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Predication and Computable Concepts

Max A. Freund

Abstract

Our interest in this paper is in the concept of predication itself and the extent to 
which such a concept can consistently be assumed to be fully or semi-computable. 
We address this problem relative to the logical context provided by a certain formal 
system that we label LC and several well founded results from standard comput-
ability theory. System LC is a conceptualist second order logical formal system for 
reasoning with computable concepts. The system also contains an axiom assigning 
correlates to semi-computable concepts. Concept-correlates are entities whose 
­content include a general specification of the conditions under which the correlated 
concepts can be truly predicated or cannot be truly predicated of objects or an 
encoding of such a specification. The axiom in question is justified on the basis of 
Church’s thesis and a discussion concerning the relationship between computable 
concepts and Turing machines. We show, by means of a semantic model, that predi-
cation can be consistently assumed to be semi-computable, when restricted in its 
application to fully computable or semi-computable concepts. Within the context 
of LC, we also prove that a contradiction ensues if the concept of predication is 
held to be fully computable. If the concept of predication is assumed to be a semi-
computable concept applicable to any concept (computable or otherwise), we show 
that a consequence follows within LC that would contradict a well-established 
result from computability theory.

Introduction

Conceptualism, as a philosophical theory of predication, looks at concepts 
as the semantic grounds for the attribution of predicates. That is to say, 
concepts are to be viewed as the meaning of predicates and, as such, as the 
basis for predication. A contemporary version of conceptualism has extended 
such a view so as to cover all linguistic expression, with the exception of 
sentences. Thus, not only predicates will represent concepts, but also many 
other sorts of linguistic items such as universal quantifiers and definite 
descriptions. Different kinds of concepts are postulated corresponding to the 
diversity of linguistic expressions.

In addition to its general semantic approach based on concepts, the above 
contemporary version of conceptualism understands concepts as cognitive 
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134	 max a. freund

capacities or cognitive structures otherwise based upon such capacities1. 
Exercise of such capacities or structures makes possible the use of the 
associated linguistic expressions. On the basis of this idea that concepts can 
be exercised, an important distinction among concepts can be introduced 
into conceptualism. This is the distinction between computable and non-
computable concepts. When computable concepts are exercised, they will 
differ from the other sort of concepts by their effectiveness. Among comput-
able concepts, one can differentiate those that are semi-computable from 
those that are fully computable 2.

In this paper, we shall assume as philosophical background the above 
contemporary version of conceptualism and focus on the concept of predi-
cation itself. This concept is a cognitive capacity or cognitive structure that 
allows us to identify predications as well as to determine the formal condi-
tions for their truth. We shall be here interested in deciding the extent to 
which such a concept can consistently be assumed to be (fully or semi-) 
computable. By means of the concept of predication one determines whether 
or not a certain mental act constitutes a predication and, if it does, whether 
the necessary formal conditions for falling under a concept have been ful-
filled. We shall intend to determine whether the capacity or structure in 
question can consistently be assumed to be fully or semi-effective.

The above problem derives its interest from the importance of a more 
general problem in metacognition, that is, in the cognition of cognition or 
thinking about thinking. Metacognition involves second-order cognitive 
abilities and capacities, planning, monitoring and evaluation. How effective 
such abilities, capacities, planning, etc., might be is a central problem in 
that field3. A concept of predication as a cognitive capacity or structure is 
clearly metacognitive, since its objects are themselves cognitive acts. Thus, 
an answer to the question regarding its effectiveness would be a step for-
ward towards a complete solution of the aforementioned general problem.

Clearly, the interpretation of a concept as a cognitive capacity or struc-
ture allows us to link directly the particular problem of this paper with the 
above general problem in metacognition. Moreover, such a feature (together 
with others of the variant of conceptualism here presupposed) provides a 
clear philosophical ground for connecting metacognitive problems to logical 
and philosophical problems. Alternative philosophical theories of predication 
(viz., realism and nominalism) do not offer such a straightforward natural 
connection. In other words, the possibility of establishing more direct  
ties to metacognitive problems commends the variant of conceptualism in 

1 F or an example of this sort of contemporary form of Conceptualism, see Cocchiarella 
(2009).

2  We have introduced the distinctions in question in Freund (1994).
3 S ee, for example, Cox (2005).
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question as an appropriate theory of predication for inquiring into those 
sorts of problems.

Now, we shall here not address the particular problem on the concept of 
predication in the full generality expressed above. Rather, we shall consider 
it relatively to the logical context provided by a certain formal system that 
we shall label LC and several well founded results in standard computability 
theory. More clearly, given the logical syntax of LC, we shall state several 
principles that would constitute different interpretations of the question we 
are here concerned with. Then, we shall inquire whether any of those prin-
ciples are acceptable within the context of LC, given certain outcomes of 
computability theory. The results proved in this paper might throw light on 
the relationship between predication and computable concepts from the 
standpoint of conceptualism. This is because the axiomatic basis of LC is 
philosophically justified on the basis of the form of conceptualism here 
assumed. But also, they would be relevant for the study of metacognition. 
The axiomatic basis of LC involves principles that might hold for that field.
As an outcome of the present inquiry, it will be proved that a contra

diction ensues within the context of LC, when the concept of predication is 
assumed to be a fully computable concept. It will also be established that 
a consequence would follow that contradicts a demonstrated result from 
computability theory if the concept of predication is supposed to be a semi-
computable concept applicable to any concept (computable or otherwise). 
Finally, it will be shown that predication can be consistently assumed 
(relative to LC ) to be semi-computable, when restricted in its application 
to fully or semi-computable concepts.

1.  Predication, conceptualism and computable concepts

In general, conceptualism as a theory of predication presupposes that gen-
eral terms stand for concepts, that is, concepts constitute the semantic basis 
of general terms. Thus, in accordance to the conceptualist view, common 
nouns and adjectives, for example, are the sorts of linguist expressions that 
would have concepts as their meaning. This approach to general terms con-
trasts with those of nominalism and realism. These philosophical theories 
assume that general terms stand rather for properties and relations, in the 
case of realism, or for sets, in the case of modern versions of nominalism.

Another important feature of conceptualism concerns the nexus of predi
cation. The fundamental sort of predication for conceptualism is the predi-
cation of concepts, which is to be understood as equivalent to the notion of 
something falling under a concept. So, for example, the assertion that John 
is a person is to be interpreted as equivalent to the judgment that John falls 
under the concept of being a person.
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It is important to note that conceptualism, like nominalism and realism, 
also accepts the idea that there is predication in language, that is, that we 
can attribute (monadic or relational) predicates of individuals. Nominalism, 
in its original version, assumes that predication in language is the only 
manner in which we can justifiably talk of predication. That is, according 
to nominalism the only sort of predication is the attribution of a predicate 
(or rather of a predicate token). Modern versions of nominalism interpret 
predication in terms of membership in a class.

In the case of realism, in addition to predication in language, there is 
predication of properties and relations. As such, predication should be under-
stood as the instantiation of a property or a relation. It is this sort of predica-
tion that constitutes the basis and accounts for predication in language.

Contrariwise to realism and nominalism, conceptualism looks at pred-
ication in language as grounded on the predication of concepts. This latter 
sort of predication is tantamount to the notion of an object falling under a 
concept, as remarked above.

In this paper, we shall go beyond the above general tenets of conceptual-
ism. And, as already indicated in the introduction, we shall here commit to 
a contemporary variant of such a theory. This variant extends the above 
view regarding general terms to all meaningful linguistic expressions, with 
the exception of sentences4. So, for example, all sort of referential expres-
sions like quantifier phrases, definite descriptions, etc., would also stand for 
concepts.

In addition to the above projection to a diversity of linguistic expres-
sions, the contemporary version of conceptualism in question proposes an 
interpretation of concepts as cognitive capacities or cognitive structures 
based on such capacities. For instance, the sortal concept of being a house 
is a cognitive capacity whose exercise would allow us to identify, classify 
and count houses. The complex predicate “to be round and red” stands for 
a cognitive structure based on the concepts of being round and being red. 
This structure is a construction from those two concepts by means of the 
logical operation of conjunction. When exercised, the structure in question 
would allow us to classify red and round objects. A referential expression like 
“every animal” also stands for a cognitive structure. This structure is formed 
from the concept of being an animal and the logical operation of relative 
quantification. Exercise of this cognitive structure would allow us to refer to 
the objects identified and classified by the concept of being an animal.
Different kinds of concepts are postulated by the above modern variant of 

conceptualism. They account for the roles that different sorts of linguistic 

4 S entences stand for propositions viewed as mental acts yielded by the joint exercise of 
a predicable concept and a referential concept, in the case of simple staments, and logical 
operations, in the case of complex sentences.
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expressions are meant to fulfill. We shall here focus, however, only 
on those concepts that would allow us to classify, relate or identify objects. 
We shall refer to them as predicable concepts. These concepts are represented 
by predicates.

Among predicable concepts, we shall distinguish those that are com-
putable from those that are not. In general, computable concepts differ 
from other sorts of predicable concepts by their effectiveness when they 
are exercised.

In the case of computable concepts, we can distinguish those that are semi-
computable from those that are fully computable. A fully computable concept 
is a concept whose exercise would allow the agent to determine in a finite 
amount of time, without resorting to random devices or to his ingenuity 
whether or not given objects should be identified, characterized or related in 
the ways the concept does it. For example, the concept of being the sum of 
two numbers is fully computable. When exercised, such a concept will permit 
us to determine effectively (that is, in a finite amount of time, without resort-
ing to random devices or to our ingenuity) whether or not a certain number 
is the sum of two other given numbers. In other words, exercise of a fully 
computable concept will make possible to the agent to determine effectively 
that given objects fall under the concept, if they actually do. But also, exer-
cise of such a concept will determine effectively that given objects do not 
fall under the concept, if they actually do not fall under the concept.

On the other hand, exercise of a semi-computable concept will only 
allow the agent to determine effectively whether given entities should be 
identified, characterized or related in the ways the concept does it. An 
example of this kind of concept is the concept of being a theorem of pure 
first-order logic: if a given formula is a theorem of pure first-order logic, 
then exercise of that concept will permit the agent to determine effectively 
that such a formula is a theorem of pure first-order logic. However, if the 
formula is not a theorem of pure first-order logic, then exercise of the con-
cept is question will not allow the agent to determine effectively that this 
is so. For this reason, the concept of being a theorem of pure first-order 
logic is not fully computable. Thus, a semi-computable concept will always 
allow the agent to determine effectively that given objects fall under the 
concept, if they actually do it. But, exercise of certain semi-computable 
concepts will not necessarily determine effectively that given objects do not 
fall under the concept, if they, as a matter of fact, do not fall under such a 
concept. Clearly, fully computable concepts constitute a subclass of the 
class of semi-computable concepts.

Owing to the fact that concepts are the semantic grounds for the application 
of predicates, any computable concept a predicate stands for will provide 
an effective rule for legitimate applications and/or non-applications of the 
linguistic expression itself.
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Now, our above characterization of computable concept involves the 
notion of exercising a concept. Different uses of linguistic expressions are 
among the most perspicuous cases that can illustrate such a notion. Speech 
acts such as assertions or inferences involving the predicate “red”, for 
instance, would show different ways to exercise the concept of being red. 
Uses of the mathematical sign of addition in connection with different 
numbers manifest the exercise of the concept of addition. But not only in 
linguistic behavior is it where we find situations that indicate possession 
and exercise of concepts. Cases where it is clear that there is categorization 
or identification of individuals, without previous acquisition of language, 
as in infants, reveals exercise and possession of concepts. This also applies 
to actions clearly derived from the identification of individuals without 
previous (internal or external) linguistic acts, as when John runs after iden-
tifying a leopard without internally or externally proffering a word.

The above examples, and others that might be provided, suggest under-
standing the act of exercising a concept as a mental act that is constrained 
by conditions internal and, sometimes, external to the agent carrying out 
such an act. For example, exercising the concept of being red can be viewed 
as a mental act that requires both the agent to be able to see (an internal 
condition) and certain amount of light to be present in the environment (an 
external condition). A case where one of the conditions is not met might be 
the sum of certain extremely big numbers requiring a memory capacity 
surpassing that of a human agent. In this case, the internal condition cannot 
be fulfilled by such an agent and so the mental act in question cannot be 
carried out.

2.  Computable concepts, concept-correlates and Turing machines

Another important feature of the variant of conceptualism assumed in this 
paper concerns nominalized predicates. According to such a variant, the pos-
sible denotations of nominalized predicates (such as “redness” and “human-
ity”) are objects5. These sorts of objects are called concept-correlates and 
possess an internal link to the possible applications of the concepts. More 
specifically, concept-correlates contain the conditions under which the 
concept can be or cannot be truly predicated of objects. That is, they include 
a general specification of those truth-conditions or an encoding of such a 
specification.

5 O bjects are entities that do not a have predicable nature by themselves. This would 
justify considering predicate tokens to be objects: by themselves, they cannot be predicated. 
They are derivately predicable. That is, they  can only be predicated when associated to 
concepts. A predicate token of “dog” is an object and can be predicated of dogs as long as 
it is associated to the concept of being a dog.
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We shall here interpret correlates of computable concepts as (numerical 
codes of) Turing machines. We shall also commit to the thesis that every 
computable concept has a correlate6. In what follows, we shall offer two 
sources of justification for this thesis. These sources will also justify our 
interpretation of the correlates of computable concepts.
The first source of justification is the existing link between algorithms 

and computable concepts: there is a need for computable concepts in the 
apprehension of an algorithm as a procedure for computing a problem or 
set of problems with respect to a certain entity. Computable concepts pro-
vide the cognitive basis for such an apprehension. But also, an algorithm 
can be formulated for every computable concept.

More clearly, the content of a computable concept provides the intuitive 
idea of certain procedure whose implementation would link, in a necessary 
way, its input objects with its output objects. That is, at any possible world, 
time, space, etc., at which the procedure were to be implemented, no vari-
ation would have to be expected in the input-output objects as they are 
connected by the procedure. Such content is apprehended in the different 
algorithms associated to the same problem. In other words, each algorithm 
is cognized as a version of the procedure that would compute the solutions 
to the problems related to a certain entity. For this reason, the content of 
the computable concept would provide a unity to the different algorithms 
for the same function: they can be understood as different versions of the 
procedure for computing the problems regarding the function. But even in 
the case where we just know just one algorithm, this algorithm would be 
cognized as one of the possible ways to achieve the computational proce-
dure for solving those problems.

As an example, take into account the case of computable numerical 
functions. The values of the same numerical function can be computed by 
different algorithms, but we associate all of these possible algorithms to 
the same procedure that constitutes the function. This is because they are 
cognitively apprehended as implementing in different ways a procedure for 
computing its values. Were it not for such an apprehension, the different 
algorithms would be to an agent just sets of instructions, which given the 
same input-data, yield the same output-data. That is, no connection would 
be established between the algorithms and the function. The apprehension 
is possible only if a computable concept constituting the numerical function 
has been constructed. For instance, if no concept of a number being the sum 

6 I n Tichý (1969), a connection is postulated between concepts and  sets of Turing 
machines, viz.: concepts are identified with equivalence classes of Turing-machines. This 
approach clearly differs from ours, since we are not identifying concepts with classes. Concepts 
are capacities. Also, concept-correlates in general and concept-correlates of computable 
concepts, in particular, are not identified with the classes in question.
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of two other numbers had been formed, it would not be possible to appre-
hend an algorithm as computing the values of addition.

The above explains the cognitive relation of algorithms to concepts. But 
there is also a cognitive relation of concepts to algorithms: there is always 
the possibility, in principle, of formulating an algorithm corresponding to a 
computable concept, once the content of such a concept is grasped. The 
algorithm will express in its set of instructions the content of the concept. 
Implementation of such an algorithm will classify, identify or relate objects 
in the same way as it would be done by the exercise of the concept associ-
ated to the algorithm. For example, once the content of the concept of a 
number being the product of two other numbers is grasped, it is possible, 
in principle, to formulate an algorithm yielding the multiplication of two 
numbers. Different algorithms associated to the same concept will consti-
tute different ways of expressing the same content of the concept. Addition, 
for example, can be expressed by an infinite number of algorithms.

In sum, every algorithm can in principle be associated to a computable 
concept and vice-versa. On the one hand, algorithms are cognized as cases 
of a certain procedure whose implementation would link, in a necessary 
way, the input objects with the output objects of such algorithms. The idea 
of such a procedure is intuitively included in the content of the computable 
concept. On the other hand, for every computable concept an algorithm can 
in principle be formulated that would express a version of the procedure.
Now, we have claimed above that we have two sources of justification for 

the thesis that every computable concept has a Turing machine as correlate. 
The first source is the above connection between computable concepts and 
algorithms. The second source of justification is to be found in the so called 
Church’s thesis and the arithmetization of T-machines.
As is well known, Church’s thesis postulates the equivalence of effective 

computability (i.e., computability by an algorithm) to Turing-computability. 
From this, it clearly follows that computable concepts are necessarily con-
nected to T-machines: computable concepts are necessarily associated 
to algorithms, as it was justified above, and algorithms are necessarily 
linked (via Church’s thesis) to T-machines, and, consequently, computable 
concepts are necessarily tied to T-machines. Implementation of these 
T-machines will classify, identify or relate objects in the same way as it 
would be done by exercising the concept. 

The above link between computable concepts and T-machines provides 
a ground for assigning correlates to computable concepts on the basis of an 
arithmetization of the T-machines. For this purpose, assume the arithmetiza-
tion of T-machines by Davis (1985). Thus, for every computable concept 
there would be a set of numerical codes associated with it, namely: the gödel 
numbers of T-machines computing characteristic functions whose domains 
would be the extensions of the computable concept. Take as correlate for 
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a computable concept the smallest number of such a set. These numerical 
codes will satisfy the necessary conditions for being correlates of comput-
able concepts. The reader should recall that an object can be a correlate of 
a concept if and only if it contains a general specification of the truth-
conditions under which the concept can be or cannot be truly predicated of 
objects or an encoding of such a specification.
By above, we have justified the thesis that every computable concept has 

a Turing machine (or rather its numerical code) as a correlate. The nomi-
nalization of a predicate standing for a computable concepts will denote one 
of such numerical codes7.

3.  Logical Syntax

On the basis of the above philosophical assumptions, we shall formulate a 
logical system that we shall label LC. Within the context of LC, we shall 
inquire whether predication could be assumed to be a fully or semi- 
computable concept. In the present section, we characterize the logic syntax 
of that system.

We shall here take a language L to be a countable set of individual and 
predicate constants. We shall assume the availability of denumerable many 
individual variables as well as denumerable many n-place predicate vari-
ables (for each natural number n). We shall also use x, y, z and w, with or 
without numerical subscripts, to refer in the metalanguage to individual 
variables and Fn, Gn and Rn to refer to n-place predicate variables. We shall 
usually drop the superscript when the context makes clear the degree of a 
predicate variable or when otherwise does not matter what degree it is. For 
convenience, we shall also use u in order to refer to variables in general.

As primitive logical constants, we shall take &, =, ∼, λ, (,), ∀ and ∀s. 
We shall intuitively interpret these constants, respectively, as classical con-
junction, identity, classical negation, the lambda abstract operator, left and 
right parentheses, the universal quantifier and the universal quantifier for 
semi-computable concepts.

7 O ur interpretation of concept correlates as (numerical codes) of Turing machines 
assumes Church’s Thesis. We think this is not a problematic assumption, given its wide 
acceptance. For a recent attempt to prove Church’s Thesis, see Derschowitz and Gurevich 
(2008). For discussions on the nature of Church’s thesis see Oszwelski-Wolenski-Januz 
(2007), Coopeland (2002), Mendelson (1990), Shapiro (1981). Also, see Freund (2005) for 
a discussion of the connection between conceptualism, classical computability theory and 
Church’s thesis. Now, the thesis has been questioned in Kálmar (1959), Péter (1959) and 
Bowie (1973). But, to our opinion, later critiques have shown those positions not to be correct. 
For a critique of Kálmar and Péter, see Mendelson (1963), and for that of Bowie see Ross 
(1974).
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Given a language L, we recursively define the set of meaningful expres-
sions of type n of L, (in symbols, Mn(L)) as follows:

  (1)	E very individual variable or constant is in M0(L); every n-place pred-
icate variable or constant is in both Mn+1(L) and M0(L)

  (2)	I f a, b ∈ M0(L), then (a = b) ∈ M1(L)
  (3)	�I f π ∈ Mn+1(L) and a1, …,  an ∈ M0(L), then π(a1, …,  an) ∈ M1(L)
  (4)	�I f δ ∈ M1(L) and x1, …,  xn are pairwise distinct individual variables, 

then [λx1, …,  xn δ  ] ∈ Mn+1(L), for n > 0
  (5)	I f δ ∈ M1 (L), then ∼ δ ∈ M1(L).
  (6)	I f δ, σ ∈ M1(L), then (δ & σ) ∈ M1(L).
  (7)	I f δ ∈ M1(L) and F is a predicate variable, then ∀Fδ ∈ M1(L).
  (8)	I f δ ∈ M1(L) and F is a predicate variable, then ∀sFδ ∈ M1(L).
  (9)	�I f δ ∈ M1(L), x is an individual variable and F is a predicate variable, 

then ∀xδ ∈ M1(L).
(10)	I f δ ∈ M1(L), then [λδ] ∈ M0(L)
(11)	I f n > 0, then Mn+1(L) ⊆ M0(L).
	 We set M(L) = 


 Mn(L), that is, the set of meaningful expressions 

of L.

We shall use δ, σ and α to refer to meaningful expressions of L.
We understand the well-formed formulas (wffs) of L to be the members 

of M1(L). Whenever t ∈ M0(L), we shall say that t is a term of L. We shall 
use a, t and b, with or without numerical subscripts, to refer to terms in 
general. On the other hand, for n ≥ 1, we take the n-place predicate of L 
to be the members of Mn+1(L). By clause 11, note that any n-place predi-
cate can also function as a term, for n ≥ 1. When the latter is the case, the 
term in question formally represents the nominalization of the predicate. 
Finally, regarding clause 10, we should note that “[λδ]” should be read as 
“that δ”, that is, as the nominalization of the well-formed formula δ. In other 
words, clause 10 captures our capacity to linguistically refer to the proposi-
tion expressed by a given statement.

The concepts of a bound and free occurrence of a (predicate or indi-
vidual) variable are understood as usual. An occurrence of a term b in a  
wff or term σ is said to be a bound occurrence of b in σ if some occurrence 
of a variable in b is a free occurrence of that variable in b but a bound 
occurrence of that variable in σ. If a and b are terms, then by ϕa/ b, where 
ϕ is wff (or a term), we shall mean the wff (or term) that results by replacing 
each free occurrence of b in ϕ by a free occurrence of a, if such a wff or 
term exists, and otherwise we take ϕa/ b to be just ϕ itself. We shall say 
that a is free for b in ϕ, if ϕa/ b is not ϕ unless a is b.

n∈ω
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The quantifier ∀ when applied to predicate variables should be intui-
tively interpreted as the universal quantifier whose range is the class of all 
concepts (computable or otherwise), that is, “∀F ” should be read as “for 
every concept F ”. When the quantifier is applied to an individual variable x, 
it should be read as “for every individual x”. We shall include abstract 
objects such as numbers and sets among the individuals falling within the 
range of a quantifier over individuals. Finally, “∀sF ” should be read as “for 
every semi-computable concept F ”.
The existential quantifiers are defined in terms of the universal quanti-

fiers as usual:
•  ∃Fϕ	 =df	 ∼ ∀F ∼ ϕ
•  ∃xϕ	 =df	 ∼ ∀x ∼ ϕ
•  ∃sFϕ	 =df	 ∼ ∀sF ∼ ϕ

The truth-functional sentential connectives “→” (material implication), “↔” 
(material equivalence) and “∨” (disjunction) can be defined in the customary 
way, in terms of the sentential connectives assumed here as primitive.
The universal and existential quantifiers whose range is the class of fully 

computable concepts will be here defined as follows:
• � ∀ cFϕ =df ∀F((∃sG(G = [λx1 …  xn Fx1 …  xn]) & 
∃sR(R = [λx1 …  xn ∼ Fx1 …  xn])) → ϕ)

•  ∃cFϕ =df ∼ ∀cF ∼ ϕ

That is, F is a fully computable concept if and only if there are semi-
computable concepts G and R such that the exercise of G will determine 
that given objects fall under F whenever they do fall under F, and the 
exercise of R will determine that given objects do not fall under F whenever 
they do not fall under F.

4.  System LC

Given the above logical syntax, we are now able to express in the following 
formula our assumption (from section 2) that every semi-computable concept 
has a correlate:

(R)  ∀sG∃x(F = x))

We are also able to express the view, of the conceptualist framework pre-
supposed in this paper, that a stage of concept formation can be reached 
at which every predicate stands for a concept. This presupposition can be 
conveyed by the following schema:

(CP)  ∃F(F = [λx1 …  xn ϕ]),
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provided F is a variable which does not occur free in ϕ. If we add this 
schema and the above formula R to the following axioms and rules, we 
obtain a logical system for reasoning with computable concepts:
where ϕ, ψ, σ, γ are wffs and u is a predicate or individual variable,

the axioms are

A0.	 all tautologies
A1.	 (a = a)
A2.	 ∀u(ϕ → ψ) → (∀uϕ → ∀uψ)
A3.	 ∀s F(ϕ → ψ) → (∀s Fϕ → ∀s Fψ)
A4.	 ϕ → ∀uϕ, provided u does not occur free in ϕ.
A5.	 ∀x∃y(x = y)
A6.	 ∀Fϕ → ∀ s Fϕ
A7.	 ([λx1 … λxn Rx1 …  xn] = R), where R is either a predicate variable 

or constant.

(LL).  (a = b) → (ϕ ↔ ψ)
(where ψ comes from ϕ by replacing one or more free occurrences of a by 
free occurrences of b)

(λ-CONV)  [λx1 … λxn ϕ](a1 … an) ↔ ∃x1 … ∃xn (a1 = x1 & … an = xn 
& ϕ) (where no xj is free in any ak,  for 1 ≤ k, j ≤ n)

(Rw)  [λz1 … zn σ] = [λy1 … λyn σ(y1/z1 …yn/zn)] where no yi occurs in σ.

and the rules are:
•  MP : infer ϕ from γ → ϕ and γ
•  UG : infer ∀Fϕ from ϕ
UG/o :  infer ∀xϕ from ϕ

The above rules and axioms together with R and CP conforms the logical 
system to which we have referred, in the previous sections, as LC.
As usual, if there is a finite sequence of well-formed formulas such that 

every member of the sequence is either an axiom of LC or follows from 
previous members of the sequence by one of the rules of LC, then we shall 
say that the last formula ϕ of the sequence is a theorem of LC, (in symbols 
LC ϕ). From now on, every proof of a theorem or derived rule, requiring 
reasoning in accordance with principles and rules of classical propositional 
logic, will be indicated by the expression PL8.

8 T he notion of a derivation in LC can be defined as follows: Γ  ϕ if and only if there 
are well formed formulas ψ1 … ψn  ∈ Γ such that  (ψ1& … &ψn) → ϕ. For this reason, we 
are not stipulating any restriction on the UG and UG/o rules.
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In what follows, we shall state several theorems and two derived rules 
that we shall make use of later on.

Derived rules
UG(s): if LC ϕ, then if LC ∀sFϕ
(UG c): if LC ϕ, then LC ∀c Fϕ.

Theorems
T1	 LC ∀s G∃F (G = F)
T2	 LC ϕ → ∀s Fϕ, provided F does not occur free in ϕ.
T3	 LC (∀Fnϕ → ϕ[λx1 … xn σ] / F)
	 (provided F does not occur free in σ, and [λx1 … xn σ] is free for F in ϕ)
T4	 LC ∃x(x = a) → (∀xϕ → ϕa/ x)
	 (provided x does not occur free in a, and α is free for x in ϕ).
T5	 LC ∃s F n (F = [λx1 … xn σ]) → (∀s F n ϕ → ϕ[λx1 … xn σ] / F),
	 (provided F does not ocur free in σ, [λx1 … xn σ] is free for F in ϕ)
T6	 LC ϕ → ∀c Fϕ, provided F does not occur free in ϕ,
T7	 LC ∀c F (ϕ → σ) → (∀c Fϕ → ∀c Fσ).
T8	 LC ∀c F ∃G(F = G).
T9	 LC ∃c F n (F = [λx1 … xn σ]) → (∀c F n ϕ → ϕ[λx1 … xn σ] / F)
	 (provided F does not occur free in σ, [λx1 … xn σ] is free for F in ϕ)
T10	 LC ∀c F ∃c G(F = G)
T11	  ∀Fs ϕ → ∀c Fϕ

5.  Predication and computable concepts

Apart from being a logical system for reasoning with computable concepts, 
LC is also a system that has conceptualism as its justificational ground. 
Thus, LC is an appropiate framework for considering the main problem of 
this paper, that is, the problem of whether the concept of predication can be 
consistently assumed to be computable within the context of conceptualism.

In terms of the logical syntax of LC, the above problem can be stated as 
the question of whether any of the following theses are consistent with LC :

I.	 (∃c G) (∀c F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
II.	 (∃c G) (∀s F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
III.	 (∃s G) (∀s F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
IV.	 (∃s G) (∀c F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
V.	 (∃s G) (∀F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
VI.	 (∃c G) (∀F ) (∀x1) … (∀xn) (G(F, x1, … xn) ↔ F (x1, … xn))
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Thesis I states that predication is a fully computable concept when restricted 
to computable concepts and thesis II that it is a fully computable when restricted 
to semi-computables concepts. Thesis III asserts that predication is a semi-
computable concept when confined to semi-computable concepts and thesis IV 
a semi-computable concept when restricted to fully-computable concepts. 
Finally, thesis V estates that predication is a semi-computable and thesis VI 
that is a fully computable concept, independently of the concepts involved.

By T11 and A6, it can easily be shown that within LC either theses II 
and VI implies I. But, as the following proof shows, thesis I relative to LC 
leads directly into a contradiction:

Let LC(+) be the result of adding thesis I to LC. Then,
1.	 LC(+) ∀c F2 ∃c G(G = [λx ∼ Fxx])
	 (by definitions, A6, T3, UG, A2, A4, PL)
2.	 LC(+) ∃c G ∀c F ∀x(G(F, x) ↔ Fx)
	 (by Thesis I)
3.	 LC(+) ∃c G ∀x(G([λx ∼ Gxx], x) ↔ [λx ∼ Gxx]x)
	 (by 1, 2, Definitions, T7, UGc, T9, PL)
4.	 LC(+) ∃c G ∀x(G([λx ∼ Gxx], x) ↔ ∼ Gxx)
	 (by 3, A2, LL, PL, UG/o, A4, λ-Conv, A3, UGc)
5.	 LC(+) ∃c �G(G([λx ∼ Gxx], [λx ∼ Gxx]) ↔ 

∼ G([λx ∼ Gxx], [λx ∼ Gxx]))
	 (by 1, 4, R, T11, T9, T4, UGc, T7, T11, PL)
	B ut, by PL and UGs

	 LC(+) ∀c �G ∼ (G([λx ∼ Gxx], [λx ∼ Gxx]) ↔ 
∼ G([λx ∼ Gxx], [λx ∼ Gxx])).

Therefore, none of the theses I, II and VI are LC-consistent and so predica-
tion cannot be assumed to be a computable concept. We are left then with 
theses III, IV and V.

According to a well-known result from computability theory, there is 
no algorithm for deciding whether an alleged algorithm for computing the 
values of a total numerical function is indeed such an algorithm (see, for 
example, Davis (1985), p. 78, Theorem 61). On the basis of this result, we 
can show that thesis V would be unacceptable: assuming thesis V within 
the context of LC would allow us to easily prove (by Thesis V, T3, UG(s), 
A3 and PL) the following:

(∃s G) (∀x) (G([λx(∃c F) (F = x)], x)) ↔ [λx(∃c F) (F = x)] x)).

But this formula expresses the proposition that a semi-computable con-
cept G exists that would allow us to effectively decide whether an object 
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is the correlate of a fully computable concept F and so a T-machine, given 
our above assumption regarding concept-correlates of semi-computable 
concepts. On the other hand by this same assumption, a T-machine would 
exist as a correlate for the concept G. This means that we would have 
an algorithm for deciding whether an object is the algorithm of a fully 
computable concept, in particular, of those concepts corresponding to 
total numerical functions. But this will contradict what we know from 
computability theory that there is not such an algorithm. Thus, thesis V 
cannot be accepted.

Finally, let us consider theses IV and III. By T11 and PL, thesis IV 
clearly follows from III. But since thesis III is consistent relatively to LC, 
as we show in the next section, then our original problem is solved with 
respect to theses III and IV. Thus, relatively to LC, predication can be 
assumed to be a semi-computable concept when restricted in its application 
to computable or semi-computable concepts.

6.  L-interpretations and the consistency of LC + III

By constructing a formal semantic interpretation for a second order lan-
guage with nominalized predicates and lambda operators, we show the con-
sistency of thesis III with respect to LC. In this semantic proof, we also 
appeal to certain results from computability theory.

The formal semantic interpretation showing the consistency of LC 
together with thesis III will be based on what we shall call a frame for 
nominalized predicates (N-frame, for short). We start by characterizing this 
latter notion.

By a N-frame we shall understand a structure < D, Sn, Yn,  f >n∈ω, where 
ω is the set of natural numbers and such that (1) D is a non-empty set; 
(2) for all n ∈ ω, Sn ⊆ Yn ⊆ ℘(Dn), where “℘(Dn)” stands for the power set of 
Dn (for n = 0, we set D0 = {Ø} = 1); (3) there is a set D∗ such that D ⊂ D∗ 
(i.e. D is a proper subset of D∗) and (4) f is a function from D∗ ∪ 


 ℘(Dn) 

into D∗ such that

(i)	  for all d ∈ D∗, f (d) = d,
(ii)	 for every z ∈ 


 Sn there is a d ∈ D such that f (z) = d, and

(iii)	for every n ∈ ω, f restricted to ℘(Dn) is one-to-one.

D is the range of values of the bound individual variables and D∗ the range 
of values of the free individual variables. Sets Sn and Yn are, respectively, 
the range of values of the n-place variables bound by the quantifier “ ∀s ” 
and the range of values of the n-place variables bound by the universal 

n∈ω

n∈ω

99005_LogiqueAnalyse_234_01.indd   147 4/08/16   13:07



148	 max a. freund

quantifier “ ∀ ”. The function f when restricted to 


 Sn set-theorically rep-

resents the correlation of semi-computable concepts with objects.
Where A is a N-frame, we shall say that A is an assignment (of values 

to variables in A) if A is a function with the set of variables as domain 
and such that (1) for all n ∈ ω, all n-place predicate variables Fn, A (F n) ∈ 
P(Dn)  and (2) for each individual variable x, A(x) ∈  D∗. Also, we set 
A (d /u) = (A−{< u, A(u) >} ∪ {< u, d >}, i.e., A (d /u) is that referential 
assignment which is exactly like A except (at most) for its assigning d to u.

Where L is a language and A a N-frame, we shall say that I = < h, A > 
is a model for L (a L -model, for short), if h is a function with L as domain 
such that for all n ∈ ω and all n-place predicate constants P  ∈ L, h(P) ∈ 
℘(Dn) and for each individual constant c ∈ L, h(c) ∈ D∗.

Let I = < g, A > be an L-model. We shall say that I is an interpretation 
of the meaningful expressions of L (an interpretation of L, for short) if 
and only for every assignment A in A there is function interI,A from M (L) 
into D∗ ∪   


 (℘(Dn)) such that:

  1.	�I f a is a variable, then interI,A(a) = A(a). If c ∈ L (i.e. c is a predicate 
or individual constant), then interI,A(c) = g(c).

If σ ∈ Mn+1 (L), then:
  2.	�I f σ is a = b, where a, b ∈ M0 (L), then for all i ∈ W, interI,A(σ) = 1 iff 

f (interI,A(a)) = f (interI,A(b));
  3.	�I f σ is π(a1 … an), where π ∈ Mn+1 (L) and a1 … an ∈ M0, then 

interI,A(σ) = 1 iff < f (interI,A(a1)) … f(interI,A(an)) > ∈  interI,A(π);
  4.	�I f σ is [λx1 … xn ϕ], where ϕ ∈ M1 (L), then 

interI,A (σ) = {< d1, …, dn > ∈ Dn: interI,A(d1/x1
.dn/xn)(ϕ) = 1};

  5.	�I f σ is ∼ ϕ, where ϕ ∈ M1 (L), then interI,A (σ) = 1 iff 
interI,A(ϕ) = 0

  6.	�I f σ is (ϕ & γ), where ϕ, γ ∈ M1 (L), then interI,A(σ) = 1 iff both 
interI,A(ϕ) = 1 and interI,A(γ) = 1

  7. 	If σ is ∀F nγ, where γ ∈ M1 (L) then interI,A(σ) (i) = 1 iff for every 
d ∈ Y n, interI,A(d/F)(γ) = 1.

  8.	�I f σ is ∀s F n γ, where γ ∈ M1 (L), then interI,A(σ) = 1 iff for every 
d ∈ Sn, interI,A(d/F)(γ) = 1

  9.	�I f σ is ∀x γ, where γ ∈ M1 (L), then interI,A(σ) = 1 iff for every 
d ∈ D, interI,A(d/x)(γ) = 1

10.	I f σ is [λϕ], where ϕ ∈ M1 (L), then for all i ∈ W, interI,A(σ) = 
interI,A(ϕ).

n∈ω

n∈ω
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Let I = < g, A > be an interpretation of L and A an assignment in A. 
We define satisfaction and truth of a wff ϕ of L as follows:
•  A satisfies ϕ in I iff interI,A(ϕ) = 1;
•  ϕ is true in I iff every assignment in A satisfies ϕ in I.

We now proceed to construct an interpretation for a formal language L in 
which every theorem of LC + III would be true. We show in this way the 
consistency of LC with thesis III. Construction of the interpretation will 
require some results stemming from computability theory, which we shall 
introduce before the construction. Those results have been formulated and 
proved, for example, in Davis (1985).
Let us consider the set of first order well-formed formulas of the lan-

guage of arithmetic. By a numerical predicate we shall mean any of such 
well-formed formulas containing free variables. Clearly, numerical predi-
cates qualify as predicates in the sense of (Davis (1985), p. xxii) and so by 
(Davis (1985), p. 66), an n-place numerical predicate P (x1 … xn) is semi-
computable if and only if there is a partially computable function whose 
domain is the set {< n1 … nn >  ∈  ωn: P (n1 … nn)}. [Briefly, by a partially 
computable function it is understood a partial numerical function comput-
able by a T-machine (cf. Davis (1985), p. 10)].

By a semicomputable set Sn we shall mean a set of n-tuples of natural 
numbers for which there is an n-place semi-computable numerical predicate 
P (x1 … xn) such that

S n = {< n1 … nn >  ∈  ω n : P (n1 … nn)}.

Now, in accordance with so called Klenee’s enumeration theorem [cf. 
(Davis, (1985), chapter 5, theorem 1.4),], for every semicomputable numer-
ical predicate P(x1 … xn) there is a natural number z such that

P(x1 … xn) ↔ (∃y) Tn(z, x1 … xn, y)

where the predicate Tn(z, x1 … xn, y) is defined as “z is the Gödel number 
of a Turing machine Z, y is the Gödel number of a computation with respect 
to Z having only the (Turing representation) of x1 … xn on the tape in its 
initial state”. (We should note that this predicate is primitive recursive). 
Consequently, by the definition of a semi-computable set and Kleene’s enu-
meration theorem, for every semicomputable set S n, the set GSn

 = {z ∈ ω : 
for every x1 … xn ∈ ω, < x1 … xn >  ∈  S n ↔ (∃y) Tn(z, x1 … xn, y)} is not 
empty. Let LSn

 be the least element of GSn
.

On the basis of the abovementioned results, we proceed to construct a 
model for the language of arithmetic. As we will show, this model is an 
interpretation in which all theorems of LC+III are true.
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Let ω be the set of natural numbers,
D∗ = ω ∪ 


 {A ⊆ ωn : A is not semicomputable}, and B be the structure

< ω, S n, ℘(ω n), g >n∈ω, where

1)  S n = {A ∈ ℘(ω n) : A is semicomputable},
2)	 g is the function from D∗ ∪ 


 ℘(ω n) into D∗ such that:

i)	 for all d ∈ D∗, g(d) = d,
ii)	� for every n ∈ ω, if z = B ∈ S n(i.e. B is a semicomputable subset of ωn), 

then g(z) = LB (i.e., the least element of GB).

Clearly, B is a N-frame.
Now, let LAr be the language containing just the set of non-logical sym-

bols X, +,  and 0. Also, let H = < h, B >, where h is the function with LAr 
as domain assigning, respectively, the multiplication, addition, successor 
relations and the number zero to the constants X, +,  and 0. Clearly, H is 
an LAr-model. We now prove that H is an interpretation of LAr  .

Theorem:  H is an interpretation of LAr  .
Proof: I t is clear that for every assignment A in B there is a function IntA 
from M (LAr) into D∗ ∪ 


 ℘(D) such that:

0.	�I f a is a variable, then interI,A(a) = A(a). If c ∈ LAr, then  
IntA(c) = h(c).

1.	�I f σ is a = b, where a, b ∈ M0 (L), then IntA(σ) = 1 iff  
g (IntA(a)) = g(IntA(b));

2.	I f σ is π(a1 … an), where π ∈ Mn+1 and a1 … an ∈ M0, then  
IntA(σ) = 1 iff < g(IntA(a1)) … g(IntA(an)) > ∈ IntA(π);

3.	�I f σ is [λx1 … xn ϕ], where ϕ ∈ M1 (L), then 
IntA(σ) = {< d1, …, dn > ∈ ωn : IntA(d1/x1 ..dn/xn)(ϕ) = 1};

4.	 If σ is ∼ ϕ, where ϕ ∈ M1 (L), then IntA(σ) = 1 iff IntA(ϕ) = 0.
5.	�I f σ is (ϕ & γ), where ϕ, γ ∈ M1 (L), then IntA(σ) = 1 iff 

both IntA(ϕ) = 1 and IntA(γ) = 1
6.	I f σ is ∀Fnγ, where γ ∈ M1 (L) then IntA(σ) = 1 iff 

for every d ∈ ℘(ωn), IntA(d/F)(γ) = 1.
7.	�I f σ is ∀s Fn γ, where γ ∈ M1 (L), then IntA(σ) = 1 iff 

for every d ∈ S n, IntA(d/F)(γ) = 1.
8.	�I f σ is ∀xγ, where γ ∈ M1 (L), then IntA(σ) = 1 iff  

for every d ∈ ω, IntA(d/x)(γ) = 1
9.	I f σ is [λϕ], where ϕ ∈ M1 (L), then IntA(σ) = IntA(ϕ).

n∈ω

n∈ω

n∈ω
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For every assignment A in B, the corresponding function IntA clearly satis-
fies all clauses on page 10 and so H is an LAr-interpretation.

We now show that the theorems of LC+ III are true in H.

Theorem:  If ϕ is a theorem of LC+III, then ϕ is true in H
Proof: A xioms A0 − A7, λ-Conv, Rw, and R are clearly true in H. By an 
inductive argument, it can be shown that LL is true in H. By clauses 3 and 7 
of IntA (for every assignment A in B) and the fact that a quantifier over 
n − ary concepts ranges over all the power set of ωn, CP can be easily seen 
to be true in H. On the other hand, MP, UG, and UG/o are truth-preserving 
rules. Then, it remains to be shown that thesis III is true in H:

Let P n+1 = {< z, x … xn > ∈  ωn+1| (∃y) Tn(z, x1 … xn, y)}. Clearly, 
since (∃y) Tn (z, x1 … xn, y) is a semi-computable numerical predicate, P n+1 
is a semi-computable set and, consequently, P n+1 ∈ S n+1. Let A be any 
assignment  in B and assume C is a n − ary semi-computable set such 
that A(F n) = C,  where F n is a n-place predicate variable. Since C is 
semi-computable, then (by the definition of the correlation function g) there 
is natural number k such that g(C ) =  k and for every < m1 … mn > ∈ C, 
(k, m1 … mn))  ∈  P n+1. Clearly then < m1 … mn >  ∈  A(F n) if and only if 
(g(A(F n)), m1 … mn)) ∈ Pn+1. So, there is a K ∈ Sn+1 (viz. P n+1) such that 
for every C ∈ S n+1, and every m1 … mn ∈ ω, IntA(K/G,  C/F, m1 /x1 …mn/xn) 

(G(F, x1 … xn) ↔ F(x1 … xn)) = 1, where G is any arbitrarily selected m-place 
predicate variable. Hence,

IntA(∃sG) (∀s F ) (∀x1) … (∀xn) (G(F, x1, … xn)) ↔ Fx1, … xn)) = 1.

Therefore, thesis III is true in H.

Corollary:  LC+III is consistent.

7. � A comprehension principle for semi-computable concepts

We have formulated a comprehension principle for concepts in general, but 
not one for semi-computable concepts. Now, the version of conceptualism 
assumed in this paper does not provide by itself the theoretical grounds  
for its characterization. It is the standard theory of computability together 
with the connection established between such a theory and conceptualism (via 
concept correlates) that will allow us to express a comprehension principle 
for semi-computable concepts.

Thus, if we take into account the theorem that the intersection of 
recursively enumerable sets is recursively enumerable [see, for example, 
Rogers (1987), sections 5.4 and 5.5], one could justify the following mini-
mal comprehension principle for semi-computable concepts:

(SCP) ∀s
 F1 … ∀s Fn ∃s G(G = [λx1 … x

n ϕ])
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provided (1) neither the negation nor the identity sign occur in ϕ, (2) quan-
tifiers over concepts (computable or otherwise) or over semi-computable 
concepts occur in ϕ only in lambda abstracts occurring in subject position, 
i.e., as abstract singular terms (3) no constant predicate occurs in ϕ, 
(4) F1 … Fn are all the predicate variables occurring in ϕ (5) G does not 
occur in ϕ.

The restriction regarding negation in clause 1 is based on the well known 
result that there are negations of recursively enumerable sets which are not 
recursively enumerable (see Davis 1987, p. 68, Theorem 1.6). As for iden-
tity, clearly the set of true empirical identities is not recursive enumerable. 
As for clause 2, as far as we know there are not general results regarding 
functionals on partially recursive functions.

By induction on the complexity of formulas, SCP can be shown to be 
true in our above model H, taking into account Theorems 3.1 in Davis (1985), 
according to which the conjunction of semi-computable predicates is a 
semi-computable predicate. So, SCP is consistent with LC. Whether SCP 
can be extended to a more comprehensive schema will be left here as an 
open problem.

8.  Conclusion

In this paper, we have focused on the concept of predication itself, that is, on 
our cognitive capacity or cognitive structure to identifying acts of predications 
and to determine the formal conditions for the truth of such predications. 
Our particular interest was in the question of whether such a concept can 
consistently be assumed to be computable. We pointed out that this problem 
derives its interest from the importance of a more general problem in meta-
cognition, namely: the question of how effective might be, in the computa-
tional sense, our second-order cognitive abilities and capacities, planning, 
monitoring and evaluation, that are involved in metacognition. The concept 
of predication would clearly be one of such metacognitive capacities or 
abilities. Thus, an answer to the question regarding its effectiveness would 
be a step forward towards a complete solution of the aforementioned gen-
eral problem.
The solution that we have offered to the particular problem of this paper 

is relative to the formal system LC and certain results stemming from com-
putability theory. Given the principles and rules of LC and outcomes from 
computability theory, we have showed that (1) predication can be consist-
ently assumed to be semi-computable, when restricted in its application to 
fully or semi-computable concepts; (2) when such an application is open to 
any concept (computable or otherwise), a consequence would follow within 
LC that would contradict a demonstrated result from computability theory; 
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and, finally, (3) if it is assumed that the concept of predication is comput-
able, then a contradiction would follow within the context of LC.

The concept of predication would be a metacognitive instrument for the 
assessment of predications. It would allow us to determine whether the 
exercise of a concept corresponds to an act of predication; and, if it does 
correspond, the concept of predication will also allow us to decide whether 
the formal conditions for falling under a concept have been fulfilled. The 
latter is a necessary step towards an evaluation regarding the truth-value 
of a certain predication. According to our results, partial computational 
effectiveness is to be expected in the evaluation of a predication, when the 
exercise of fully or semi-computable concepts are in consideration. That is, 
if the subjects of a predication actually fall under the attributed concept, the 
concept of predication will effectively indicate that it is so, if the predicated 
concept is computable. If such subjects do not fall under the attributed 
concept, computational effectiveness is not to be generally expected on the 
part of the concept of predication. Fully computational effectiveness cannot 
be generally expected for the assessment of the exercise of concepts (com-
putable or otherwise) in acts of predication. So, the concept of predication 
would be a necessary metacognitive element but not a sufficient one to 
effectively evaluate such acts (in the computational sense of effectiveness).

Now, even though the results of this paper depend on LC, they might be 
relevant for the study of metacognition. The axiomatic basis of LC involves 
principles and rules that might hold for that context, in the sense that human 
agents might implicitly make use of them in certain metacognitive tasks9. 
The contents of axioms A0-7, LL, λ-Conv and Rw, and the primitive rules 
of LC are intuitively enough from the cognitive point of view. All of  
them are either general logical principles regarding the use of concepts or 
principles and rules of classical first-order logic. On the other hand, the 
comprehension principle CP expresses our cognitive capacity to construct 
complex concepts from simpler concepts and logical operations, even if this 
involves impredicativity. Finally, axiom R is based on our cognitive capacity 
to nominalize predicates and assign denotations to such nominalizations. 
Clearly, such a axiom would state a possible stance regarding those assign-
ments. We have here shown some of its consequences.

9  We should point out that there is a controversy in cognitive psychology regarding the 
use of deductive logical rules by human agents in their reasoning. Some authors have upheld 
the thesis that the cognitive basis of our inferences are not implicit deductive rules (see, for 
example, Johnson-Laird (2005) and (1983)) or even deductive standards of rationality (see, 
for example, Kahneman, Slovic & Tversky (1982)). However, as indicated in Evans (2002), 
the theoretical debate between rule based theories and non-rule based theories remains  
unresolved. Moreover, it has been shown that for certain contexts logical rules are essential 
(see, Stanovich (1999). Metacognitive evaluations might be contexts of this sort.
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