ∨  q), thus sα satisfies ¬(p  ∨  q), which by definition is 
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¬(¬p  ⊃  q), and sα does not satisfy ¬p, thus sα does not satisfy p and 
s  αp " O. Since sα satisfies ¬(¬p  ⊃  q), sα satisfies ¬p ⊃ q, thus sα satisfies 
¬p, and so sα satisfies p.

1 Fi  (p  ∨  q) H
2 Oi ¬ (p  ∨ q) def F 1
3 ¬ (p ∨ q)  ⊃  ¬ p PL

4 Oi ¬ p (R1) 2,3
5 Fi p def F 4
6 OL Fi (p ∨ q) ⊃ Fi p ⊃ in 1-5� 

Theorem 12 says that if a disjunction of actions is forbidden, then each 
member of the disjunction is forbidden too. This is a desirable consequence. 
For instance, if Paul tells his son Peter that he is forbidden to either take 
the car or the motorcycle, we do not expect Peter to answer ‘Fine! I’ll take 
the motorcycle then!’.

5.  Conclusion

To sum up, we introduced a method to test the formal validity of legal 
inferences. Although the main contribution of this paper was to develop a 
formal method to test validity, we also provided the reader with a brief 
analysis of some important aspects of sound normative inferences. It is our 
view that if formal philosophy is to be of help to legal discourse, then it 
must first reflect upon the law’s fundamental characteristics that should be 
taken into account. We provided the reader with a brief analysis of Cana-
dian legal discourse and we exposed three fundamental characteristics 
which ought to be considered if one wants to represent the formal structure 
of legal arguments. These characteristics are the presupposed consistency 
of legal discourse, the fact that there is a hierarchy between norms and 
obligations to preserve this consistency and the fact that legal inferences 
are subjected to the principle  of deontic consequences. The formal logic 
that was built according to these characteristics is restricted to normative 
inferences in which there is only one type of obligation, no iteration of 
deontic operator and no mixed formulas (i.e., no conditional obligations). 
This is both a strength and a weakness of our approach. It is a strength 
insofar as the paradoxes which use these properties cannot be formulated 
in our framework. But it is a weakness since we cannot formulate contrary-
to-duty reasoning and conditional obligations, which are of central impor-
tance in legal reasoning.
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The main contribution of this paper is that our method covers a portion 
of the intuitive validity of legal inferences that was not covered by other 
monadic frameworks in the literature. For instance, the principle of deon-
tic consequences is not valid in standard deontic logic. Although the prin-
ciple of deontic consequences can be formulated (and validated) in a 
multi-modal deontic logic which includes a minimal necessity operator 
, our aim was to develop a system which can easily be applied to test the 
validity of some basic legal inferences and where the principles of con-
tingency and deontic consequences are handled with very little formalism. 
Our intention was to introduce an alternative to the modal logic K, which 
is usually used as a building block for the construction of deontic logics. 
This framework also provides a method to graphically represent legal 
arguments and test their validity. It is our view that our framework is bet-
ter suited than K to formalize the transmission of the property ‘legally 
obligatory’ between actions.

For future research, we intend to extend this method to arguments in 
which there are different types of obligations which can be iterated and are 
linked by a relation of hierarchy to prevent conflicts of obligations. We will 
also work on the representation of mixed formulas, conditional obligations 
and contrary-to-duty reasoning. It would be interesting to see if (and how) 
this system can deal with agency and incorporate (or be incorporated in) 
the frameworks of dynamic and stit logics. Another avenue will be to rede-
fine the propositions within the scope of the deontic operator Oi. Instead of 
using descriptive formulas that refer to actions, the satisfaction of norma-
tive atoms could be redefined in terms of an action algebra.37 However, this 
would require to study carefully action logics and determine the proper 
formal framework to represent the structure of actions.38 Finally, another 
avenue for future research will be to see how this approach can be refor-
mulated within the framework of categorical logic.
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