
Logique & Analyse 234 (2016), 133-155

doi: 10.2143/LEA.234.0.3159738. © 2016 by Peeters Publishers. All rights reserved.

Predication and Computable Concepts

Max A. Freund

Abstract

Our interest in this paper is in the concept of predication itself and the extent to
which such a concept can consistently be assumed to be fully or semi-computable.
We address this problem relative to the logical context provided by a certain formal
system that we label LC and several well founded results from standard comput-
ability theory. System LC is a conceptualist second order logical formal system for
reasoning with computable concepts. The system also contains an axiom assigning
correlates to semi-computable concepts. Concept-correlates are entities whose
­content include a general specification of the conditions under which the correlated
concepts can be truly predicated or cannot be truly predicated of objects or an
encoding of such a specification. The axiom in question is justified on the basis of
Church’s thesis and a discussion concerning the relationship between computable
concepts and Turing machines. We show, by means of a semantic model, that predi-
cation can be consistently assumed to be semi-computable, when restricted in its
application to fully computable or semi-computable concepts. Within the context
of LC, we also prove that a contradiction ensues if the concept of predication is
held to be fully computable. If the concept of predication is assumed to be a semi-
computable concept applicable to any concept (computable or otherwise), we show
that a consequence follows within LC that would contradict a well-established
result from computability theory.

Introduction

Conceptualism, as a philosophical theory of predication, looks at concepts
as the semantic grounds for the attribution of predicates. That is to say,
concepts are to be viewed as the meaning of predicates and, as such, as the
basis for predication. A contemporary version of conceptualism has extended
such a view so as to cover all linguistic expression, with the exception of
sentences. Thus, not only predicates will represent concepts, but also many
other sorts of linguistic items such as universal quantifiers and definite
descriptions. Different kinds of concepts are postulated corresponding to the
diversity of linguistic expressions.

In addition to its general semantic approach based on concepts, the above
contemporary version of conceptualism understands concepts as cognitive

99005_LogiqueAnalyse_234_01.indd 133 4/08/16 13:07

134	 max a. freund

capacities or cognitive structures otherwise based upon such capacities1.
Exercise of such capacities or structures makes possible the use of the
associated linguistic expressions. On the basis of this idea that concepts can
be exercised, an important distinction among concepts can be introduced
into conceptualism. This is the distinction between computable and non-
computable concepts. When computable concepts are exercised, they will
differ from the other sort of concepts by their effectiveness. Among comput-
able concepts, one can differentiate those that are semi-computable from
those that are fully computable 2.

In this paper, we shall assume as philosophical background the above
contemporary version of conceptualism and focus on the concept of predi-
cation itself. This concept is a cognitive capacity or cognitive structure that
allows us to identify predications as well as to determine the formal condi-
tions for their truth. We shall be here interested in deciding the extent to
which such a concept can consistently be assumed to be (fully or semi-)
computable. By means of the concept of predication one determines whether
or not a certain mental act constitutes a predication and, if it does, whether
the necessary formal conditions for falling under a concept have been ful-
filled. We shall intend to determine whether the capacity or structure in
question can consistently be assumed to be fully or semi-effective.

The above problem derives its interest from the importance of a more
general problem in metacognition, that is, in the cognition of cognition or
thinking about thinking. Metacognition involves second-order cognitive
abilities and capacities, planning, monitoring and evaluation. How effective
such abilities, capacities, planning, etc., might be is a central problem in
that field3. A concept of predication as a cognitive capacity or structure is
clearly metacognitive, since its objects are themselves cognitive acts. Thus,
an answer to the question regarding its effectiveness would be a step for-
ward towards a complete solution of the aforementioned general problem.

Clearly, the interpretation of a concept as a cognitive capacity or struc-
ture allows us to link directly the particular problem of this paper with the
above general problem in metacognition. Moreover, such a feature (together
with others of the variant of conceptualism here presupposed) provides a
clear philosophical ground for connecting metacognitive problems to logical
and philosophical problems. Alternative philosophical theories of predication
(viz., realism and nominalism) do not offer such a straightforward natural
connection. In other words, the possibility of establishing more direct
ties to metacognitive problems commends the variant of conceptualism in

1 F or an example of this sort of contemporary form of Conceptualism, see Cocchiarella
(2009).

2  We have introduced the distinctions in question in Freund (1994).
3 S ee, for example, Cox (2005).

99005_LogiqueAnalyse_234_01.indd 134 4/08/16 13:07

	 predication and computable concepts � 135

question as an appropriate theory of predication for inquiring into those
sorts of problems.

Now, we shall here not address the particular problem on the concept of
predication in the full generality expressed above. Rather, we shall consider
it relatively to the logical context provided by a certain formal system that
we shall label LC and several well founded results in standard computability
theory. More clearly, given the logical syntax of LC, we shall state several
principles that would constitute different interpretations of the question we
are here concerned with. Then, we shall inquire whether any of those prin-
ciples are acceptable within the context of LC, given certain outcomes of
computability theory. The results proved in this paper might throw light on
the relationship between predication and computable concepts from the
standpoint of conceptualism. This is because the axiomatic basis of LC is
philosophically justified on the basis of the form of conceptualism here
assumed. But also, they would be relevant for the study of metacognition.
The axiomatic basis of LC involves principles that might hold for that field.
As an outcome of the present inquiry, it will be proved that a contra

diction ensues within the context of LC, when the concept of predication is
assumed to be a fully computable concept. It will also be established that
a consequence would follow that contradicts a demonstrated result from
computability theory if the concept of predication is supposed to be a semi-
computable concept applicable to any concept (computable or otherwise).
Finally, it will be shown that predication can be consistently assumed
(relative to LC ) to be semi-computable, when restricted in its application
to fully or semi-computable concepts.

1.  Predication, conceptualism and computable concepts

In general, conceptualism as a theory of predication presupposes that gen-
eral terms stand for concepts, that is, concepts constitute the semantic basis
of general terms. Thus, in accordance to the conceptualist view, common
nouns and adjectives, for example, are the sorts of linguist expressions that
would have concepts as their meaning. This approach to general terms con-
trasts with those of nominalism and realism. These philosophical theories
assume that general terms stand rather for properties and relations, in the
case of realism, or for sets, in the case of modern versions of nominalism.

Another important feature of conceptualism concerns the nexus of predi
cation. The fundamental sort of predication for conceptualism is the predi-
cation of concepts, which is to be understood as equivalent to the notion of
something falling under a concept. So, for example, the assertion that John
is a person is to be interpreted as equivalent to the judgment that John falls
under the concept of being a person.

99005_LogiqueAnalyse_234_01.indd 135 4/08/16 13:07

136	 max a. freund

It is important to note that conceptualism, like nominalism and realism,
also accepts the idea that there is predication in language, that is, that we
can attribute (monadic or relational) predicates of individuals. Nominalism,
in its original version, assumes that predication in language is the only
manner in which we can justifiably talk of predication. That is, according
to nominalism the only sort of predication is the attribution of a predicate
(or rather of a predicate token). Modern versions of nominalism interpret
predication in terms of membership in a class.

In the case of realism, in addition to predication in language, there is
predication of properties and relations. As such, predication should be under-
stood as the instantiation of a property or a relation. It is this sort of predica-
tion that constitutes the basis and accounts for predication in language.

Contrariwise to realism and nominalism, conceptualism looks at pred-
ication in language as grounded on the predication of concepts. This latter
sort of predication is tantamount to the notion of an object falling under a
concept, as remarked above.

In this paper, we shall go beyond the above general tenets of conceptual-
ism. And, as already indicated in the introduction, we shall here commit to
a contemporary variant of such a theory. This variant extends the above
view regarding general terms to all meaningful linguistic expressions, with
the exception of sentences4. So, for example, all sort of referential expres-
sions like quantifier phrases, definite descriptions, etc., would also stand for
concepts.

In addition to the above projection to a diversity of linguistic expres-
sions, the contemporary version of conceptualism in question proposes an
interpretation of concepts as cognitive capacities or cognitive structures
based on such capacities. For instance, the sortal concept of being a house
is a cognitive capacity whose exercise would allow us to identify, classify
and count houses. The complex predicate “to be round and red” stands for
a cognitive structure based on the concepts of being round and being red.
This structure is a construction from those two concepts by means of the
logical operation of conjunction. When exercised, the structure in question
would allow us to classify red and round objects. A referential expression like
“every animal” also stands for a cognitive structure. This structure is formed
from the concept of being an animal and the logical operation of relative
quantification. Exercise of this cognitive structure would allow us to refer to
the objects identified and classified by the concept of being an animal.
Different kinds of concepts are postulated by the above modern variant of

conceptualism. They account for the roles that different sorts of linguistic

4 S entences stand for propositions viewed as mental acts yielded by the joint exercise of
a predicable concept and a referential concept, in the case of simple staments, and logical
operations, in the case of complex sentences.

99005_LogiqueAnalyse_234_01.indd 136 4/08/16 13:07

	 predication and computable concepts � 137

expressions are meant to fulfill. We shall here focus, however, only
on those concepts that would allow us to classify, relate or identify objects.
We shall refer to them as predicable concepts. These concepts are represented
by predicates.

Among predicable concepts, we shall distinguish those that are com-
putable from those that are not. In general, computable concepts differ
from other sorts of predicable concepts by their effectiveness when they
are exercised.

In the case of computable concepts, we can distinguish those that are semi-
computable from those that are fully computable. A fully computable concept
is a concept whose exercise would allow the agent to determine in a finite
amount of time, without resorting to random devices or to his ingenuity
whether or not given objects should be identified, characterized or related in
the ways the concept does it. For example, the concept of being the sum of
two numbers is fully computable. When exercised, such a concept will permit
us to determine effectively (that is, in a finite amount of time, without resort-
ing to random devices or to our ingenuity) whether or not a certain number
is the sum of two other given numbers. In other words, exercise of a fully
computable concept will make possible to the agent to determine effectively
that given objects fall under the concept, if they actually do. But also, exer-
cise of such a concept will determine effectively that given objects do not
fall under the concept, if they actually do not fall under the concept.

On the other hand, exercise of a semi-computable concept will only
allow the agent to determine effectively whether given entities should be
identified, characterized or related in the ways the concept does it. An
example of this kind of concept is the concept of being a theorem of pure
first-order logic: if a given formula is a theorem of pure first-order logic,
then exercise of that concept will permit the agent to determine effectively
that such a formula is a theorem of pure first-order logic. However, if the
formula is not a theorem of pure first-order logic, then exercise of the con-
cept is question will not allow the agent to determine effectively that this
is so. For this reason, the concept of being a theorem of pure first-order
logic is not fully computable. Thus, a semi-computable concept will always
allow the agent to determine effectively that given objects fall under the
concept, if they actually do it. But, exercise of certain semi-computable
concepts will not necessarily determine effectively that given objects do not
fall under the concept, if they, as a matter of fact, do not fall under such a
concept. Clearly, fully computable concepts constitute a subclass of the
class of semi-computable concepts.

Owing to the fact that concepts are the semantic grounds for the application
of predicates, any computable concept a predicate stands for will provide
an effective rule for legitimate applications and/or non-applications of the
linguistic expression itself.

99005_LogiqueAnalyse_234_01.indd 137 4/08/16 13:07

138	 max a. freund

Now, our above characterization of computable concept involves the
notion of exercising a concept. Different uses of linguistic expressions are
among the most perspicuous cases that can illustrate such a notion. Speech
acts such as assertions or inferences involving the predicate “red”, for
instance, would show different ways to exercise the concept of being red.
Uses of the mathematical sign of addition in connection with different
numbers manifest the exercise of the concept of addition. But not only in
linguistic behavior is it where we find situations that indicate possession
and exercise of concepts. Cases where it is clear that there is categorization
or identification of individuals, without previous acquisition of language,
as in infants, reveals exercise and possession of concepts. This also applies
to actions clearly derived from the identification of individuals without
previous (internal or external) linguistic acts, as when John runs after iden-
tifying a leopard without internally or externally proffering a word.

The above examples, and others that might be provided, suggest under-
standing the act of exercising a concept as a mental act that is constrained
by conditions internal and, sometimes, external to the agent carrying out
such an act. For example, exercising the concept of being red can be viewed
as a mental act that requires both the agent to be able to see (an internal
condition) and certain amount of light to be present in the environment (an
external condition). A case where one of the conditions is not met might be
the sum of certain extremely big numbers requiring a memory capacity
surpassing that of a human agent. In this case, the internal condition cannot
be fulfilled by such an agent and so the mental act in question cannot be
carried out.

2.  Computable concepts, concept-correlates and Turing machines

Another important feature of the variant of conceptualism assumed in this
paper concerns nominalized predicates. According to such a variant, the pos-
sible denotations of nominalized predicates (such as “redness” and “human-
ity”) are objects5. These sorts of objects are called concept-correlates and
possess an internal link to the possible applications of the concepts. More
specifically, concept-correlates contain the conditions under which the
concept can be or cannot be truly predicated of objects. That is, they include
a general specification of those truth-conditions or an encoding of such a
specification.

5 O bjects are entities that do not a have predicable nature by themselves. This would
justify considering predicate tokens to be objects: by themselves, they cannot be predicated.
They are derivately predicable. That is, they can only be predicated when associated to
concepts. A predicate token of “dog” is an object and can be predicated of dogs as long as
it is associated to the concept of being a dog.

99005_LogiqueAnalyse_234_01.indd 138 4/08/16 13:07

	 predication and computable concepts � 139

We shall here interpret correlates of computable concepts as (numerical
codes of) Turing machines. We shall also commit to the thesis that every
computable concept has a correlate6. In what follows, we shall offer two
sources of justification for this thesis. These sources will also justify our
interpretation of the correlates of computable concepts.
The first source of justification is the existing link between algorithms

and computable concepts: there is a need for computable concepts in the
apprehension of an algorithm as a procedure for computing a problem or
set of problems with respect to a certain entity. Computable concepts pro-
vide the cognitive basis for such an apprehension. But also, an algorithm
can be formulated for every computable concept.

More clearly, the content of a computable concept provides the intuitive
idea of certain procedure whose implementation would link, in a necessary
way, its input objects with its output objects. That is, at any possible world,
time, space, etc., at which the procedure were to be implemented, no vari-
ation would have to be expected in the input-output objects as they are
connected by the procedure. Such content is apprehended in the different
algorithms associated to the same problem. In other words, each algorithm
is cognized as a version of the procedure that would compute the solutions
to the problems related to a certain entity. For this reason, the content of
the computable concept would provide a unity to the different algorithms
for the same function: they can be understood as different versions of the
procedure for computing the problems regarding the function. But even in
the case where we just know just one algorithm, this algorithm would be
cognized as one of the possible ways to achieve the computational proce-
dure for solving those problems.

As an example, take into account the case of computable numerical
functions. The values of the same numerical function can be computed by
different algorithms, but we associate all of these possible algorithms to
the same procedure that constitutes the function. This is because they are
cognitively apprehended as implementing in different ways a procedure for
computing its values. Were it not for such an apprehension, the different
algorithms would be to an agent just sets of instructions, which given the
same input-data, yield the same output-data. That is, no connection would
be established between the algorithms and the function. The apprehension
is possible only if a computable concept constituting the numerical function
has been constructed. For instance, if no concept of a number being the sum

6 I n Tichý (1969), a connection is postulated between concepts and sets of Turing
machines, viz.: concepts are identified with equivalence classes of Turing-machines. This
approach clearly differs from ours, since we are not identifying concepts with classes. Concepts
are capacities. Also, concept-correlates in general and concept-correlates of computable
concepts, in particular, are not identified with the classes in question.

99005_LogiqueAnalyse_234_01.indd 139 4/08/16 13:07

140	 max a. freund

of two other numbers had been formed, it would not be possible to appre-
hend an algorithm as computing the values of addition.

The above explains the cognitive relation of algorithms to concepts. But
there is also a cognitive relation of concepts to algorithms: there is always
the possibility, in principle, of formulating an algorithm corresponding to a
computable concept, once the content of such a concept is grasped. The
algorithm will express in its set of instructions the content of the concept.
Implementation of such an algorithm will classify, identify or relate objects
in the same way as it would be done by the exercise of the concept associ-
ated to the algorithm. For example, once the content of the concept of a
number being the product of two other numbers is grasped, it is possible,
in principle, to formulate an algorithm yielding the multiplication of two
numbers. Different algorithms associated to the same concept will consti-
tute different ways of expressing the same content of the concept. Addition,
for example, can be expressed by an infinite number of algorithms.

In sum, every algorithm can in principle be associated to a computable
concept and vice-versa. On the one hand, algorithms are cognized as cases
of a certain procedure whose implementation would link, in a necessary
way, the input objects with the output objects of such algorithms. The idea
of such a procedure is intuitively included in the content of the computable
concept. On the other hand, for every computable concept an algorithm can
in principle be formulated that would express a version of the procedure.
Now, we have claimed above that we have two sources of justification for

the thesis that every computable concept has a Turing machine as correlate.
The first source is the above connection between computable concepts and
algorithms. The second source of justification is to be found in the so called
Church’s thesis and the arithmetization of T-machines.
As is well known, Church’s thesis postulates the equivalence of effective

computability (i.e., computability by an algorithm) to Turing-computability.
From this, it clearly follows that computable concepts are necessarily con-
nected to T-machines: computable concepts are necessarily associated
to algorithms, as it was justified above, and algorithms are necessarily
linked (via Church’s thesis) to T-machines, and, consequently, computable
concepts are necessarily tied to T-machines. Implementation of these
T-machines will classify, identify or relate objects in the same way as it
would be done by exercising the concept.

The above link between computable concepts and T-machines provides
a ground for assigning correlates to computable concepts on the basis of an
arithmetization of the T-machines. For this purpose, assume the arithmetiza-
tion of T-machines by Davis (1985). Thus, for every computable concept
there would be a set of numerical codes associated with it, namely: the gödel
numbers of T-machines computing characteristic functions whose domains
would be the extensions of the computable concept. Take as correlate for

99005_LogiqueAnalyse_234_01.indd 140 4/08/16 13:07

	 predication and computable concepts � 141

a computable concept the smallest number of such a set. These numerical
codes will satisfy the necessary conditions for being correlates of comput-
able concepts. The reader should recall that an object can be a correlate of
a concept if and only if it contains a general specification of the truth-
conditions under which the concept can be or cannot be truly predicated of
objects or an encoding of such a specification.
By above, we have justified the thesis that every computable concept has

a Turing machine (or rather its numerical code) as a correlate. The nomi-
nalization of a predicate standing for a computable concepts will denote one
of such numerical codes7.

3.  Logical Syntax

On the basis of the above philosophical assumptions, we shall formulate a
logical system that we shall label LC. Within the context of LC, we shall
inquire whether predication could be assumed to be a fully or semi-
computable concept. In the present section, we characterize the logic syntax
of that system.

We shall here take a language L to be a countable set of individual and
predicate constants. We shall assume the availability of denumerable many
individual variables as well as denumerable many n-place predicate vari-
ables (for each natural number n). We shall also use x, y, z and w, with or
without numerical subscripts, to refer in the metalanguage to individual
variables and Fn, Gn and Rn to refer to n-place predicate variables. We shall
usually drop the superscript when the context makes clear the degree of a
predicate variable or when otherwise does not matter what degree it is. For
convenience, we shall also use u in order to refer to variables in general.

As primitive logical constants, we shall take &, =, ∼, λ, (,), ∀ and ∀s.
We shall intuitively interpret these constants, respectively, as classical con-
junction, identity, classical negation, the lambda abstract operator, left and
right parentheses, the universal quantifier and the universal quantifier for
semi-computable concepts.

7 O ur interpretation of concept correlates as (numerical codes) of Turing machines
assumes Church’s Thesis. We think this is not a problematic assumption, given its wide
acceptance. For a recent attempt to prove Church’s Thesis, see Derschowitz and Gurevich
(2008). For discussions on the nature of Church’s thesis see Oszwelski-Wolenski-Januz
(2007), Coopeland (2002), Mendelson (1990), Shapiro (1981). Also, see Freund (2005) for
a discussion of the connection between conceptualism, classical computability theory and
Church’s thesis. Now, the thesis has been questioned in Kálmar (1959), Péter (1959) and
Bowie (1973). But, to our opinion, later critiques have shown those positions not to be correct.
For a critique of Kálmar and Péter, see Mendelson (1963), and for that of Bowie see Ross
(1974).

99005_LogiqueAnalyse_234_01.indd 141 4/08/16 13:07

142	 max a. freund

Given a language L, we recursively define the set of meaningful expres-
sions of type n of L, (in symbols, Mn(L)) as follows:

  (1)	E very individual variable or constant is in M0(L); every n-place pred-
icate variable or constant is in both Mn+1(L) and M0(L)

  (2)	I f a, b ∈ M0(L), then (a = b) ∈ M1(L)
  (3)	�I f π ∈ Mn+1(L) and a1, …,  an ∈ M0(L), then π(a1, …,  an) ∈ M1(L)
  (4)	�I f δ ∈ M1(L) and x1, …,  xn are pairwise distinct individual variables,

then [λx1, …,  xn δ ] ∈ Mn+1(L), for n > 0
  (5)	I f δ ∈ M1 (L), then ∼ δ ∈ M1(L).
  (6)	I f δ, σ ∈ M1(L), then (δ & σ) ∈ M1(L).
  (7)	I f δ ∈ M1(L) and F is a predicate variable, then ∀Fδ ∈ M1(L).
  (8)	I f δ ∈ M1(L) and F is a predicate variable, then ∀sFδ ∈ M1(L).
  (9)	�I f δ ∈ M1(L), x is an individual variable and F is a predicate variable,

then ∀xδ ∈ M1(L).
(10)	I f δ ∈ M1(L), then [λδ] ∈ M0(L)
(11)	I f n > 0, then Mn+1(L) ⊆ M0(L).
	 We set M(L) =


 Mn(L), that is, the set of meaningful expressions

of L.

We shall use δ, σ and α to refer to meaningful expressions of L.
We understand the well-formed formulas (wffs) of L to be the members

of M1(L). Whenever t ∈ M0(L), we shall say that t is a term of L. We shall
use a, t and b, with or without numerical subscripts, to refer to terms in
general. On the other hand, for n ≥ 1, we take the n-place predicate of L
to be the members of Mn+1(L). By clause 11, note that any n-place predi-
cate can also function as a term, for n ≥ 1. When the latter is the case, the
term in question formally represents the nominalization of the predicate.
Finally, regarding clause 10, we should note that “[λδ]” should be read as
“that δ”, that is, as the nominalization of the well-formed formula δ. In other
words, clause 10 captures our capacity to linguistically refer to the proposi-
tion expressed by a given statement.

The concepts of a bound and free occurrence of a (predicate or indi-
vidual) variable are understood as usual. An occurrence of a term b in a
wff or term σ is said to be a bound occurrence of b in σ if some occurrence
of a variable in b is a free occurrence of that variable in b but a bound
occurrence of that variable in σ. If a and b are terms, then by ϕa/ b, where
ϕ is wff (or a term), we shall mean the wff (or term) that results by replacing
each free occurrence of b in ϕ by a free occurrence of a, if such a wff or
term exists, and otherwise we take ϕa/ b to be just ϕ itself. We shall say
that a is free for b in ϕ, if ϕa/ b is not ϕ unless a is b.

n∈ω

99005_LogiqueAnalyse_234_01.indd 142 4/08/16 13:07

	 predication and computable concepts � 143

The quantifier ∀ when applied to predicate variables should be intui-
tively interpreted as the universal quantifier whose range is the class of all
concepts (computable or otherwise), that is, “∀F ” should be read as “for
every concept F ”. When the quantifier is applied to an individual variable x,
it should be read as “for every individual x”. We shall include abstract
objects such as numbers and sets among the individuals falling within the
range of a quantifier over individuals. Finally, “∀sF ” should be read as “for
every semi-computable concept F ”.
The existential quantifiers are defined in terms of the universal quanti-

fiers as usual:
•  ∃Fϕ	 =df	 ∼ ∀F ∼ ϕ
•  ∃xϕ	 =df	 ∼ ∀x ∼ ϕ
•  ∃sFϕ	 =df	 ∼ ∀sF ∼ ϕ

The truth-functional sentential connectives “→” (material implication), “↔”
(material equivalence) and “∨” (disjunction) can be defined in the customary
way, in terms of the sentential connectives assumed here as primitive.
The universal and existential quantifiers whose range is the class of fully

computable concepts will be here defined as follows:
• � ∀ cFϕ =df ∀F((∃sG(G = [λx1 …  xn Fx1 …  xn]) &
∃sR(R = [λx1 …  xn ∼ Fx1 …  xn])) → ϕ)

•  ∃cFϕ =df ∼ ∀cF ∼ ϕ

That is, F is a fully computable concept if and only if there are semi-
computable concepts G and R such that the exercise of G will determine
that given objects fall under F whenever they do fall under F, and the
exercise of R will determine that given objects do not fall under F whenever
they do not fall under F.

4.  System LC

Given the above logical syntax, we are now able to express in the following
formula our assumption (from section 2) that every semi-computable concept
has a correlate:

(R)  ∀sG∃x(F = x))

We are also able to express the view, of the conceptualist framework pre-
supposed in this paper, that a stage of concept formation can be reached
at which every predicate stands for a concept. This presupposition can be
conveyed by the following schema:

(CP)  ∃F(F = [λx1 …  xn ϕ]),

99005_LogiqueAnalyse_234_01.indd 143 4/08/16 13:07

144	 max a. freund

provided F is a variable which does not occur free in ϕ. If we add this
schema and the above formula R to the following axioms and rules, we
obtain a logical system for reasoning with computable concepts:
where ϕ, ψ, σ, γ are wffs and u is a predicate or individual variable,

the axioms are

A0.	 all tautologies
A1.	 (a = a)
A2.	 ∀u(ϕ → ψ) → (∀uϕ → ∀uψ)
A3.	 ∀s F(ϕ → ψ) → (∀s Fϕ → ∀s Fψ)
A4.	 ϕ → ∀uϕ, provided u does not occur free in ϕ.
A5.	 ∀x∃y(x = y)
A6.	 ∀Fϕ → ∀ s Fϕ
A7.	 ([λx1 … λxn Rx1 …  xn] = R), where R is either a predicate variable

or constant.

(LL).  (a = b) → (ϕ ↔ ψ)
(where ψ comes from ϕ by replacing one or more free occurrences of a by
free occurrences of b)

(λ-CONV)  [λx1 … λxn ϕ](a1 … an) ↔ ∃x1 … ∃xn (a1 = x1 & … an = xn
& ϕ) (where no xj is free in any ak,  for 1 ≤ k, j ≤ n)

(Rw)  [λz1 … zn σ] = [λy1 … λyn σ(y1/z1 …yn/zn)] where no yi occurs in σ.

and the rules are:
•  MP : infer ϕ from γ → ϕ and γ
•  UG : infer ∀Fϕ from ϕ
UG/o : infer ∀xϕ from ϕ

The above rules and axioms together with R and CP conforms the logical
system to which we have referred, in the previous sections, as LC.
As usual, if there is a finite sequence of well-formed formulas such that

every member of the sequence is either an axiom of LC or follows from
previous members of the sequence by one of the rules of LC, then we shall
say that the last formula ϕ of the sequence is a theorem of LC, (in symbols
LC ϕ). From now on, every proof of a theorem or derived rule, requiring
reasoning in accordance with principles and rules of classical propositional
logic, will be indicated by the expression PL8.

8 T he notion of a derivation in LC can be defined as follows: Γ  ϕ if and only if there
are well formed formulas ψ1 … ψn  ∈ Γ such that  (ψ1& … &ψn) → ϕ. For this reason, we
are not stipulating any restriction on the UG and UG/o rules.

99005_LogiqueAnalyse_234_01.indd 144 4/08/16 13:07

	 predication and computable concepts � 145

In what follows, we shall state several theorems and two derived rules
that we shall make use of later on.

Derived rules
UG(s): if LC ϕ, then if LC ∀sFϕ
(UG c): if LC ϕ, then LC ∀c Fϕ.

Theorems
T1	 LC ∀s G∃F (G = F)
T2	 LC ϕ → ∀s Fϕ, provided F does not occur free in ϕ.
T3	 LC (∀Fnϕ → ϕ[λx1 … xn σ] / F)
	 (provided F does not occur free in σ, and [λx1 … xn σ] is free for F in ϕ)
T4	 LC ∃x(x = a) → (∀xϕ → ϕa/ x)
	 (provided x does not occur free in a, and α is free for x in ϕ).
T5	 LC ∃s F n (F = [λx1 … xn σ]) → (∀s F n ϕ → ϕ[λx1 … xn σ] / F),
	 (provided F does not ocur free in σ, [λx1 … xn σ] is free for F in ϕ)
T6	 LC ϕ → ∀c Fϕ, provided F does not occur free in ϕ,
T7	 LC ∀c F (ϕ → σ) → (∀c Fϕ → ∀c Fσ).
T8	 LC ∀c F ∃G(F = G).
T9	 LC ∃c F n (F = [λx1 … xn σ]) → (∀c F n ϕ → ϕ[λx1 … xn σ] / F)
	 (provided F does not occur free in σ, [λx1 … xn σ] is free for F in ϕ)
T10	 LC ∀c F ∃c G(F = G)
T11	  ∀Fs ϕ → ∀c Fϕ

5.  Predication and computable concepts

Apart from being a logical system for reasoning with computable concepts,
LC is also a system that has conceptualism as its justificational ground.
Thus, LC is an appropiate framework for considering the main problem of
this paper, that is, the problem of whether the concept of predication can be
consistently assumed to be computable within the context of conceptualism.

In terms of the logical syntax of LC, the above problem can be stated as
the question of whether any of the following theses are consistent with LC :

I.	 (∃c G) (∀c F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
II.	 (∃c G) (∀s F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
III.	 (∃s G) (∀s F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
IV.	 (∃s G) (∀c F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
V.	 (∃s G) (∀F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
VI.	 (∃c G) (∀F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))

99005_LogiqueAnalyse_234_01.indd 145 4/08/16 13:07

146	 max a. freund

Thesis I states that predication is a fully computable concept when restricted
to computable concepts and thesis II that it is a fully computable when restricted
to semi-computables concepts. Thesis III asserts that predication is a semi-
computable concept when confined to semi-computable concepts and thesis IV
a semi-computable concept when restricted to fully-computable concepts.
Finally, thesis V estates that predication is a semi-computable and thesis VI
that is a fully computable concept, independently of the concepts involved.

By T11 and A6, it can easily be shown that within LC either theses II
and VI implies I. But, as the following proof shows, thesis I relative to LC
leads directly into a contradiction:

Let LC(+) be the result of adding thesis I to LC. Then,
1.	 LC(+) ∀c F2 ∃c G(G = [λx ∼ Fxx])
	 (by definitions, A6, T3, UG, A2, A4, PL)
2.	 LC(+) ∃c G ∀c F ∀x(G(F, x) ↔ Fx)
	 (by Thesis I)
3.	 LC(+) ∃c G ∀x(G([λx ∼ Gxx], x) ↔ [λx ∼ Gxx]x)
	 (by 1, 2, Definitions, T7, UGc, T9, PL)
4.	 LC(+) ∃c G ∀x(G([λx ∼ Gxx], x) ↔ ∼ Gxx)
	 (by 3, A2, LL, PL, UG/o, A4, λ-Conv, A3, UGc)
5.	 LC(+) ∃c �G(G([λx ∼ Gxx], [λx ∼ Gxx]) ↔

∼ G([λx ∼ Gxx], [λx ∼ Gxx]))
	 (by 1, 4, R, T11, T9, T4, UGc, T7, T11, PL)
	B ut, by PL and UGs

	 LC(+) ∀c �G ∼ (G([λx ∼ Gxx], [λx ∼ Gxx]) ↔
∼ G([λx ∼ Gxx], [λx ∼ Gxx])).

Therefore, none of the theses I, II and VI are LC-consistent and so predica-
tion cannot be assumed to be a computable concept. We are left then with
theses III, IV and V.

According to a well-known result from computability theory, there is
no algorithm for deciding whether an alleged algorithm for computing the
values of a total numerical function is indeed such an algorithm (see, for
example, Davis (1985), p. 78, Theorem 61). On the basis of this result, we
can show that thesis V would be unacceptable: assuming thesis V within
the context of LC would allow us to easily prove (by Thesis V, T3, UG(s),
A3 and PL) the following:

(∃s G) (∀x) (G([λx(∃c F) (F = x)], x)) ↔ [λx(∃c F) (F = x)] x)).

But this formula expresses the proposition that a semi-computable con-
cept G exists that would allow us to effectively decide whether an object

99005_LogiqueAnalyse_234_01.indd 146 4/08/16 13:07

	 predication and computable concepts � 147

is the correlate of a fully computable concept F and so a T-machine, given
our above assumption regarding concept-correlates of semi-computable
concepts. On the other hand by this same assumption, a T-machine would
exist as a correlate for the concept G. This means that we would have
an algorithm for deciding whether an object is the algorithm of a fully
computable concept, in particular, of those concepts corresponding to
total numerical functions. But this will contradict what we know from
computability theory that there is not such an algorithm. Thus, thesis V
cannot be accepted.

Finally, let us consider theses IV and III. By T11 and PL, thesis IV
clearly follows from III. But since thesis III is consistent relatively to LC,
as we show in the next section, then our original problem is solved with
respect to theses III and IV. Thus, relatively to LC, predication can be
assumed to be a semi-computable concept when restricted in its application
to computable or semi-computable concepts.

6.  L-interpretations and the consistency of LC + III

By constructing a formal semantic interpretation for a second order lan-
guage with nominalized predicates and lambda operators, we show the con-
sistency of thesis III with respect to LC. In this semantic proof, we also
appeal to certain results from computability theory.

The formal semantic interpretation showing the consistency of LC
together with thesis III will be based on what we shall call a frame for
nominalized predicates (N-frame, for short). We start by characterizing this
latter notion.

By a N-frame we shall understand a structure < D, Sn, Yn,  f >n∈ω, where
ω is the set of natural numbers and such that (1) D is a non-empty set;
(2) for all n ∈ ω, Sn ⊆ Yn ⊆ ℘(Dn), where “℘(Dn)” stands for the power set of
Dn (for n = 0, we set D0 = {Ø} = 1); (3) there is a set D∗ such that D ⊂ D∗
(i.e. D is a proper subset of D∗) and (4) f is a function from D∗ ∪


 ℘(Dn)

into D∗ such that

(i)	  for all d ∈ D∗, f (d) = d,
(ii)	 for every z ∈


 Sn there is a d ∈ D such that f (z) = d, and

(iii)	for every n ∈ ω, f restricted to ℘(Dn) is one-to-one.

D is the range of values of the bound individual variables and D∗ the range
of values of the free individual variables. Sets Sn and Yn are, respectively,
the range of values of the n-place variables bound by the quantifier “ ∀s ”
and the range of values of the n-place variables bound by the universal

n∈ω

n∈ω

99005_LogiqueAnalyse_234_01.indd 147 4/08/16 13:07

148	 max a. freund

quantifier “ ∀ ”. The function f when restricted to


 Sn set-theorically rep-

resents the correlation of semi-computable concepts with objects.
Where A is a N-frame, we shall say that A is an assignment (of values

to variables in A) if A is a function with the set of variables as domain
and such that (1) for all n ∈ ω, all n-place predicate variables Fn, A (F n) ∈
P(Dn) and (2) for each individual variable x, A(x) ∈  D∗. Also, we set
A (d /u) = (A−{< u, A(u) >} ∪ {< u, d >}, i.e., A (d /u) is that referential
assignment which is exactly like A except (at most) for its assigning d to u.

Where L is a language and A a N-frame, we shall say that I = < h, A >
is a model for L (a L -model, for short), if h is a function with L as domain
such that for all n ∈ ω and all n-place predicate constants P  ∈ L, h(P) ∈
℘(Dn) and for each individual constant c ∈ L, h(c) ∈ D∗.

Let I = < g, A > be an L-model. We shall say that I is an interpretation
of the meaningful expressions of L (an interpretation of L, for short) if
and only for every assignment A in A there is function interI,A from M (L)
into D∗ ∪ 


 (℘(Dn)) such that:

  1.	�I f a is a variable, then interI,A(a) = A(a). If c ∈ L (i.e. c is a predicate
or individual constant), then interI,A(c) = g(c).

If σ ∈ Mn+1 (L), then:
  2.	�I f σ is a = b, where a, b ∈ M0 (L), then for all i ∈ W, interI,A(σ) = 1 iff

f (interI,A(a)) = f (interI,A(b));
  3.	�I f σ is π(a1 … an), where π ∈ Mn+1 (L) and a1 … an ∈ M0, then

interI,A(σ) = 1 iff < f (interI,A(a1)) … f(interI,A(an)) > ∈ interI,A(π);
  4.	�I f σ is [λx1 … xn ϕ], where ϕ ∈ M1 (L), then

interI,A (σ) = {< d1, …, dn > ∈ Dn: interI,A(d1/x1
.dn/xn)(ϕ) = 1};

  5.	�I f σ is ∼ ϕ, where ϕ ∈ M1 (L), then interI,A (σ) = 1 iff
interI,A(ϕ) = 0

  6.	�I f σ is (ϕ & γ), where ϕ, γ ∈ M1 (L), then interI,A(σ) = 1 iff both
interI,A(ϕ) = 1 and interI,A(γ) = 1

  7. 	If σ is ∀F nγ, where γ ∈ M1 (L) then interI,A(σ) (i) = 1 iff for every
d ∈ Y n, interI,A(d/F)(γ) = 1.

  8.	�I f σ is ∀s F n γ, where γ ∈ M1 (L), then interI,A(σ) = 1 iff for every
d ∈ Sn, interI,A(d/F)(γ) = 1

  9.	�I f σ is ∀x γ, where γ ∈ M1 (L), then interI,A(σ) = 1 iff for every
d ∈ D, interI,A(d/x)(γ) = 1

10.	I f σ is [λϕ], where ϕ ∈ M1 (L), then for all i ∈ W, interI,A(σ) =
interI,A(ϕ).

n∈ω

n∈ω

99005_LogiqueAnalyse_234_01.indd 148 4/08/16 13:07

	 predication and computable concepts � 149

Let I = < g, A > be an interpretation of L and A an assignment in A.
We define satisfaction and truth of a wff ϕ of L as follows:
•  A satisfies ϕ in I iff interI,A(ϕ) = 1;
•  ϕ is true in I iff every assignment in A satisfies ϕ in I.

We now proceed to construct an interpretation for a formal language L in
which every theorem of LC + III would be true. We show in this way the
consistency of LC with thesis III. Construction of the interpretation will
require some results stemming from computability theory, which we shall
introduce before the construction. Those results have been formulated and
proved, for example, in Davis (1985).
Let us consider the set of first order well-formed formulas of the lan-

guage of arithmetic. By a numerical predicate we shall mean any of such
well-formed formulas containing free variables. Clearly, numerical predi-
cates qualify as predicates in the sense of (Davis (1985), p. xxii) and so by
(Davis (1985), p. 66), an n-place numerical predicate P (x1 … xn) is semi-
computable if and only if there is a partially computable function whose
domain is the set {< n1 … nn >  ∈  ωn: P (n1 … nn)}. [Briefly, by a partially
computable function it is understood a partial numerical function comput-
able by a T-machine (cf. Davis (1985), p. 10)].

By a semicomputable set Sn we shall mean a set of n-tuples of natural
numbers for which there is an n-place semi-computable numerical predicate
P (x1 … xn) such that

S n = {< n1 … nn >  ∈  ω n : P (n1 … nn)}.

Now, in accordance with so called Klenee’s enumeration theorem [cf.
(Davis, (1985), chapter 5, theorem 1.4),], for every semicomputable numer-
ical predicate P(x1 … xn) there is a natural number z such that

P(x1 … xn) ↔ (∃y) Tn(z, x1 … xn, y)

where the predicate Tn(z, x1 … xn, y) is defined as “z is the Gödel number
of a Turing machine Z, y is the Gödel number of a computation with respect
to Z having only the (Turing representation) of x1 … xn on the tape in its
initial state”. (We should note that this predicate is primitive recursive).
Consequently, by the definition of a semi-computable set and Kleene’s enu-
meration theorem, for every semicomputable set S n, the set GSn

 = {z ∈ ω :
for every x1 … xn ∈ ω, < x1 … xn >  ∈  S n ↔ (∃y) Tn(z, x1 … xn, y)} is not
empty. Let LSn

 be the least element of GSn
.

On the basis of the abovementioned results, we proceed to construct a
model for the language of arithmetic. As we will show, this model is an
interpretation in which all theorems of LC+III are true.

99005_LogiqueAnalyse_234_01.indd 149 4/08/16 13:07

150	 max a. freund

Let ω be the set of natural numbers,
D∗ = ω ∪


 {A ⊆ ωn : A is not semicomputable}, and B be the structure

< ω, S n, ℘(ω n), g >n∈ω, where

1)  S n = {A ∈ ℘(ω n) : A is semicomputable},
2)	 g is the function from D∗ ∪


 ℘(ω n) into D∗ such that:

i)	 for all d ∈ D∗, g(d) = d,
ii)	� for every n ∈ ω, if z = B ∈ S n(i.e. B is a semicomputable subset of ωn),

then g(z) = LB (i.e., the least element of GB).

Clearly, B is a N-frame.
Now, let LAr be the language containing just the set of non-logical sym-

bols X, +,  and 0. Also, let H = < h, B >, where h is the function with LAr
as domain assigning, respectively, the multiplication, addition, successor
relations and the number zero to the constants X, +,  and 0. Clearly, H is
an LAr-model. We now prove that H is an interpretation of LAr  .

Theorem:  H is an interpretation of LAr  .
Proof: I t is clear that for every assignment A in B there is a function IntA
from M (LAr) into D∗ ∪


 ℘(D) such that:

0.	�I f a is a variable, then interI,A(a) = A(a). If c ∈ LAr, then
IntA(c) = h(c).

1.	�I f σ is a = b, where a, b ∈ M0 (L), then IntA(σ) = 1 iff
g (IntA(a)) = g(IntA(b));

2.	I f σ is π(a1 … an), where π ∈ Mn+1 and a1 … an ∈ M0, then
IntA(σ) = 1 iff < g(IntA(a1)) … g(IntA(an)) > ∈ IntA(π);

3.	�I f σ is [λx1 … xn ϕ], where ϕ ∈ M1 (L), then
IntA(σ) = {< d1, …, dn > ∈ ωn : IntA(d1/x1 ..dn/xn)(ϕ) = 1};

4.	 If σ is ∼ ϕ, where ϕ ∈ M1 (L), then IntA(σ) = 1 iff IntA(ϕ) = 0.
5.	�I f σ is (ϕ & γ), where ϕ, γ ∈ M1 (L), then IntA(σ) = 1 iff

both IntA(ϕ) = 1 and IntA(γ) = 1
6.	I f σ is ∀Fnγ, where γ ∈ M1 (L) then IntA(σ) = 1 iff

for every d ∈ ℘(ωn), IntA(d/F)(γ) = 1.
7.	�I f σ is ∀s Fn γ, where γ ∈ M1 (L), then IntA(σ) = 1 iff

for every d ∈ S n, IntA(d/F)(γ) = 1.
8.	�I f σ is ∀xγ, where γ ∈ M1 (L), then IntA(σ) = 1 iff

for every d ∈ ω, IntA(d/x)(γ) = 1
9.	I f σ is [λϕ], where ϕ ∈ M1 (L), then IntA(σ) = IntA(ϕ).

n∈ω

n∈ω

n∈ω

99005_LogiqueAnalyse_234_01.indd 150 4/08/16 13:07

	 predication and computable concepts � 151

For every assignment A in B, the corresponding function IntA clearly satis-
fies all clauses on page 10 and so H is an LAr-interpretation.

We now show that the theorems of LC+ III are true in H.

Theorem:  If ϕ is a theorem of LC+III, then ϕ is true in H
Proof: A xioms A0 − A7, λ-Conv, Rw, and R are clearly true in H. By an
inductive argument, it can be shown that LL is true in H. By clauses 3 and 7
of IntA (for every assignment A in B) and the fact that a quantifier over
n − ary concepts ranges over all the power set of ωn, CP can be easily seen
to be true in H. On the other hand, MP, UG, and UG/o are truth-preserving
rules. Then, it remains to be shown that thesis III is true in H:

Let P n+1 = {< z, x … xn > ∈  ωn+1| (∃y) Tn(z, x1 … xn, y)}. Clearly,
since (∃y) Tn (z, x1 … xn, y) is a semi-computable numerical predicate, P n+1
is a semi-computable set and, consequently, P n+1 ∈ S n+1. Let A be any
assignment in B and assume C is a n − ary semi-computable set such
that A(F n) = C, where F n is a n-place predicate variable. Since C is
semi-computable, then (by the definition of the correlation function g) there
is natural number k such that g(C ) =  k and for every < m1 … mn > ∈ C,
(k, m1 … mn))  ∈  P n+1. Clearly then < m1 … mn >  ∈  A(F n) if and only if
(g(A(F n)), m1 … mn)) ∈ Pn+1. So, there is a K ∈ Sn+1 (viz. P n+1) such that
for every C ∈ S n+1, and every m1 … mn ∈ ω, IntA(K/G, C/F, m1 /x1 …mn/xn)

(G(F, x1 … xn) ↔ F(x1 … xn)) = 1, where G is any arbitrarily selected m-place
predicate variable. Hence,

IntA(∃sG) (∀s F ) (∀x1) … (∀xn) (G(F, x1, … xn)) ↔ Fx1, … xn)) = 1.

Therefore, thesis III is true in H.

Corollary:  LC+III is consistent.

7. � A comprehension principle for semi-computable concepts

We have formulated a comprehension principle for concepts in general, but
not one for semi-computable concepts. Now, the version of conceptualism
assumed in this paper does not provide by itself the theoretical grounds
for its characterization. It is the standard theory of computability together
with the connection established between such a theory and conceptualism (via
concept correlates) that will allow us to express a comprehension principle
for semi-computable concepts.

Thus, if we take into account the theorem that the intersection of
recursively enumerable sets is recursively enumerable [see, for example,
Rogers (1987), sections 5.4 and 5.5], one could justify the following mini-
mal comprehension principle for semi-computable concepts:

(SCP) ∀s
 F1 … ∀s Fn ∃s G(G = [λx1 … x

n ϕ])

99005_LogiqueAnalyse_234_01.indd 151 4/08/16 13:07

152	 max a. freund

provided (1) neither the negation nor the identity sign occur in ϕ, (2) quan-
tifiers over concepts (computable or otherwise) or over semi-computable
concepts occur in ϕ only in lambda abstracts occurring in subject position,
i.e., as abstract singular terms (3) no constant predicate occurs in ϕ,
(4) F1 … Fn are all the predicate variables occurring in ϕ (5) G does not
occur in ϕ.

The restriction regarding negation in clause 1 is based on the well known
result that there are negations of recursively enumerable sets which are not
recursively enumerable (see Davis 1987, p. 68, Theorem 1.6). As for iden-
tity, clearly the set of true empirical identities is not recursive enumerable.
As for clause 2, as far as we know there are not general results regarding
functionals on partially recursive functions.

By induction on the complexity of formulas, SCP can be shown to be
true in our above model H, taking into account Theorems 3.1 in Davis (1985),
according to which the conjunction of semi-computable predicates is a
semi-computable predicate. So, SCP is consistent with LC. Whether SCP
can be extended to a more comprehensive schema will be left here as an
open problem.

8.  Conclusion

In this paper, we have focused on the concept of predication itself, that is, on
our cognitive capacity or cognitive structure to identifying acts of predications
and to determine the formal conditions for the truth of such predications.
Our particular interest was in the question of whether such a concept can
consistently be assumed to be computable. We pointed out that this problem
derives its interest from the importance of a more general problem in meta-
cognition, namely: the question of how effective might be, in the computa-
tional sense, our second-order cognitive abilities and capacities, planning,
monitoring and evaluation, that are involved in metacognition. The concept
of predication would clearly be one of such metacognitive capacities or
abilities. Thus, an answer to the question regarding its effectiveness would
be a step forward towards a complete solution of the aforementioned gen-
eral problem.
The solution that we have offered to the particular problem of this paper

is relative to the formal system LC and certain results stemming from com-
putability theory. Given the principles and rules of LC and outcomes from
computability theory, we have showed that (1) predication can be consist-
ently assumed to be semi-computable, when restricted in its application to
fully or semi-computable concepts; (2) when such an application is open to
any concept (computable or otherwise), a consequence would follow within
LC that would contradict a demonstrated result from computability theory;

99005_LogiqueAnalyse_234_01.indd 152 4/08/16 13:07

	 predication and computable concepts � 153

and, finally, (3) if it is assumed that the concept of predication is comput-
able, then a contradiction would follow within the context of LC.

The concept of predication would be a metacognitive instrument for the
assessment of predications. It would allow us to determine whether the
exercise of a concept corresponds to an act of predication; and, if it does
correspond, the concept of predication will also allow us to decide whether
the formal conditions for falling under a concept have been fulfilled. The
latter is a necessary step towards an evaluation regarding the truth-value
of a certain predication. According to our results, partial computational
effectiveness is to be expected in the evaluation of a predication, when the
exercise of fully or semi-computable concepts are in consideration. That is,
if the subjects of a predication actually fall under the attributed concept, the
concept of predication will effectively indicate that it is so, if the predicated
concept is computable. If such subjects do not fall under the attributed
concept, computational effectiveness is not to be generally expected on the
part of the concept of predication. Fully computational effectiveness cannot
be generally expected for the assessment of the exercise of concepts (com-
putable or otherwise) in acts of predication. So, the concept of predication
would be a necessary metacognitive element but not a sufficient one to
effectively evaluate such acts (in the computational sense of effectiveness).

Now, even though the results of this paper depend on LC, they might be
relevant for the study of metacognition. The axiomatic basis of LC involves
principles and rules that might hold for that context, in the sense that human
agents might implicitly make use of them in certain metacognitive tasks9.
The contents of axioms A0-7, LL, λ-Conv and Rw, and the primitive rules
of LC are intuitively enough from the cognitive point of view. All of
them are either general logical principles regarding the use of concepts or
principles and rules of classical first-order logic. On the other hand, the
comprehension principle CP expresses our cognitive capacity to construct
complex concepts from simpler concepts and logical operations, even if this
involves impredicativity. Finally, axiom R is based on our cognitive capacity
to nominalize predicates and assign denotations to such nominalizations.
Clearly, such a axiom would state a possible stance regarding those assign-
ments. We have here shown some of its consequences.

9  We should point out that there is a controversy in cognitive psychology regarding the
use of deductive logical rules by human agents in their reasoning. Some authors have upheld
the thesis that the cognitive basis of our inferences are not implicit deductive rules (see, for
example, Johnson-Laird (2005) and (1983)) or even deductive standards of rationality (see,
for example, Kahneman, Slovic & Tversky (1982)). However, as indicated in Evans (2002),
the theoretical debate between rule based theories and non-rule based theories remains
unresolved. Moreover, it has been shown that for certain contexts logical rules are essential
(see, Stanovich (1999). Metacognitive evaluations might be contexts of this sort.

99005_LogiqueAnalyse_234_01.indd 153 4/08/16 13:07

154	 max a. freund

Acknowledgment

We are grateful to the referees for their helpful comments and suggestions

References

  [1]	 Cocchiarella, Nino (2009). Formal Ontology and Conceptual Realism,
Springer Verlag.

  [2]	 Cox, Michael (2005). “Metacognition in Computation: A selected research
review”, Artificial Intelligence, Vol. 169, 104–141.

  [3]	 Bowie, G.L. (1973). “An Argument Against Church’s Thesis”, The Journal
of Philosophy, Vol. LXX, 8, 66–76.

  [4]	 Copeland, J. (2002). “Church-Turing Thesis”. In Stanford Encyclopedia of Phi-
losophy, Ed Zalta (ed.). URL = <http://plato.stanford.edu/entries/churchturing/>

  [5]	 Derschowitz, N., and Gurevich, Y. (2008). “A natural axiomatization of
computability and proof of Church’s Thesis”, Bulletin of Symbolic Logic,
Vol. 14, 3, 299–350.

  [6]	 Davis, M. (1985). Computability and Unsolvability, Dover Publications, New-
York.

  [7]	 Evans, J. (2002). “Logic and Human Reasoning: An Assessment of the
Deduction Paradigm”, Psychological Bulletin, Vol. 128, 6, 978–996.

  [8]	 Freund, M. (2005). “Conceptualismo realista y computabilidad”, Critica,
Vol. 37, 3–38.

  [9]	 Freund, M. (1994). “A Minimal Logical System for Computable Concepts
and Effective Knowability”, Logique et Analyse, Vol. 147–148, 339–366.

[10]	 Heyting A. (Editor) (1959). Constructivity in Mathematics, North Holland,
Groningen.

[11]	 Holoyak, K. and Sternberg R. J. (Eds.) (2005). The Cambridge Handbook
of Thinking and Reasoning, Cambridge University Press, Cambridge, England.

[12]	 Johnson-Laird, P.N., (1983). Mental Models, Cambridge University Press,
Cambridge, England.

[13]	 Johnson-Laird, P.N., (2005). “Mental models in thought”. In K. Holoyak
and R. J. Sternberg (Eds.), The Cambridge Handbook of Thinking and Rea-
soning, 179–212, Cambridge University Press, Cambridge, England.

[14]	 Kálmar, L. (1959). “An argument against the plausibility of Church’s Thesis”.
In A. Heyting (ed.), Constructivity in Mathematics, 72–80, North Holland,
Groningen.

[15]	 Kahneman, D., Slovic, P., and Tversky, A. (1982). Judgement under uncer-
tainty: Heuristics and biases. Cambridge University Press, Cambridge, England.

[16]	 Kleene, S.C. (1952). Introduction to Metamathematics, North Holland Pub-
lishing Co., Amsterdam.

[17]	 Mendelson, E., (1990). “Second Thoughts About Church’s Thesis and Math-
ematics”, Notre Dame of Formal Logic, Vol. 87, 5, 225–233.

[18]	 Mendelson, E., (1963). “On some recent criticism of Church’s Thesis”,
Notre Dame Journal of Formal Logic, Vol. 4, 3, 581–614

[19]	 Oszwelski, A., Wolenski, J. and Januz, R., (editors) (2007). Church’s The-
sis after 70 Years, Ontos Verlag, Frankfurt.

99005_LogiqueAnalyse_234_01.indd 154 4/08/16 13:07

	 predication and computable concepts � 155

[20]	 Rogers, H. (1987). Theory of Recursive Functions and Effective Computabil-
ity, MIT Press, Cambridge, Mass.

[21]	 Ross, D. (1974). “Church’s Thesis: What its Difficulties Are and Are Not”,
Journal of Philosophy, Vol. 10, 3, 515–25.

[22]	S hapiro, S. (1981). “Understanding Church’s Thesis”, Journal of Philosophical
Logic, Vol. 10, 3, 353–65.

[23]	 Stanovich, K.E. (1999). Who is rational? Studies of individual differences
in reasoning. Erlbaum, Mahwah, New Jersey.

[24]	 Tichý, P. (1969). “Intension in terms of Turing Machines”, Studia Logica,
Vol. 24, 1, 7–25.

Max A. Freund
Posgrado en Filosofía y Posgrado en

Ciencias Cognitivas Universidad de Costa Rica
San Pedro Montes de Oca San José Costa Rica

Email: mfreundcr@gmail.com

99005_LogiqueAnalyse_234_01.indd 155 4/08/16 13:07

