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A Variant of Church’s Set Theory 
with a Universal Set in which the 

Singleton Function is a Set*

Flash Sheridan 

Abstract

A Platonistic set theory with a universal set, CUSɩ, in the spirit of Alonzo Church’s 
“Set Theory with a Universal Set,” is presented; this theory uses a different 
sequence of restricted equivalence relations from Church’s, such that the singleton 
function is a 2-equivalence class and hence a set, but (like Emerson Mitchell’s set 
theory, and unlike Church’s), it lacks unrestricted axioms of sum and product set. 
The theory has an axiom of unrestricted pairwise union, however, and unrestricted 
complements. An interpretation of the axioms in a set theory similar to Zermelo-
Fraenkel set theory with global choice and urelements (which play the rôle of new 
sets) is presented, and the interpretations of the axioms proved, which proves their 
relative consistency. 

The verifications of the basic axioms are performed in considerably greater 
generality than necessary for the main result, to answer a query of Thomas Forster 
and Richard Kaye. The existence of the singleton function partially rebuts a conjec-
ture of Church about the unification of his set theory with Quine’s New Foundations, 
but the natural extension of the theory leads to a variant of the Russell paradox.

0.  Introduction, Context, and Related Work

1.  Philosophical Introduction and Motivation

Die Zeit ist nur ein psychologisches Erforderniss zum Zählen, hat aber mit 
dem Begriffe der Zahl nichts zu thun.

Time is only a psychological necessity for numbering, it has nothing to do with 
the concept of number.

(Frege, Die Grundlagen der Arithmetik §40, tr. J.L. Austin)

*  In this abridged version, all proofs and two bibliographic appendices (on the Church 
archives at Princeton, and works citing Church’s paper) are omitted. The full proofs and 
appendices will be made available on the website of the Centre National de Recherches de 
Logique, http://www.logic-center.be/Publications/Bibliotheque.
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ταῦτα δὲ πάντα μέρη χρόνου, καὶ τό τ᾽ ἦν τό τ᾽ ἔσται χρόνου γεγονότα εἴδη, 
ἃ δὴ φέροντες λανθάνομεν ἐπὶ τὴν ἀίδιον οὐσίαν οὐκ ὀρθῶς. λέγομεν γὰρ δὴ 
ὡς ἦν ἔστιν τε καὶ ἔσται, τῇ δὲ τὸ ἔστιν μόνον κατὰ τὸν ἀληθῆ λόγον προσήκει, 
τὸ δὲ ἦν τό τ᾽ ἔσται περὶ τὴν ἐν χρόνῳ γένεσιν ἰοῦσαν πρέπει λέγεσθαι—
κινήσεις γάρ ἐστον…

And these are all portions of Time; even as “Was” and “Shall be” are gener-
ated forms of Time, although we apply them wrongly, without noticing, to 
Eternal Being. For we say that it “is” or “was” or “will be,” whereas, in truth 
of speech, “is” alone is appropriate to It; “was” and “will be,” on the other 
hand, are properly said of the Becoming which proceeds in Time, since [both 
of ] these are motions...

(Plato, Timæus 37E, tr. R.G. Bury (Loeb), corrected slightly)

This paper is part of an effort towards a whole-heartedly Platonistic1 set 
theory which avoids the set-theoretic paradoxes,2 but still contains such 
Fregean sets as the universal set and Frege-Russell cardinals. The standard 
method of avoiding the set-theoretic paradoxes, Zermelo-Fraenkel set  
theory, has been pragmatically successful, but suffers from what I have 
called elsewhere3 half-hearted Platonism: It relies for its philosophical jus-
tification on a metaphor of constructing sets in time (or something like it),4 
which violates a crucial tenet of mathematical Platonism: that mathematical 
objects are independent of time.5

The main philosophical advance in Church’s theory, I would claim 
(Church is silent on his philosophical motivation6), is the rejection of a 

1 T he relevant aspect of Platonism for the current discussion will simply be that mathemat-
ical objects are not temporal; concurrence with any of Plato’s ideas about non-mathematical 
objects is not necessary. See further below.

2  Particularly the Russell Paradox as it affected Frege’s foundational program ([Frege 
1903], afterword), but also the Burali-Forti Paradox of the set of all ordinals, and the Miri-
manoff Paradox [Mirimanoff 1917b] of the set of all well-founded sets.

3  [Sheridan 1982, 1989]; summarized in [Forster 1995] pp. 141-2.
4  E.g., [Parsons 1977], [Gödel 1964] footnote 12, and [Almog 2008] pp. 550-1, 570-1. 

Even if this temporal metaphor is accepted, the theory would seem to violate it, by allowing 
sets to be constructed at an earlier level via quantification over sets constructed at a later 
level; but that is an internal matter for those who accept the metaphor. Unbeknownst to me, 
Church had noted, with perhaps a hint of scepticism, this impredicativity of ZFC in the notes 
for his Coble Memorial Lectures [Princeton University Church Archives, box 15, folder 10, 
typescript “Outline and Background Material, Arthur B. Coble Memorial Lectures”/“Sets of 
the Model Transfinitely Generated” page numbered 2, 39th page in folder, also mimeograph 
page 4]. (See below for the need for unwieldy citations to the archives.) See also [Holmes 2001] 
for an argument that the theory justified by the iterative conception is actually Zermelo Set 
Theory with Σ2 replacement. According to Professor Holmes, “this contain[s] an error, which 
Kanamori pointed out to me and which I know how to fix.”

5  Plato Timæus, 37E; [Frege 1884] §40.
6  The following remark, in a paper on which Church was working at around the same 

time, might be indicative of Church’s state of mind, but this is speculative: “To avoid impre-
dicativity the essential restriction is that quantification over any domain (type) must not be 
allowed to add new members to the domain, as it is held that adding new members changes 
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general comprehension axiom schema; such axioms seem also to use the 
suspect metaphor of temporal construction of sets.7 Instead Church’s theory 
posits the existence of Fregean sets denied by ZF, such as the universal set 
and Frege-Russell cardinals, via atemporal operations such as symmetric 
difference and equivalence classes as sets. Church’s (restricted) axioms 
of generalized Frege cardinals shed, I hope, some light on later work by 
neo-Fregeans,8 and may help to rescue Frege’s definition by abstraction of 
cardinal numbers. This is still, I believe, the most natural definition, and 
Frege’s insistence that the definitions of numbers reflect their application 
remains the best available, albeit partial, explanation of the unreasonable 
effectiveness of mathematics.9

Church’s main pragmatic advance is a double use of standard Zermelo- 
Fraenkel set theory with global choice, both within his theory as axioms 
restricted to well-founded sets, and metatheoretically as the basis for 
his (apparently uncompleted) relative consistency proof. The inclusion of 
the axioms of ZFGC (as the well-founded subtheory, i.e., restricted to well-
founded sets), while it makes the use of the theory as a foundation for 
mathematics easier for the working mathematician, does lay the theory 

the meaning of quantification over the domain in such a way that a vicious circle results.” 
“Comparison of Russell’s Resolution of the Semantical Antinomies with that of Tarski,” The 
Journal of Symbolic Logic volume 41, Number 4, Dec. 1976.

[Anderson 1998] p. 136 suggests that Church was “usually seen as a quite traditional 
Platonic Realist,” at least in his mature period, with a caveat about Church eschewing the 
label because of its association with the thesis that only universals are real, which is not 
necessary for the present variety of Platonism. Church, at least in his early period, was not 
enough of a Platonist not to show some skepticism about the Axiom of Choice [Enderton 
2008] p. 8, though in “Set Theory with a Universal Set” he uses an extremely strong form 
of it. (Church does, however, use Hailperin’s finite axiomatization of Quine’s New Founda-
tions, rather than Quine’s original comprehension schema, in his later theories; this is prob-
ably for technical reasons, though Hailperin’s axioms might be seen as less Platonistically 
offensive.) Church was apparently working on a paper entitled “Frege on the Philosophy 
of Time” before he started work on his set theory [box 15, Folder 8, April 17, 1969]; I have 
not yet been able to obtain the manuscript from the Church Archives.

Church speculates [Church 1974a], pp. 298-9 about axiomatic possibilities for blaming 
the antinomies on intermediate sets, i.e., sets which are not low (i.e., equinumerous to a 
well-founded set), and whose complements are also not low; more specifically, on sets which 
are “balanced on the hazardous edge between low sets and intermediate sets.” I am not 
aware of any progress on this approach. While it might apply to the Burali-Forti and Miri-
manoff Paradoxes, it does not seem to apply to the Russell Class, which would contain, for 
instance, all normal singletons.

7  See also [Sheridan 2005] and [Forster & Libert 2011] for an argument that a first-order 
comprehension axiom amounts to a claim of implausible fixed points in simple set theoretic 
operations such as adjunction.

8  See especially [Burgess 2005]. Much of the neo-Fregean program was beginning while 
I was doing my initial work—some of it at Oxford while I was writing the initial version of 
this paper—but I was largely unaware of its achievements until I resumed work on this paper 
more than a decade later.

9  See [Heck 2013], p. 41 ff, p. 222 ff.
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open to the charge of philosophical hypocrisy. The coupling between the 
details of ZF, and Church’s and my theories, is relatively weak, however; 
the ZF-like axioms are a clearly-distinguished subset. ([Sheridan 1985] 
shows that Church’s theory can be viewed as a conservative extension of 
ZFGC, and a similar result seems clear for the current theory.) I have tried 
to keep my uses of the main one, Well-Founded Replacement, relatively 
isolated, though I have not succeeded as much as I had hoped.

Both of these features distinguish Church’s theory from Quine’s New 
Foundations [Quine 1937a], which in some other respects his theory resem-
bles. Church ends his initial article with speculation that his theory might 
be unified with New Foundations. I found this philosophically objection-
able, since NF has a comprehension axiom and lacks a clear philosophical 
motivation.10 A later, unpublished, theory by Church attempts to converge 
with New Foundations, but he seems to have abandoned it; see the historical 
introduction below.

My main contribution is to distinguish theories of Church’s sort further 
from New Foundations, by providing a variant in which the singleton func-
tion is a set. This is completely impossible in New Foundations.11 
I also provide a fully-worked out relative consistency proof. (Details of my 
proof are omitted in this abridged version, but will be made available on 
the web.) Church never published a full consistency proof, and the version 
in his archives, which refers to two earlier attempts, seems to have been 
abandoned as well. His notes written in 1989 suggest the need for “a new 
approach.” My consistency proof also avoids the use of compactness needed 
by Church; I provide an interpretation for the full sequence of restricted 
equivalence relations, rather than an arbitrary finite subsequence.

How successful my endeavor was, however, is unclear: A natural exten-
sion of my theory is subject to a variant of the Russell Paradox, involving 
the set of all non-self-membered sets equinumerous to the universe,12 and 
my equivalence classes (unlike Church’s) are not closed under sum set 
and product set, though Mitchell’s theory suffers a similar limitation. (My 
theory does, however, satisfy unrestricted pairwise union.)

The paradox, though it is not directly relevant to the consistency proof 
here, suggests that my equivalence classes ran afoul of what has since been 
called the Bad Company problem.13 Church’s equivalence classes are not 
obviously subject to the same difficulty, and are, as noted, closed under sum 

10  [Forster 1995] pp. 26-7; [Holmes 1998] p. 12; [Maddy 2011] p. 136, citing [Fraenkel, 
Bar-Hillel, and Lévy 1973] p. 164. Holmes’ chapter eight does attempt to provide a philo-
sophical motivation for stratification, but not from an atemporal perspective.

11  [Holmes 1998], p. 110, 131.
12  See the discussion following the 1-Isomorphism Lemma (16.4), below. Cp. also Holmes’ 

proof of the non-set-hood of the membership relation, [Holmes 1998] p. 43.
13  [Burgess 2005], pp. 164 ff.; [Boolos 1990], pp. 249–251; [Dummett 1991], pp. 188-9.
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and product set. Thus it could be argued that the limitations of my endeavor 
are an argument for Church’s conjecture about unification with New Foun-
dations,14 or possibly Forster’s “Naturam expellas furca” claim15.

1.1.  Criticism and Alternatives

Thomas Forster has criticized Church’s type of construction as a Potemkin 
Village:16 “this technique is not a great deal of use for constructing models 
of a theory T unless T has an easy word problem. Set theories with an eas-
ily solvable word problem are unlikely to be of interest.”17 I don’t think 
anyone has disagreed with this criticism; both Church’s unpublished fol-
low-on work [Church Archives box 15, folder 11, untitled manuscript, page 
numbered 3, 3rd page in folder], and [Malitz 1976], written under Church’s 
supervision, redefine equality recursively for the sake of more powerful 
axioms. Mitchell’s concluding comment addresses this possibility as well 
[Mitchell 1976], pp. 30-1. My own contemplation of more powerful axioms 
extending my system led to a variant of the Russell Paradox, noted above 
and discussed below. Even before encountering this paradox, I had expressed 
scepticism that interesting extensions of these theories would allow models 
using the same simple techniques.

Oberschelp’s theory [1973] also avoids my difficulties, which may indi-
cate the wisdom of the limitations of his approach. I feel that Oberschelp’s 
work deserves far more attention than it has received, but the presentation 
is difficult, and part of the consistency proof (p. 48) is a reference to another 
paper ([Oberschelp 1964a]) with a different formalism.

2.  Historical Introduction

When the rough draft of this paper was substantially finished, I learned of 
papers in Church’s archives at Princeton University on later set theories with 
a universal set. Those theories are out of scope for the technical sections of 
this paper, but the papers I have obtained from the archives, and its catalog, 
are the main source for this historical introduction. I have so far only received 

14  Especially the cumulative hierarchical aspects of his 1975 and later unpublished archive 
notes, e.g. Church Archives Box 15, folder 10, typescript “Outline and Background Material, 
Arthur B. Coble Memorial Lectures”/“Sets of the Model Transfinitely Generated” page 
numbered 2, 37th page.

15  [Forster 2006] p. 240, presumably alluding to Horace’s Epistles, I. x. 24, about the 
necessity of the cumulative hierarchy for avoiding the paradoxes.

16  The term “Potemkin Village,” which is probably unfair to its namesake (a Governor-
General showing villages in the Crimea to Catherine the Great), is used for constructions placed 
only where an observer will be looking for them. I believe the term was first used by me as a 
summary of Forster’s criticism at his Stanford lecture on Church’s theory, 11 April 2005.

17  [Forster 2001], p. 6.

98862_LogiqueAnalyse_233_04.indd   85 9/05/16   13:12



86	 flash sheridan

portions of the relevant papers from the archives, pending Princeton’s pro-
curement of scanning equipment. The page numbers on these papers are 
often missing or incorrect, so I have erred on the side of explicitness below 
in citing them.

On June 24th 1971, Alonzo Church presented a paper entitled “Set The-
ory with a Universal Set” to the Tarski Symposium, at the University of 
California at Berkeley.

In a fifty-page manuscript dated July 1971, labelled “Notes as to Set 
Theory with a Universal Set” (photocopy in archives box 47, Folder 10), 
Church states that “As even the amended model of April 1971, … is not 
yet satisfactory, we make a new start using the outline of June 1971.” This 
seems to be an eventually-abandoned attempt at another consistency proof 
for the full CUS; the mathematics does not seem final, and the photocopy, 
if not the manuscript, ends abruptly.

In 1974, a version of the paper was printed in the conference proceedings, 
with a “minor but essential modification” to the definition of “the equiva-
lences characterizing the model” [Church 1974a], p. 307, footnote 11.

The published paper presents three main features:
1.	 A sequence of equivalence relations generalizing equinumerosity,
2.	 A set of axioms for a set theory with a universal set and some equiva-

lence classes, including Frege-Russell cardinals, as sets,
3.	 A model (actually an interpretation [Shoenfield 1967], though Church 

does not use the term) of the axioms, restricted to a finite subsequence 
of the sequence of equivalence relations, with length a fixed arbitrary 
natural number m.

The paper presents no proofs; Church states (p. 307) that the “details of the 
verification… are straightforward but (if m > 0) laborious.” I believe most 
readers have found this an understatement.

I am not aware of any accounts of Church’s talk (though Emerson Mitchell 
was present, see below; oddly, no correspondence with Mitchell is listed in 
the index to the Church archives). Given the length of time necessary to 
understand the published paper, it seems unlikely that Church had time to 
present much more than the definitions of the sequence of equivalence 
relations, the axioms, and a high-level sketch of the interpretation.

Church later issued an undated two-page correction to footnote 4 of the 
paper, covering a tangential remark on standard von Neumann and Bernays 
set theories, which was not relevant to his new theory.

In 1973, Arnold Oberschelp published an article, apparently independently, 
with a technique similar to Church’s, but using urelements rather than 
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displaced sequences for the construction, and with a richer model which 
included the singleton function as a set [Oberschelp 1973]. Note that part 
of the consistency proof in both [Oberschelp 1973] (p. 48) and [Friedrichs-
dorf 1979] (p. 382) is merely a reference to [Oberschelp 1964a], which uses 
a significantly different formalism. Neither Church nor Oberschelp seems 
to have been aware of the other’s work at the time, and the underlying 
similarity between the two techniques is not necessarily obvious. (Indeed, 
though I cited [Oberschelp 1973] in [Sheridan 1989], I did not realize its 
significance until [Sheridan 1990].) See the comments below on my defini-
tion of j-isomorphism, and the limitations in proving its absoluteness in the 
interpretation.

In 1974, according to Forster [2001], Urs Oswald independently redis-
covered Church’s method of permutation models, published in his ETH 
Zürich Ph.D. thesis of 1976, Fragmente von “New Foundations” und 
Typentheorie. Forster calls Oswald’s discovery simultaneous with Church’s, 
but Church’s original paper was presented in 1971. Werner Depauli-Schima
novich also makes a claim for the priority of his 1971 doctoral thesis in his 
Arxiv web article [2008], which I have not evaluated.

In the fall of 1974, Church presented a lecture entitled “Notes on a Rel-
ative Consistency Proof of Axioms A–K of Church’s Set Theory with a 
Universal Set” [Church 1974b]. Church mailed me a copy in 1984, with a 
handwritten notation (in a different handwriting, presumably Church’s): 
“Student notes of 1974 lectures by Alonzo Church.” The notes are eleven 
pages of quite dense mathematics, but only cover the case m = 0, i.e., omit-
ting the equivalence class axioms Lj, whose verification Church implied 
was laborious but not straightforward. (I do not believe that this is an over-
statement.) Church’s comment on these notes, in his archive, is apparently 
“Probably not of much value—but possibly worth some reflection” [box 47, 
Folder 5]

In 1984 I requested that Church send me any further relevant work, but 
never received a response; my attempts to see him in Los Angeles in 1985 
and 1987 failed due to his absence in the Bahamas. Until the publishing of 
the catalog of his archives on the web [http://arks.princeton.edu/ark:/88435/
fx719m49m], I had assumed that he did no further work on his set theory, 
but the catalog lists some further lectures which sound relevant, which I 
have so far been unable to obtain from the archives. I cannot tell whether 
Church’s disinclination to send me his later work represents a repudiation 
of it.

On September 23-25, 1975, at the University of Illinois at Urbana-Cham-
paign, Church delivered the Arthur B. Coble Memorial Lectures, entitled 
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“Set theory with a universal set.”18 Despite having the same title, this set 
theory was far more complicated than his 1974 paper; one of its main goals 
was to model Hailperin’s finite axiomatization of Quine’s New Founda-
tions, though Church’s notes (summarized below) indicates that he fails to 
model axiom P6. This topic deserves more investigation than it has received, 
but is outside the scope of this paper, and I have so far only been able to 
acquire a portion of the archives on this topic.

Princeton Archives Box 15, folder 10 consists of three versions of what 
I will call the Coble Theory. Two are hand-written, with the first apparently 
a corrected version of the second; the third is apparently a typewritten ver-
sion of the corrected handwritten manuscript, with three hand-written cor-
rections. The typewritten version also exists in a mimeographed copy in the 
possession of the late Professor Herbert Enderton of the University of Cal-
ifornia at Los Angeles (which he graciously allowed me to scan), and 
apparently in a version at the University of California at Berkeley, which I 
have not seen. The UCLA copy lacks the handwritten corrections, but con-
tains an extra typewritten sheet, specifying (1) two of the corrections made 
to the Princeton copy, and (2) a more sweeping correction: “the probability 
there must be substantive changes at various places, especially on the last 
two pages of either manuscript of the notes.”

Princeton Archives Box 15, folder 11 contains hand-written notes for a 
somewhat different, incompletely-developed theory, which I will call the 
Folder 11 Theory. I will refer to the published 1974 theory (the main basis 
for my theory) as the 1974 Theory.

Some striking features of the Coble construction are:
1.	 “a transfinite array of relations, one for each ordinal m, that are left 

unspecified, the intention being that different set theories result by differ-
ent choices of the invariance relations invm.” [Church Archives, Box 15, 
folder 10, 5th page, numbered 5.] The independent construction in the 
middle part of the current paper could be similarly described, though the 
details are quite different.

2.	 Construction of a non-trivial identity relation for the model, which may 
avoid Forster’s Potemkin Village criticism, discussed above. [Church 
Archives ibid.], [Forster 2001], p. 6.

3.	 The Coble set theory may have influenced the 1974 theory, e.g., the 
Axiom of Substitutivity in the earlier theory seems superfluous, but is 
necessary in the later theory, since the relation i (corresponding to identity) 

18  http://www.math.uiuc.edu/Colloquia/coble_history.html, History section. Church’s 
Princeton archives list the title of this and the lecture below as “Set Theory on a Universal 
Set”; this substitution of “on” for “with” seems to be a transcriber’s mistake rather than a 
deliberate change—the University of Illinois web page lists the usual title, and no subsequent 
source ever seems to have used “on” rather than “with.”
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is constructed, and differs from the base equality. Keeping Substitutivity 
in the Basic Axioms allows Church to keep the axiom letters the same 
between the two theories.

4.	 The unnumbered last (19th) page of Professor Enderton’s mimeographed 
copy of the Coble Lecture notes mentions “the probability there must be 
substantive changes at various places, especially on the last two pages 
of either manuscript of the notes.” This correction is missing from the 
Princeton Archives copy. 

5.	 “Given any set, there exist its complement and the set of complements 
of its members. The set of low sets, the set of intermediate sets, the set 
of high sets exist.” [“Outline and Background Material, Arthur B. Coble 
Memorial Lectures”/“Sets of the Model Transfinitely Generated,” section 
“Set Existence” Box 15, folder 10, page numbered 12, 47th page in folder]

Some features of the Folder 11 construction are:

1.	 Church calls this “the model of the Quine set theory which we seek to 
set up.” [Church Archives box 15, folder 11, untitled manuscript, page 
numbered 2, 2nd page in folder.]

2.	 An explicit classification of constructed sets as low, high, low interme-
diate, high intermediate, and fully intermediate. [Church Archives box 
15, folder 11, untitled manuscript, page numbered 3, 3rd page in folder.] 
This differs, at least in presentation, from the Coble Theory.

3.	 Church abruptly abandons a definition after clause 60, because of “the 
(later) discovery that the model obtained does not satisfy Hailperin’s 
P6.” He says that “an informal and partly heuristic account follows.” 
[Church Archives box 15, folder 11, untitled manuscript, page numbered 15, 
15th page in folder.] Church’s statement of P6 is “(∃u) . x e u ≡x (y) . 
<y,  ɩ‘x> e v”. [Church Archives Box 15, folder 10, typescript “Outline 
and Background Material, Arthur B. Coble Memorial Lectures”/“Sets of 
the Model Transfinitely Generated,” section “Set Existence” unnumbered 
page, 48th page in folder] Hailperin’s original formulation [Hailperin 
1944], p. 10, is “(α) (Eβ) (x) [x ∈ β ≡ (u)(<u, ɩx> ∈ α)].” The following 
page begins with the observation that “The foregoing definition by recur-
sion is a first draft.” Church goes through various stages of believing that 
he can or cannot prove P6 or Hailperin’s other axioms, and it is not clear 
what the final resolution was for this article:

	 Two unnumbered pages note that the “proof of P6 requires modification 
of the above” [33rd page; different wording on the 34th page]. The unnum-
bered 36th page is headed “Analysis Directed Towards Proof of P6,” but 
the page numbered 40 states “it is not immediately clear that this amend-
ment will successfully result in a model in which all nine of the Hailperin 
axioms hold...” The following page, numbered 42, is headed “Proof of 
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the Main Lemma (for P6) from Lemmas 1-5,” but the manuscript ends 
abruptly after the next page, five lines into the proof of case 1b.

�	 Later items in the Church Archives catalog, which I have not yet been 
able to obtain, have titles mentioning P6 as well—I do not yet know if 
the later work overcomes this difficulty. 

	 Church seems to have continued working on this approach until at least “box 
47, Folder 2: Notebook: Recursion clauses for invm as revised Sept. 1980.” 
I speculate that he had abandoned it by 1984, when he sent me [1974b] 
without mentioning the later theory. The undated addendum to the Coble 
lecture typed mimeograph, noting that substantive changes were probably 
needed, may have seemed at the time to be only a temporary setback.

4.	 Church notes “other divergences from the Quine set theory... the set of 
all sets a of pairs… evidently does not exist in the model” [Church 
Archives box 15, folder 11, untitled manuscript, p. 40, 40th page in folder], 
which demonstrates that the Folder 11 Theory is inferior in this respect 
to his 1974 theory as well as New Foundations.

In the Abo Akademi in Turku, Finland, on March 22, 1976, Church presented 
a shortened version of the Urbana, Illinois lectures [box 49, Folder 7].

In 1976, Emerson C. Mitchell was granted a Ph.D. from the University of 
Wisconsin at Madison for “A model of set theory with a universal set,” which 
cites Church and builds on his technique to provide a set theory with unre-
stricted power set, but which lacks some of Church’s other axioms [Mitchell 
1976].19 Mitchell was present at Church’s 1971 lecture.20 Mitchell’s only 
bibliographic reference is to [Church 1974a]; the complexity of Mitchell’s 
construction is reminiscent of Church’s later unpublished work, but this is not 
proof that Church showed it to him. Cp. the resemblance between Church’s 
unspecified sequence of equivalence relations in his later theories and my own.

In 1979 Ulf Friedrichsdorf published an article [Friedrichsdorf 1979] 
building on [Oberschelp 1973].

The Church archives list a number of notebooks on set theory from 
1975 to 1983; some of these at least (e.g., box 15, Folder 10) seem to be 
on combining his set theory with New Foundations via Hailperin’s finite 
axiomatization [Hailperin 1944].

In 1989 Church wrote about some of his notes, apparently the uncompleted 
consistency proof, “These notes are old [1971] but might be reconsidered 
for the sake of some truth in it, which might guide a new approach” 

19  Note that the spelling of Mitchell’s first name on his thesis is an error.
20  Abstract of [Mitchell 1976] in The Journal of Symbolic Logic, March 1977, Vol. 42, 

No. 1, p. 148.
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[box 47, Folder 10]. This dissatisfied comment might be applied to all of 
the original work done in this area. For a survey of the field, the reader is 
referred to the articles and book by Forster in the bibliography, whose per-
spective is decidedly different.

3.  Organization

The overall goal is to prove the equiconsistency of my theory, CUSɩ, with 
ZF, by defining an interpretation of CUSɩ in a base theory equiconsistent 
with ZF, and proving the interpretation of each axiom from the base theory. 
This will establish the relative consistency of CUSɩ: Any proof of an incon-
sistency from the axioms of CUSɩ can be translated into a proof of an 
inconsistency in the base theory.

The central section of this paper (Part II, which was originally written 
separately, for Professor Church’s cancelled ninetieth birthday festschrift, 
and is omitted except for a few key results in this abridged version) defines 
an interpretation of a partially-specified ill-founded set theory, and proves 
the interpretation of the Axiom of Extensionality. (The proofs of the other 
Basic Axioms—the first group of axioms, below, which are restricted 
versions of axioms of ZF—which constitute Part I, are simpler.) Unlike 
Church’s and Mitchell’s interpretations, but like Oberschelp’s, my interpre-
tation uses urelements in the roôle of the new, ill-founded, sets; this avoids 
having to rearrange the old sets to make room for the new. To answer a 
query of Forster and Kaye when a much earlier attempt at this result was 
presented as a doctoral thesis, and also to keep open the possibility of iterating 
this type of construction, or to do it with other set theories as a base theory, 
Part II was done in much greater generality than is needed for the main result, 
and with limited use of Choice and Foundation. (It is not clear at this point 
that either endeavor was worth the effort.) In particular, rather than using 
the specific sequence of restricted equivalence relations j defined in Part III, 
it was done with an arbitrary sequence j satisfying certain properties.

After the interpretation is defined and the interpretation of the Axiom of 
Extensionality proven for the partially-defined interpretation defined in 
terms of j in Part II, in Part III the required properties of j are shown to 
hold for j. This establishes the interpretation of Extensionality for the 
specific theory under investigation, CUSɩ, with the specific equivalence 
relations j. The interpretations of the new axioms of interest can then 
finally be established, along with their consequences of interest, such as the 
existence of Frege-Russell cardinals and complements. In Part III both Global 
Choice and Foundation are assumed for the base theory, which reduces the 
generality but simplifies the derivations.

The verification of the rest of the Basic Axioms, which constitutes Part I, 
is also done in considerably more generality than necessary, but with a 
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different and weaker set of requirements: primarily on the form of the defi-
nition of the new membership relation, plus a requirement that new sets be 
ill-founded, and some sanity requirements on well-foundedness in terms of 
the new membership relation.

One of the consequences of the requirements on the partially-specified 
equivalence relations, needed for Extensionality in Part II (which was writ-
ten first), is, in effect, that the new sets are too large to be low. The verifi-
cation of the other Basic Axioms (which were proven later) are simpler in 
Part I, and rely largely upon this fact; this may make verification of these 
axioms for other possible theories easier. The key to this result in the spe-
cific case in Part III is the Replacing at Level*j Construction, which for any 
non-degenerate j equivalence class, takes an arbitrary object and embeds 
it into the transitive closure of an object in the given equivalence class. 
Given that result, the verification that the results of Part I apply to the inter-
pretation in Part III is far simpler than the application of Part II.

Note that I generally follow Church in referring to both j and j infor-
mally as equivalence relations, though they are actually only provably 
equivalence relations on the well-founded sets. (Conveniently, this will not 
matter in the base theory, and hence in the consistency proof; it only affects 
discussion of results within the theory of interest.) Indeed, it is not even 
clear that symmetry or reflexivity hold for objects equivalent to the Uni-
versal Set, for even the first of Church’s relations in his interpretation, nor 
for my 1 in mine. Church did not address this point in his published 
writings, though it is presumably the motivation for the restriction in his 
axiom of generalized Frege cardinals, and would have needed to be addressed 
in his full consistency proof. (The point does not arise in his surviving lecture 
notes for case m = 0, and I was not able to find mention of it in his abandoned 
consistency proof in the archives.) It is possible that he was aware of subtle-
ties which eluded me, since the obvious extension of my theory, asserting 
that these relations are unrestricted equivalence relations (plus some natural 
assumptions about the existence of mappings), runs into a variant of the 
Russell Paradox which his equivalence relations apparently avoid. It is even 
possible that he was aware of this when suggesting a unification of his 
theory with Quine’s New Foundations, but there is no evidence of this.

The proofs in Parts I and II could be applied to Church’s original theory; 
the generality in Part II was crafted to include Church’s j-equivalence rela-
tions as well as my own. The Replacing at Level*j Construction in Part III 
would require substantial modification, but would be substantially easier 
for Church’s relations. Such a proof would be significant, given Church’s 
apparent abandonment of the consistency proof for his full system. It would 
not be complete, however, since Church’s theory has unrestricted axioms 
of sum and product set, which my theory does not; they depend on the 
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details of Church’s equivalence relations, which do not seem to have been 
addressed in the abandoned consistency proof in the archives. The replacing 
result seems to be true for Church’s theory, as noted in [Sheridan 1989], 
but Church does not seem to have addressed it in his surviving writings, 
though his presentation suggests that it may have been part of his motiva-
tion for the definition of his equivalence relations.

4.  Discussion of the Axioms

The base theory in which results will be proven will be the Basic Axioms 
(below), plus a bookkeeping axiom about urelements. Use of Choice and 
Foundation will be avoided in Parts I and II, except for some explicitly- 
mentioned uses of a consequence of Foundation near the end of Part II, but 
will be needed extensively in Part III. The Basic Axioms are equivalent to 
their usual counterparts in the presence of Foundation. The relative consis-
tency of the form of global choice used, and of the book-keeping axiom, 
are unproblematic: global choice by the well-know result of Goödel, and the 
book-keeping axiom by a trivial use of the technique of [Church 1974a], or 
in the simpler form presented in [Forster 2001].

Note that since the base theory must allow urelements, Extensionality is 
restricted to nonempty objects. The theory of interest is largely neutral 
about the existence of urelements, though the Axiom of Generalized Frege 
Cardinals implies that the collection of all empty objects is a set; Well-
Founded Replacement forbids this object to be the size of the Universe. 
Hence the interpretation presented below excludes urelements.

CUSɩ, the theory of interest, includes the Basic Axioms, but necessarily 
excludes Foundation. It also avoids dependence on Choice, though it is 
consistent to add it in the strong form used here, as it is incidentally true 
in the interpretation presented. (The global well-ordering used does not 
mention set membership, so it is unaffected by the reinterpretation of the 
membership relation.) The theory also includes the Restricted Axiom of 
Generalized Frege Cardinals, asserting that for the sequence of equivalence 
relations j (for j  ∈   ω), any well-founded set has a set of all sets to which 
it is j, for each j  ∈   ω. The restriction to well-founded sets is for the pur-
pose of the consistency proof; neither Church’s technique nor Oberschelp’s 
seems sufficient to provide unrestricted axioms of generalized Frege cardinals. 
Note that the equivalence classes themselves are not restricted to well-founded 
sets. For example, the set of all singletons, (which is the union of at most 
two 1 equivalence classes) contains the singleton containing the Universal 
Set, and hence is ill-founded. For simplicity, 0 is the universal relation, so 
the (unique) 0-equivalence class is the universal set.

Note that in the absence of Foundation, some of the restrictions on the 
Basic Axioms become significant. Sum Set, for instance, does not apply 
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to the new sets, again because of the limitations in technique. Church’s 
proof of his theory’s consistency would have needed to demonstrate that 
his combinations of equivalence classes were closed under unrestricted sum 
set, but this seems to depend on the details of his equivalence relations, and 
does not apply to my modifications.

Part I

Language, Definitions, Basic Axioms, and ∈†-Interpretations

5.  Language

The primitive symbols of the language, in addition to the usual first-order 
logical apparatus, are “=”, “∈”, “Ø”, “T”, and (for use with a strong form 
of Global Choice) “”. Two special symbols are needed for use in 
book-keeping axioms, “T” and “Ø”; an explicit symbol for Ø is needed for 
use in distinguishing it from urelements, and “T” will denote an assumed 
injection of the sets into the urelements.

Several symbols will be often used rather like primitive symbols, but are 
in fact defined terms: “ ” denotes exclusive disjunction, i.e., P  Q ≡df 
(P ∨ Q) & ¬ (P & Q). ∈1, ∈2, and ∈3 will be the ill-founded set membership 
relations of interest in Parts I, II, and III respectively; ∈1 and ∈2 will be 
partially specified (in somewhat different ways) in Parts I and II, to show 
general results about broad classes of interpretations; ∈3 will be the specific 
membership relation used in Part III to show the relative consistency of 
CUSι. Since Church uses “∈” without a subscript to denote the new mem-
bership relation, rather than the old one (or for purposes of emphasis), I will 
often use “∈0” as a synonym for “∈”. Once I have defined “∈1”, a formula 
followed by a subscript “1” will abbreviate that formula with “∈1” substituted 
for all (including implicit) occurrences of “∈.” Similarly for “2” and “3.”

Limited use is made of class terms as a syntactic convenience without 
ontological commitment, as in [Quine 1969] and [Levy 1979] §3.1. Defini-
tion schemas are explicitly marked as such with “≡dfs” and distinguished 
from single definitions marked with “≡df”. Following Church’s modifica-
tion of the Peano/Russell practice, dots and double dots are sometimes used 
informally as substitutes for brackets.

6.  Definitions

These definitions are not intended to be surprising (where possible they are 
simply from [Levy 1979]), but the weakness of the base theory requires more 
elaboration than usual, and the proofs require tedious attention to primitive 
notation. The only surprising point is the definition of well-foundedness, not 
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directly, but in terms of ill-foundedness and unending chains, which is import-
ant in the absence of Dependent Choices. The reader should feel free to skip 
these definitions (and the development of addition, below) on the assumption 
that the definitions do indeed mean what they are supposed to mean.

6.1.  Logic

“ ⇒ ” and “ ⇒ ” indicate implication and equivalence with least close pos-
sible binding. “≡ df” of course, has looser binding still. “≡ dfs” indicates 
a definition schema.

“” indicates exclusive disjunction, inequality for truth values. Informally, 
exclusive disjunction is associative: (P  Q)  R ... iff an odd number 
of P, Q, R ... are true iff P  (Q  R ...).

“∃!x. Φ(x)” abbreviates “∃x. Φ(x) & : ∀x. Φ(x) → x = x”, where Φ is a 
predicate.

“ıx. Φ(x)”, if ∃!x. Φ(x), denotes that x, and otherwise is undefined, where 
Φ is a predicate with one free variable.

6.2.  Sets and Membership

nonempty(x) ≡df ∃y ∈ x; z ∈ x ≡ df ¬z ∈ x.
set(x) ≡ df x = Ø ∨ nonempty(x); urelement(x) ≡ df ¬set(x).
SET[Φ] ≡dfs ∃x. set(x) & ∀z. z ∈ x ≡ Φ(z), where Φ is a predicate with 

one free variable. (Note that the definition does not require that this x be 
unique, though extensionality would imply this.)

{x, y}=df ıp. ∀w. w ∈ p ≡ (w = a ∨ w = b); x, y=df {{x}, {x, y}}, i.e., the 
Kuratowski ordered pair.

xy ≡ df ∀z. z ∈ x ≡ z ∈ y. (Read “x is coextensive with y.”) (Thus x0y ⇒ 
∀z. z ∈0 x ≡ z ∈0 y, and [once I have defined “∈1”] x 1 y ⇒ ∀z. z ∈1 
x ≡ z ∈1 y.)

Unique(y) ≡ df ∀x. x  y → x = y; x and y are disparate ≡df ¬ x  y.
x⊆y ≡ df set(x) & : ∀z. z ∈ x → z ∈ y.
x⊂y ≡ df x ⊆ y & ∃z ∈ y. z ∈ x.

6.3.  Mapping

maps(f, a, b) ≡df ∀p ∈ f ∃x ∈ a ∃y ∈ b. p = x, y &
	 ∀x ∈ a ∃!y ∈ b ∃p ∈ f. p = x, y &
	 ∀y ∈ b ∃x ∈ a ∃p ∈ f. p = x, y.
	 I.e., the function f maps a onto b, not necessarily one-to-one.
function(f) ≡df ∃a, b. maps(f, a, b).
domain(f) =df ıa. set(a) & ∃b. maps(f, a, b).
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range(f) =df ıb. set(b) & ∃a. maps(f, a, b).
	 Note that, unlike mapsformula, below, if maps(f, a, b), then f’s domain is a 

and range is b.
maps1-1(f, a, b) ≡df ∀p ∈ f ∃x ∈ a ∃y ∈ b. p = x, y &
	 ∀x ∈ a ∃!y ∈ b ∃p ∈ f. p = x, y &
	 ∀y ∈ b ∃!x ∈ a ∃p ∈ f. p = x, y.
	 Note that maps1-1(f, a, b) implies maps(f, a, b).
a≈b ≡df ∃f. maps1-1(f, a, b). (Read “a is equinumerous to b.”)
FUNCTION(Φ, a) ≡dfs ∀x ∈ a. ∃!y. Φ(x, y).21

mapsformula(Φ, a, b) ≡dfs FUNCTION(Φ, a) & ∀x ∈ a. ∃y ∈ b. Φ(x, y) & 
∀y ∈ b. ∃x ∈ a. Φ(x, y).

6.4.  Well-Foundedness

unending-chain(c) ≡ df nonempty(c) & ∀x ∈ c ∃y ∈ c. y ∈ x.
ill-founded(w) ≡ df ∃c. w ∈ c & unending-chain(c).
wf(w) ≡ df ¬ ill-founded(w). (Read “well-founded.”)
low(x) ≡df ∃f ∃w. wf(w) & maps(f, w, x).

We will not need the notion of a low class, since the restricted Axiom 
of Replacement will imply that any such would correspond to a set. Infor-
mally, say that there are many P’s if the class of P’s does not correspond 
to a low set. Church [1974a], page 298 defines a set as low if it is equinu-
merous to a well-founded set; it is not hard to show the two definitions 
equivalent in the presence of a global well-ordering. Unbeknownst to 
me, Church’s abandoned consistency proof (Box 47, Folder 10) has a predi-
cate “retrogressive,” which is similar to my unending chain: x ε r →x (Ey) . 
y ε r . y ε x.
transitive(a) ≡ df ∀y ∀z. z ∈ y & y ∈ a. → z ∈ a.

6.5.  Infinity and Ordering

Dedekind-infinite(x) ≡df ∃y. y ⊂ x & x ≈ y.
Dedekind-finite(x) ≡df ¬Dedekind-infinite(x).
totally-linearly-orders(R, a) ≡ dfs

∀x ∈ a. ¬xRx &
∀x ∈ a ∀y ∈ a ∀z ∈ a. xRy & yRz → xRz &
∀x ∈ a ∀y ∈ a. xRy ∨ x = y ∨ yRx.

21  I will systematically confuse function symbols with relation symbols which I have 
proved functional.
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well-orders(R, a) ≡ dfs

	 totally-linearly-orders(R, a) &
∀z ⊆ a. nonempty(z) → ∃m ∈ z ∀w ∈ z. ¬wRm.

ordinal(x) ≡df transitive(x) & wf(x) & well-orders(∈, x) & set(x) & ∀z ∈ 
x. set(z).

ω =df ıw. ∀x. x ∈ w ≡ . Dedekind-finite(x) & ordinal(x).
If α and β are ordinals, define α < β iff df a ∈ β; α ≤ β iff df a ∈ β ∨ α = β.

It may seem redundant to require that an ordinal be both well-founded and 
well-ordered by ∈; but the obvious proof of my version of well-foundedness 
from well-ordering requires the existence of the given set’s intersection with 
an unending chain, which in turn apparently requires well-foundedness.

I will use small Greek letters as variables for ordinals. As the ordinals 
less than some fixed ordinal μ perform the same function here as do the 
natural numbers less than or equal to some fixed natural number m in 
[Church 1974a], and Church uses j in such contexts, I will here use i, j, k, 
and n extensively as variables for ordinals less than or equal to μ.

6.6.  Class Abstracts

“{x  |  Φ(x)}”, or, for emphasis “{x | Φ(x)}0” indicates ıs. set0(s) & ∀x. 
x ∈0 s ≡ Φ(x), if that exists, otherwise merely the virtual class (i.e., 
predicate) Φ(x). Analogously “{x | Φ(x)}1”. The latter notion is of little 
interest if Φ was defined in terms of “∈0” rather than “∈1”. Note that a 
class abstract0 is never an urelement0.

“{x ∈ y | Φ(x)}” abbreviates “{x | x ∈ y & Φ(x)}.”
For τ(y) a term, {τ(y) | Φ(y)}=dfs {x | ∃y. Φ(y) & x = τ(y)}.

“Δ” normally means symmetric difference. For typographic convenience, 
“Δ” will be used in Part II for symmetric difference in the sense of ∈2; “δ ” 
will mean symmetric difference in the sense of ∈0. I.e., x δ y =df {z | z ∈0 
x  z ∈0 y}0, and x Δ y =df {z | z ∈2 x  z ∈2 y}2. (“∂”, defined in a later 
section, will also be distinct.)
Σx =df {z | ∃y. z ∈ y & y ∈ x}; x∪y =df {z | z ∈ x ∨ z ∈ y}.
∩x =df {z | ∀y ∈ x. z ∈ y}; x∩y =df {z | z ∈ x & z ∈ y}.
a — b =df {x ∈ a | x ∈ b}.
POW(a)=df {x | x ⊆ a}.
Define for a term τ and ordinal α, 


α ≤ j < μ τ(j)=dfs {x | ∃j ∃y. α ≤ j < μ & 

x ∈ y ∈ τ(j)}. Similarly 


j ≤ μ τ(j)=dfs {x | ∃j ∃y. j ≤ μ & x ∈ y ∈ τ(j)}.
Define f‘x =df ıy. x, y ∈ f; Φ←y =df ıx. Φ(x) = y. (Read “Φ inverse of y.”)
Φ“a = dfs {Φ(x) | x ∈ a}, for a a set; for a an urelement, Φ“a = dfs a. (Read 

“the image of a under Φ.”) More explicitly, and partially following 
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[Levy 1979], p. 27 for the non-empty case, Φ“a =dfs a, if empty(a), else  
{y | ∃x ∈ a . y = Φ(x)}. Note that the obvious simpler definition in terms 
of class abstracts would have meant that the value of “ for any formula 
and any urelement would have been the empty set, but it will be import-
ant for results about j-isomorphism that it instead be the urelement itself.

Φ⇐(h) =df {x | Φ(x) = h}.
Define f|a =df {x, y ∈ f | x ∈ a}. (Read “f restricted to a.”)

7.  The Axioms

7.1.  The Basic Axioms

Extensionality: ∀a∀b. nonempty(a)  &  ∀z : z ∈ a ≡ z ∈ b. ⇒ a = b
Null Set: ∀x. x ∈ Ø
Pair: ∀x∀y∃p∀w. w ∈ p ≡ (w = x ∨ w = y)
Well-Founded Sum Set: ∀z. wf(z) ⇒ ∃u∀x. x ∈ u ≡ . ∃y. x ∈ y  &  y ∈ z
Well-Founded Power Set: ∀x. wf(x) ⇒ ∃p∀z. z ∈ p ≡ z ⊆ x
Infinity: ∃w∀x. x ∈ w ≡ . Dedekind-finite(x)  &  ordinal(x)
Well-Founded Replacement: a schema, one instance for each two-place 

predicate φ:
∀a. wf(a)  &  FUNCTION(φ, a) ⇒ ∃b. mapsformula(φ, a, b)

7.2.  Global Choice

A global well-ordering, as in [Church 1974a]:
Axiom Schema of Global Well-Ordering:

∀x. ¬xx &
∀x∀y. xy  &  yz → xz &
∀x. φ(x) ⇒ ∃y. Φ(y)  &  ∀z. Φ(z) → yz ∨ y=z

For convenience below, we will use a slight rearrangement of the global 
well-ordering, in which Ø is the first element. I.e., define xʹy iff (x = Ø  & 
y !Ø) ∨ (x ! Ø  &  y ! Ø  &  x  y). By abuse of notation, I will use  
for ʹ.

7.3.  Foundation

Axiom of Foundation:  ∀x. wf(x)

7.4.  Base Theory

RZFU (the base theory) is the Basic Axioms plus the following axiom:
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Urelement Bijection Axiom:

∀x. set(x) → ∃!u. u = T(x) &
∀x∀u. u = T(x) ⇒ urelement(u)  &  set(x) &
∀x∀y∀u. u = T(x)  &  u = T(y) ⇒ x = y &
∀u. urelement(u) ⇒ ∃x. u = T(x)

The last clause is not used in the proof of the Basic Axioms Theorem; it is 
only needed for the final construction, hence “Injection” rather than “Bijec-
tion” in the name of the axiom in the 1993 version of this paper.

This axiom will be used, via a Cantor-Schroeder-Bernstein-Dedekind 
construction, to show a bijection from the class of urelements to the class 
of indexes, defined below, which will be used to keep track of the new, 
ill-founded, sets.

7.5.  CUSι

CUSɩ will consist of the Basic Axioms plus the following axioms, where j 
(j-isomorphism) will be defined below (III.15.2).
Restricted Axiom of Generalized Frege Cardinals:

∀j ∈ ω ∀b. wf(b) ⇒ ∃F ∀x. x ∈ F ≡ b j x

Note that, while b is restricted to well-founded sets, x is not. Thus, given a 
reasonable amount of transitivity (which will be non-trivial), sets j-isomorphic 
to a well-founded set may also have generalized Frege cardinals.

Unrestricted Axiom of Symmetric Difference:

∀x∀y∃z∀w. w ∈ z ≡ (w ∈ x  w ∈ y)

Note that, since the 0-cardinal of anything is the universal set, symmetric 
difference also gives us unrestricted complementation. Trivially this gives 
us unrestricted union of disjoint sets, and hence (the non-trivial case for) 
adjunction (i.e., the existence of x ∪ {y}.) It does not seem to give us gen-
eral pairwise union, however, so the following axiom is also necessary. 
Pairwise union together with complement will give pairwise intersection, 
of course, by the usual identity: a ∩ b = ∼ (∼a ∪ ∼b).

Unrestricted Axiom of Pairwise Union:

∀x∀y∃z∀w. w ∈ z ≡ (w ∈ x ∨ w∈ y)

8.  Elementary Lemmata

Uniqueness of Pairs

The set required by the Pair Axiom will be unique by Extensionality, since 
the required set is nonempty. (Note that the name is slightly inaccurate, 
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since the case x = y implies the existence of singletons as well.) This unique-
ness is not necessarily preserved in an arbitrary interpretation, though it will 
be for any interpretation of interest.

Well-Founded Pairwise Union

Observe that the Well-Founded Sum Set Axiom gives us pairwise union for 
well-founded sets in the Base Theory:

Lemma 8.1 (Pairwise Union for Well-Founded Sets).  ∀x∀y wf(x) & wf(y) → 
∃z∀w. w ∈ z  ≡   (w ∈ x ∨ w  ∈ y)
The proof is straightforward; it and later proofs are omitted in this abridged 
version. Thus it is unnecessary to add an axiom for well-founded pairwise 
union to the base theory. The unrestricted version for CUSɩ will depend on 
the details of the sequence of equivalence relations; it is not necessarily true 
for an arbitrary ∈†-interpretation, defined below.

9. !†-Interpretations and Proof of the Basic Axioms

I define a type of interpretation, an ∈†-interpretation, and show that any 
such interpretation over the base theory automatically satisfies the Basic 
Axioms except for Extensionality. The proofs (omitted in this abridged 
version) are straightforward, since the axioms are restricted to well-founded 
sets, whose rôles do not change in the interpretation. The use of urelements 
avoids much of the tedium of [Church 1974b] and, to a lesser extent, 
[Mitchell 1976] and [Forster 2001]. It may also make similar interpretations 
of different ill-founded set theories more convenient, since it eliminates the 
initial need to verify the uninteresting old axioms and allows immediate 
attention to Extensionality and the new axioms.

An ∈†-interpretation will be a relation (called ∈1) defined in the form 
below, together with two ancillary two-place predicates Φ and Tʹ, satisfying 
the additional requirements below. ∈1 will differ from the base membership 
relation only in that urelements (in the old sense) become ill-founded sets in 
the new sense. Φ and Tʹ are partly-specified but otherwise arbitrary in Part I. 
It may be easier, for now, for the reader to think of Tʹ as the injection T of sets 
to urelements required by the Urelement Bijection Axiom, though in Part III 
a rearrangement will be necessary to avoid too many unused urelements. 
(In Part II, either T or Tʹ would suffice, so for simplicity T will be used.)

9.1. !†-Interpretations

Let ∈1, Tʹ, and Φ be two-place formulæ defined in the language of the base 
theory. Let “∈0” denote the usual membership relation; the “0” will merely 
emphasize the distinction from the newly-defined membership relation, and 
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avoids confusion with Church’s notation, which adopts the opposite con-
vention. (Similarly, subscripts 0 and 1 will be used to distinguish other for-
mulæ defined in terms of the old and new membership relations. Where these 
formulæ already include subscripts, a comma will be used to separate the 0 
or 1.) Abbreviate unaltered(x) ≡df ∀y. y∈0x ≡ y∈1x, and define altered(x) 
≡df ¬unaltered(x). (In Parts II and III, which treat ∈2 and ∈3 respectively, 
these terms will be redefined for convenience to suit the context.)

Definition Schema: ∈1, Tʹ, and Φ constitute an !†-interpretation iffdfs

!1 Definition
x ∈1 y ≡
	 (a) urelement(y)  &  ∃L. y = Tʹ(L)  &  Φ (L, x)
	 ∨
	 (b) x  ∈0 y.

Tʹ Injection Requirement

	 ∀x∀u. u = Tʹ(x) ⇒ urelement0(u)  &  set0(x) &
	 ∀x∀y∀u. u = Tʹ(x)  &  u = Tʹ(y) ⇒ x = y

Ill-Foundedness Requirements

	 (1)  ∀x. altered(x) → ill-founded1(x)
	 (2)  ∀x∀y. ill-founded1(x)  &  x ⊆1 y → ill-founded1(y)
	 (3)  ∀x∀y. ill-founded1(x)  &  x ∈1 y → ill-founded1(y)

Discussion.  I will prove, in the Base Theory, for an arbitrary ∈†-interpre-
tation, the interpretation of each of the Basic Axioms except Extensionality. 
The current goal of this result is a relative consistency proof for the special 
case of an ∈†-interpretation which is my interpretation of CUSɩ in the Base 
Theory, but the result might also be useful for other ill-founded set theories.

The domain of the interpretation is the same as that of the ground model. 
At this level of generality, however, without Foundation in the base theory 
or Extensionality in the interpretation, the sets of the ground model need 
not be definable within the interpretation. This will be different for the rela-
tion ∈3 in Part III.

The altered objects are urelements0, whose membership is decided by 
clause (a) of the definition above. Informally, the altered objects will some-
times be called the new sets, where “set” is used in the sense of the new 
membership relation, since they are urelements in the sense of the old.

Ill-Foundedness Requirements (2) and (3) are not as trivial as they seem, 
since we donʹt have pairwise union in general for the new sets. Unrestricted 
pairwise union will be true in the interpretation of CUSɩ, but is not neces-
sarily true in general for ∈†-interpretations.
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Informally, the most obvious ways to prove (2) and (3) fail. If we have 
an ill-founded1 set w, and an unending-chain1(c), and wish to show that a 
superset1 s of w, (or a set x containing1 w) is ill-founded1, we could show 
the existence of cʹ = c ∪ {s} (respectively c ∪ {x}.) There are two obvious 
approaches: First, we could try to show the existence of such a cʹ in the new 
theory, but this presumably would require an unrestricted axiom of pairwise 
union in the new theory. Second, we could try to show the existence of a 
suitable unending chain in the base theory; but the given c might not even 
be a set in the base theory.

As an alternative, we could try to find a low1 subset1 of c which contains1 
x and is still an unending-chain1; Replacement in the base theory might 
then give us the required union of the new chain and {w}. The Axiom of 
Dependent Choices is the obvious candidate for constructing such a sub-
chain. This was the motivation for the even weaker Low Chain Axiom in some 
of my previous work: ∀a∀c. unending-chain(c)  &  a ∈ c ⇒ ∃d. low(d)  & 
unending-chain(d)  &  a ∈ d, which is a consequence of either Dependent 
Choices or Foundation. A still weaker alternative would be the Chain Adjunc-
tion Axiom: ∀a∀c. unending-chain(c)  &  a ∈ c  &  s ∈ a ⇒ ∃d. unending- 
chain(d)  &  s ∈ d. This is normally a consequence of the Low Chain Axiom 
(given low pairwise union in the interpretation), or of unrestricted pairwise 
union, or even merely unrestricted adjunction: take c ∪ {s} as d. At the 
current level of generality, demonstrating the interpretation of these axioms 
would be inconvenient at this stage of the proof, so I adopt the Ill-Found-
edness Requirements instead.

9.2.  Basic Axioms Theorem

Theorem 9.1 (Basic Axioms Theorem).  For an arbitrary ∈†-interpretation 
∈1, the interpretations in terms of ∈1 of the Basic Axioms except Extension-
ality are provable from the Base Theory.

The proofs (largely omitted in this abridged version) for each of the 
Basic Axioms except Extensionality will take the remainder of Part I, but I 
begin with a simple lemma. (Henceforward I will use heavily the conven-
tion noted above, about complex expressions using subscript zero or one to 
distinguish notions defined in terms of the new membership relation from 
those defined in terms of the old.)

Lemma 9.2 (Well-Foundedness Lemma).  wf1(x) → wf0(x).

9.2.1. � Proofs of the Interpretations of the Basic Axioms except Extension-
ality in an Arbitrary ∈†-Interpretation

The proofs of the first four axioms are straightforward:
Null Set: ∀x. x ∈1 Ø
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Pair: ∀x∀y∃p∀w. w ∈1 p ≡ (w = x ∨ w = y)
Well-Founded Sum Set: ∀z. wf1(z) ⇒ ∃u∀x. x ∈1 u ≡ . ∃y. x ∈1 y  &  y ∈1 z
Well-Founded Power Set: ∀x. wf1(x) ⇒ ∃p∀z. z ∈1 p ≡ z ⊆1 x

Infinity:  ∃w∀x. x ∈1 w ≡ . Dedekind-finite1(x)  &  ordinal1(x)
The proof will require three results, below. Let ω denote the set required 

by the uninterpreted axiom; it will suffice to show that this set also has the 
properties required by the interpretation of the axiom. Since ω is non-empty0 

and hence unaltered, it will suffice to show that ∀x. Dedekindfinite1 (x)  & 
ordinal1(x) ≡ Dedekind-finite0 (x)  &  ordinal0 (x).

The interpretation of the axiom will follow from three results, the first 
of them trivial: the Set Lemma, the Ordinal Absoluteness Theorem, and the 
Dedekind Infinite Absoluteness Lemma.

Lemma 9.3 (Set Lemma).  ∀z. set0(z) → set1(z).

Theorem 9.4 (Ordinal Absoluteness Theorem). ∀α. ordinal0(α) ≡ ordinal1(α).
The property of being an ordinal is absolute, i.e., is true of an object in the 

sense of ∈1 iff it is true of that object in the sense of ∈0. This will permit 
omitting subscripts 0 and 1 when saying that something is an ordinal.

Lemma 9.5 (Dedekind Infinite Absoluteness Lemma).  For any ordinal α, 
Dedekind-infinite0(α) ≡ Dedekind-infinite1(α).

Corollary 9.6. ∀x. Dedekind-finite1(x)  &  ordinal1(x)    Dedekind-finite0 (x) 
& ordinal0 (x).

Thus ω is also the set of all Dedekind-finite ordinals in the sense of ∈1, 
as required, which completes the proof of the interpretation of the Axiom 
of Infinity.

The proof of the interpretation of the last axiom is also straightforward: 

Well-Founded Replacement: a schema, one instance for each two-place 
predicate φ: ∀a. wf1(a)  &  FUNCTION1(φ, a) ⇒ ∃b. mapsformula,1(φ, a, b).
This establishes the Basic Axioms Theorem.

Part II

Extensionality and Arbitrary Restricted Equivalence Relations

In Part II, I introduce a somewhat different partially-specified membership 
relation, ∈2, and show that it satisfies Extensionality. This membership rela-
tion is defined in terms of an arbitrary series of relations satisfying the j 
Requirements, below.
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The use of Choice is avoided in the base theory, as is Foundation, except, 
near the end of this Part, for explicitly-mentioned uses of the Lowness0 
Assumption: ∀s. low(s). I append an “s” to the names of theorems which 
assume this. In Part III I will show that a specific series of restricted equiv-
alence relations satisfies the requirements in this part, which will establish 
that my interpretation satisfies Extensionality. The proof of Extensionality 
in this part is quite involved and special-purpose; it is omitted in the 
abridged version, except for a few key definitions and results; but the full 
proof will be made available on the web.

10.  Weak Arithmetic

To bypass a long uninteresting proof, I avoid induction on the natural num-
bers. This also keeps open the possibility of application to Quineʹs New 
Foundations, in which full induction fails even for the natural numbers 
even with the addition of the Axiom of Counting [Forster 1992], p. 30. 
Natural proofs that the ordinals are linearly ordered seem to require some 
form of induction [Forster 1992], p. 44. The behavior of ordinals in Ober-
schelp is even more obscure. In lieu of induction on ω, I will need only a few 
simple arithmetic facts. (With the stronger assumptions in Part III, arithmetic 
will become much easier.)

First note that, even with my unusual definitions, an ordinal is well-founded. 
By definition, of course, the ordinals less than some ordinal are linearly 
ordered.

10.0.2.  Ordinal Addition

All we require ordinal addition for is the elementary properties below, pri-
marily of oddness and evenness. I do not even need to show that every 
natural number is either odd or even but not both; I simply will use only 
such natural numbers. If we assumed definition by recursion on ordinals, the 
ordinary definition of addition would suffice. Without definition by recursion, 
we could still define “+0,” “+1,” and “+2” everywhere, and define addition 
on the finite ordinals via (Cantor) cardinal addition; see [Levy 1979], §III.3. 
To spare the readerʹs patience, and for greater applicability of my construc-
tion, I will instead omit the development of the definition, and present only 
the elementary properties of ordinal addition which I actually need.

Define 0 =df Ø. 1 =df {Ø}. 2 =df {Ø, {Ø}}.
Define odd(a) iffdf ∃n, k ∈ ω. n = k + k + 1  &  n ≈ a; even(a)iffdf ∃n, 

k ∈ ω. n = k + k  &  n ≈ a. Odd-or-even(a) iffdf odd(a)  even(a). The 
parity of x is odd (even) iffdf x is odd (even). (N.b., these predicates may 
apply to sets, not just to natural numbers.)
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10.1.  Required Properties of +

The Required Properties of +, a two-place function on the ordinals, are:

   (i)	 α + 0 = α; α + 1 = α ∪ {α}; α+2 = (α + 1) + 1.
 (ii)	 ∀x. ¬odd(x) ∨ ¬even(x).
(iii)	� Parity Property: If odd-or-even(a) and odd-or-even(b) then {odd 

(a δ b) ⇒ [odd(a)  odd(b)]} and {even(a δ b) ⇒ [odd(a) ≡ 
odd(b)]}.

(iv)	 ∀α, β. ordinal(α)  &  ordinal(β)  &  α < β ⇒ α + 1 ≤ β.

11.  ∼j Requirements

Let μ be an ordinal.22 Let j-rep(ξ) be a two-place function, ξjζ a three-
place predicate, and rank a one-place function satisfying the following 
conditions:

(α)	 ∀j, k ≤ μ ∀x, y. j ≤ k & x ∼k y  x ∼j y,
(β)	 ∀x, y. x ∼ 0 y,
(γ)	 ∀x, y. x ∼μ y ≡ x = y,
(δ)	 ∀j ≤ μ ∀b ∃r. r = j-rep(b),
(ε)	 For 0 ≤ j ≤ μ, x ∼j y iff j-rep(x) = j-rep(y),
(ζ)	 ∀h. rank(h) ≤ μ, and ∀g. rank(g) = j  ∃x. g = j-rep(x),
(η)	 rank(0-rep(Ø)) = 0, and ¬∃s : low(s) & ∀d. d ∈ s ↔ ∃x. 1-rep(x) = d.

In prose, say “g is a j-rep” iffdf ∃x. g = j-rep(x). A j-rep g is rankable iffdf 
it is in the domain of rank.

The main requirement on the given sequence of equivalence relations is 
(α), increasing strictness; ∼ 0 and ∼μ can be appended to any sequence 
satisfying it. Requirements (δ), (ε), and (ζ) are for the existence of repre-
sentative functions, and can be satisfied for arbitrary equivalence relations 
in the presence of either Global Choice or Foundation.

Define daughter(h, g) iffdf ∃j < μ ∃x. j = rank(g) & j-rep(x) = g & j+ 
1-rep(x) = h. (Read “h is a daughter of g.”) Informally, a daughter of g is 
a member of j + 1-rep“j-repg, where j = rank(g).

Define j-prolific(g) iffdf rank(g) = j & ¬∃s: low(s) & ∀d. d ∈ s ↔ daugh-
ter(d,g). Informally, something is j-prolific iff its rank is j and it has many 
daughters. The unique 0 -rep is 0 -prolific, since by (η) there are many 1-reps, 
all of which are daughters of the unique 0 -rep.

22  If μ has a predecessor, it corresponds to the arbitrary natural number m in [Church 
1974a].
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12.  μ+1-tuples and Sprigs

A set of ordered pairs L is a μ+1-tuple iffdf ∃r. maps (L, μ + 1, r). Abbrevi-
ate L‘j to Lj, and call it L’s j-component. L will usually be denoted 
“(L0 L1 … Ln … Lμ)”; I follow Church in using “( )” rather than “ ” for this 
sort of tuple, and omit commas. A μ+1-tuple may have components which 
are urelements, but attention below will be restricted to μ+1-tuples whose 
components are all sets.

Informally, the intent is for new sets to be represented by urelements, tagged 
with a sequence of length μ+1, conventionally represented (L0 … Lj … Lμ),  
L for short. The idea is that x is a member of a new set (old urelement, 
tagged by L) if there are an odd number of jʹs such that j-rep(x) is in Lj.

Thus the universal set will be the urelement with tag ({0-rep(Ø)} Ø … Ø), 
since everything has the same 0-rep, and 1 is odd. The set of all pairs will, 
in Part III, be tagged by (Ø {1-rep(2)} Ø … Ø), and the singleton function 
by (Ø Ø {2 -rep(<Ø,{Ø}>)} Ø … Ø). The complement of ω will be tagged 
by ({0 -rep(Ø))} Ø … μ-rep“ω). Machinery will be developed below, first 
to formalize the notion of an odd number of j’s, and then to restrict the new 
sets to those needed for the interpretation.

More formally, the sprig of a μ  +  1-tuple (L0 L1 … Ln … Lμ) for an object 
x will be a partially-defined sequence from 0 to μ, with its value for j, 
j-rep(x) if j-rep(x) ∈ Lj, and otherwise undefined. Define

sprig ((L0 L1 … Ln … Lμ)) =df {  j, j-rep(x) | j ≤ μ & j-rep(x) ∈ Lj}.

13.  Indices and Urelements

Define INDEX(L) ≡ df

a.	 μ + 1-tuple(L) & ∀j ≤ μ. set (Lj),
b.	 low (


j ≤ μ Lj),

c.	 ∃j < μ ∃x. x ∈ Lj,
d.	 ∀j < μ ∀a ∈ Lj. rank(a) = j & j-prolific(a),
e.	 ∀a ∈ Lμ ∃x. a = μ-rep(x),
f.	 ∀x. odd-or-even(sprig(L, x)).

Note the prohibition in clause (a) of urelements as components Lj. The for-
malism is neutral on whether urelements are members of these components, 
but their primary roôle will be through the membership of their μ-reps in Lμ.

Routine verificationshows that INDEX has three additional properties:

Proposition 13.1 (Degeneracy/Diversity Properties).

g.  INDEX(L) & INDEX(M) & diverse(L, M) ⇒ INDEX(L ∂ M),
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h.  INDEX(L) & low(a) ⇒ INDEX((L0 L1 … Ln … [Lμ δ μ-rep“a])),
i.    INDEX(({0-rep(Ø)} Ø … Ø)).

For greater generality, we could take the above, not as a definition of 
INDEX, but as a minimum requirement, provided we add the Degeneracy/
Diversity Properties as additional conditions on INDEX(L); in this Part the 
only use I make of the “” part of the definition of INDEX is in the proof 
of these three properties. This will allow us to replace the condition “j-pro-
lific(a)” in clause (d) by a stronger predicate, when applying the results of 
this section to the specific consistency proof for CUSɩ.

13.1.  Urelements and *

By the Urelement Bijection Axiom, we have a function T(x) injecting the 
sets into the urelements. (We could also use the partially-specified function 
Tʹ from Part I, but for this Part that level of generality is not necessary.)  
I will define the function “*” as a restriction of T, and will abbreviate 
*(x) to * x. Define * x =df T(x), provided INDEX(x); undefined otherwise. 
By this definition and the Urelement Bijection Axiom, we have the following:

Lemma 13.2 (* Properties Lemma).
a.	 ∀x. INDEX(x) → ∃!u. u = * x,
b.	 ∀x, u. u = * x ⇒ urelement(u) & INDEX(x),
c.	 ∀x, y, u. u = * x & u = * y ⇒ x = y.

In prose, read “INDEX(L)” as “L is an index.” Let the function index be 
the inverse of the function *. I.e., define index (u) =df ıx. u = * x. Thus 
∀x. INDEX(x) → index(* x) = x. By (a), ∃!u. u = * x, which establishes the 
existence part of the definition of index(* x); (c) establishes uniqueness. In 
prose call x the index of * x, and call * x, xʹs urelement.

14. !2

Define x∈2y iffdf

(a)	 ∃L. y = * L & INDEX(L) & odd(sprig(L, x)) ∨
(b)	 x ∈0 y.

Note that since y = * L ⇒ urelement0(y), the two clauses are mutually 
exclusive, and set0(y) ⇒ x ∈2 y ≡ x ∈0 y. Redefine (analogously to the 
definition in Part I) unaltered(x) iffdf ∀z. z ∈0 x ≡ z ∈2 x; altered(x) iffdf 
¬unaltered(x). Thus

Lemma 14.1.  set0(y) → unaltered(y), and altered(y) → ∃L. y = * L.
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The two cases in the definition of ∈2 correspond to the six cases of Church’s 
definition [1974a], page 306. Considerable simplification is achieved by the 
use of urelements (in place of Church’s i-analogue function) and the defi-
nition of sprig, though at the cost of the Urelement Bijection Axiom and the 
non-primitive notations “*”, “INDEX”, “sprig”, and “odd” in the definition.

Note that Church’s use of Compactness ([1974a], p. 307) is here unnec-
essary, since this construction uses the full sequence of partially-defined 
restricted equivalence relations, rather than Church’s initial segment of j’s, 
for j ≤ m, with unspecified length m.

Observe that the definition of ∈2 immediately gives us many j-equivalence 
classes as sets2 with j

0 in, regrettably, the sense of the old membership relation:

Observation 14.2 (Equivalence Class Observation).  Let a be an object, 
with j < μ. If L is an index with Lj = {j-rep(a)}, and Lk = Ø for j ! k, then 
∀x. x ∈2 * L ≡ x  j  

0 a.
Note that what we actually want is this result with “j” replaced by its 

interpretation. Say that j is absolute iffdfs ∀x, y. x  j  
0 y ≡ x  j  

2 y. Con-
sideration of this requirement leads naturally to Oberschelp’s comprehen-
sion schema; see [Sheridan 1990]. Trivially, though, the Equivalence Class 
Observation gives us:

Corollary 14.3.  For any j < μ and any a, if ja is absolute and (Ø … 
{j-rep(a)} … Ø) is an index, then ∀x. x ∈2 * L ≡ x  j  

2 a.
I.e., * L is a’s Frege j-cardinal in the sense of the new membership relation.

Lemma 14.4 (Universal Set Lemma).  ∀y. y ∈2 *({0-rep(Ø)} Ø … Ø).

Theorem 14.5 (Symmetric Difference2 Theorem (s)).  ∀a∀b∃z∀w. w ∈2 z ⇒ 
(w ∈2 a  w ∈2 b).

Lemma 14.6 (Nonemptiness2 Lemma).  INDEX(L) ⇒ ∃x. x ∈2 * L.

Theorem 14.7 (Interpretation of the Axiom of Extensionality for Sets (s)). 
∀a∀b. nonempty2(a) & ∀z. z ∈2 a ≡ z ∈2 b. ⇒ a = b.

Part III

j-Isomorphism, Foundation, Choice, the Interpretation, 
and Proof of the Axioms of CUSɩ

15.  j-Isomorphism

In Part III, I define a specific sequence of restricted equivalence relations, j 
(read “j-isomorphic”), and prove its two key properties: that the singleton 
function is the union of a small finite number (six in general, one in the 
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current context) of 2-isomorphism classes (17.14), and that any nondegen-
erate j-isomorphism class is non-low (16.16).

After defining j-isomorphism, rather than proving the properties of a 
partially-specified membership relation (such as ∈1 or ∈2 in Parts I and II), 
I will instead define a specific relation ∈3; and I will assume for the base 
theory, in addition to the Basic Axioms, the Axioms of Foundation and 
Global Well-Ordering. Some of the uses of these axioms might be elim-
inable with sufficient care to relativization and the use of Scott’s Trick 
[1955], but substantial use of Foundation seems necessary for the Replacing 
at Level*j construction, section 16.4 below.

15.1.  Ordinals and Avoidance of Advanced Recursion

For the following subsection I will continue to avoid development of recur-
sion on the finite ordinals beyond that used above. This may facilitate use 
of these techniques in other contexts, though whether this justifies the addi-
tional effort is by no means clear.

For 1 ≤ j < ω, define y ∈j a ≡df ∃f. ∃c. maps (f, j+1, c) & f ‘0 = a & f ‘j = 
y & ∀k∈j. f‘k+1 ∈ f‘k. Read “y is a member at level j of a”

For convenience, define y ∈0 a ≡df y = a; this differs from Church’s 
usage, but is convenient for usage with the jth cumulative union, defined 
below. Repeated application of the Axiom of Pairs trivially shows that  
y ∈1 a ≡ y ∈ a.

Define y ∈<j a ≡df ∃k. 0 ≤ k < j. y ∈k a. (Note that this means y ∈<j y, 
for j ≥1.)

Define y ∈≤ j a ≡df ∃k. 0 ≤ k ≤ j. y ∈k a.
Define y ∈*j a ≡df y ∈j a & ¬∃ i < j. y ∈j a. Read “y is a member at 

level*j proper of a”; level*j of a is the class of all members at level*j of a. 
Thus level*0 of a is {a}.

Define Ξj a =df {y | y ∈≤j a }, for 0 ≤ j < ω. Read “the jth cumulative 
union of a.” This is a class abstract; it will have to be proved to be a set 
before making use of it. (Recall that a class abstract is never an urelement, 
so it is only necessary to eliminate the possibility that it is an ultimate 
class.) Note that Ξ0 a = {a}, and that Ξj a contains a for any j.

Define TC(a) =df {y | ∃ j ∈ ω. y ∈j a }. Note that, because of my defi-
nition of ∈0, this differs slightly from the standard transitive closure of a, 
in that TC(a) also includes a. Informally, call a member of the transitive 
closure of x, a constituent of x.

15.2.  Definition of j-Isomorphism

Define, for j ≤ 1 < ω, a j b ≡df ∃F :
(1)  SET(Ξj a) & SET(Ξj b) &
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(2)  maps1-1(F, Ξj a, Ξj b) &
(3)  F‘a = b &
(4)  ∀y ∈<j a. F‘y = F“y

Read “a is j-isomorphic to b.” The first clause will be superfluous (by the 
Cumulative Union Lemma (16.1), below) in the presence of Foundation; 
it is only needed for ill-founded objects in the interpretation. When F is 
known, I will also write “F: a j b.” For convenience, define 0 as the 
universal relation which holds between any two objects, and ω as equality.

15.2.1.  j-Isomorphism Notes

(1)	 Note that since ∈0 is equality, clauses (3) and (4) imply that b = F“a, 
for j  ≥  1.

(2)	 By my definition of “, which maps empty objects to themselves, an 
empty object can be j-isomorphic only to itself, for j  ≥  1.

(3)	 Conversely, for any empty a, the mapping {<a, a>} is a j-isomorphism 
for any j  ≤  ω. So any empty object is j-isomorphic to itself, and, for 
j  ≥  1, only to itself.

(4)	 Since b = F“a, if F|a (i.e., F restricted to a) is a set (which it will be in 
the presence of Foundation), then a is equinumerous to b.

(5)	 The intent is that the j are of increasing strictness, but proving this 
will require Foundation, which I assume below.

(6)	 Note that, despite my informal terminology, I have not yet proved that 
these are equivalence relations, nor even that they are reflexive. They 
won’t necessarily be either for ill-founded sets, since the obvious proofs 
require Replacement.

(7)	 The state of j-isomorphism in the interpretation will be inelegant, espe-
cially the existence of set mappings witnessing j-isomorphism, render-
ing them merely restricted equivalence relations. (A similar difficulty 
arises with Church’s theory, though he did not need to address it in his 
surviving writings.) It will be simple to show that j-isomorphism is an 
equivalence relation in the presence of Foundation, and j-isomorphism 
will be absolute for sets which are unaltered down to level j in the 
interpretation (see the j-Pure j-Isomorphism Absoluteness Theorem 
(17.10), below). This is somewhat short of showing that j-isomorphism 
will be a restricted equivalence relation in the interpretation, since some 
new set might be a mapping which witnesses a j-isomorphism for a 
new set, with no obvious guarantee of the existence of other mappings 
required for an equivalence relation.

(8)	 There will be further shortcomings of these equivalence relations in the 
interpretation. They will only provably be absolute for well-founded 
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sets and those j-isomorphic to them, the j-pure sets (defined formally 
below); contemplating the requirements for absoluteness of such rela-
tions leads naturally to Oberschelp’s existence criterion [Oberschelp 
1973], [Sheridan 1990], which may loosely be described as mandating 
the set-hood of any predicate whose definition is absolute. The situation 
is inelegant even for j = 1. The intent is for two sets to be 1-isomorphic 
if they are equinumerous, and either both or neither are self-membered. 
No two urelements are 1-isomorphic in the base theory, but in the 
interpretation an old urelement might contain itself and be externally 
equinumerous to the universe (e.g., the urelement which represents the 
universal set itself), or not contain itself and be externally equinumerous 
to the universe (e.g., the set of all non-self-membered singletons). See 
also the discussion of the Bad Company problem in the philosophical 
introduction for further difficulties with j-isomorphism.

The crucial difference between my j-isomorphism and Church’s j-equiv-
alence (abbr: ≈j) is that, in my definition, while the first two clauses deal 
with membership at level ≤ j, the last deals with membership at level < j, 
in order to enable the set-hood of the singleton function. A lesser differences 
is that I have a single mapping required to be one-one across all levels, while 
his sequence of mappings are only required to be individually one-one.

j-isomorphism classes do not seem to be closed under sum set, which is 
why my theory (unlike Church’s) does not have an unrestricted axiom of 
sum set. The 2-isomorphism class of {{Ø, {Ø}}, {Ø}} will be a set in my 
theory, but its sum set does not seem to be. This union should be the set of 
all singletons plus the set of all pairs of the form {a, {a}}, but the latter 
does not seem to be a j-isomorphism class, nor a manageable combination 
thereof.

Church’s equivalence relations have the property that if a class is roughly 
(i.e., modulo a well-founded set) closed under j-equivalence, its sum set is 
roughly closed under j-1-equivalence [Sheridan 1989], p. 75, 84; this would 
have been crucial in Church’s consistency proof.

16. � Foundation, Choice, j-isomorphism, and Less Generality

16.1.  Foundation and Global Well Ordering

For the remainder of this work, I will drastically reduce the generality in 
which I have been working. I will work in a base theory which includes, in 
addition to RZFU, the Axiom of Foundation (sometimes merely three of its 
consequences—see below) and the Axiom Schema of Global Well-Ordering. 
This renders the Basic Axioms, some of them restricted to well-founded 
sets, equivalent to their standard counterparts in, for example, [Levy 1979]. 
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(Since we are now assuming Choice, the usual proof will also go through 
that ω—here defined as the set of all Dedekind finite ordinals—is itself an 
ordinal.) This will allow the use of the standard results of ZFC, e.g., defi-
nition by recursion and Separation, and hence requires far less formality. 
It will also render unproblematic use of the (Cantor) cardinality of any set, 
with the standard definition as the least ordinal equinumerous to the given 
set.

As a further specialization, for the arbitrary ordinal μ, I will substitute ω; 
for the arbitrary sequence of relations  j (j  ≤  μ) I substitute j (j  ≤  ω), with 
ω being equality and 0 being the universal relation. I will also substitute 
for the partially-specified relations ∈1 and ∈2, and predicate INDEX, a 
specific relation ∈3 and predicate INDEX3, defined below. For the partially-  
specified function “+” on the odd-or-even ordinals, I substitute the usual 
addition function on the finite ordinals. For convenience, I will reuse sub-
sidiary terminology (e.g., j-rep, rank, *, and sprig) without explicitly dis-
tinguishing it, though the notations should henceforth be understood as 
defined in terms of j rather than  j.

Some of the uses below of Foundation in the base theory are essential; 
the most extreme case is the Replacing at Level*j Construction, which is 
defined by recursion on the Cumulative Hierarchy. Some of the uses, how-
ever, are needed merely for three unrestricted consequences of the normal 
ZF axioms: Separation, pairwise union, and unrestricted sum set. Where 
appropriate, I will mark results which require only these consequences of 
Foundation.

The uses of unrestricted Separation are largely of one type, that a sub-
class of a set function (or of its domain or range) is also a set; I will call 
this the Function Subset Assumption: In set theories like Church’s, this 
seems little, if any, weaker than full Separation, which needs to be restricted 
to well-founded sets. (Consider the identity function, which could plausibly 
be a set, and its subclass, the identity function restricted to non-self-mem-
bered sets, which is likely to lead to a paradox.) But the assumption recurs 
frequently enough in what follows that it seems worth calling attention to, 
for possible use of this construction in other theories; e.g., [Aczel 1988], 
which has self-membered sets but unrestricted Replacement.

The following three results are straightforward.

Lemma 16.1 (Cumulative Union Lemma). F or 0 ≤ j < ω, ∀a. SET(Ξja).

Lemma 16.2 (Transitive Closure Lemma).  ∀a. SET(TC(a)).

Lemma 16.3 (j-Isomorphism / Level j Lemma).  If F: a j b and i ≤ j, then 
∀x. x ∈i a ≡ F‘x ∈i b.

The following result characterizes the first non-trivial j-isomorphism rela-
tion.
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Lemma 16.4 (1-Isomorphism Lemma (Function Subset Assumption, Pair-
wise Union)).  ∀a,b. non-empty(a) ⇒ a 1 b ≡ . a ≈ b  &  (a ∈ a ≡ b ∈ b).

(Recall that two empty objects are j iff they are equal, for j ≥ 1.) Note that 
the final conjunct is significant only in the absence of full Foundation; the 
main interest of this result is for CUSɩ and possible extensions, not the 
Base Theory, but such applications are beyond the scope of this paper.

16.2.  1-Isomorphism and Paradox

This result, though it aids the consistency proof in this paper, would have 
disturbing consequences for the goal of extending my theory, CUSɩ, though 
apparently not Church’s original theory: Natural extensions of CUSɩ (with 
unrestricted axioms of generalized Frege-Russell cardinals and some nat-
ural mappings as sets) lead to a variant of the Russell Paradox. (I would 
have hoped that some expansion of my theory could be useful for working 
mathematicians, for example, in category theory [Feferman 2006], but this 
seems to rule that out.)

Call a set blasphemous iff the universe is equinumerous to it via a set 
mapping; the formal definition is below. (This is a pun on the name Church 
and his conjecture about high sets ([1974a], p. 299), plus Cantor’s notion 
of absolute infinity as presented in [Hallett 1984].) A sometimes helpful 
informal notion is being weakly blasphemous, via a class mapping rather 
than a set mapping. More formally, this is a definition schema: b is weakly 
blasphemous via φ iffdfs FUNCTION(φ)  &  ∀x. ∃!y ∈ b. φ(x,y). Often I 
will elide the formula in informal exposition; if I were to do so formally, 
there would be a risk of hidden quantification over virtual classes.

Informal Motivation:  An easier, but not quite sufficient, version of this 
paradox is the 1-isomorphism class of the universe. Since the universe is a 
member of itself, this will be the set of all self-membered blasphemous sets. 
Does this set contain itself? If it does, then it does; if it doesn’t, it doesn’t. 
This isn’t a paradox, but suggests a problem with such equivalence-class 
axioms, that in this case they say too little.

This does evoke a familiar route to a genuine paradox: Take a blasphe-
mous set that isn’t self-membered; the set of all singletons is a convenient 
one. The idea, which I work out in detail below, is that its 1-isomorphism 
class contains itself iff it doesn’t.

Informally assume we are working in some partially-specified stronger 
theory than CUSɩ (call it CUSɩ#), which I will show inconsistent, with the 
unrestricted existence of 1-isomorphism classes, plus three additional prop-
erties, formally stated following the definitions.

(II), below, will mean simply that the 1-Isomorphism Lemma is still true 
in CUSɩ#, even for the new 1-isomorphism classes of ill-founded sets.
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(III) is that being equinumerous to the set of all singletons (abbreviated 1) is 
equivalent to being equinumerous to the universe. To motivate this, note that the 
singleton function maps the universe one-one onto the set of all singletons. Thus 
any set equinumerous to 1 is at least weakly blasphemous, via the obvious com-
position map. Actually proving (III) in general would seem to require a fair 
amount of compositionality, which Church’s technique does not seem to provide.

(IV) is that there is a set mapping from the universe one-one onto the 
1-isomorphism class (abbreviated  ) of the set of all singletons. (Defined 
formally below;  will be a set by the unrestricted Axiom of Generalized 
Frege Cardinals.)

To motivate this, I will exhibit a class mapping which is one-one and 
might reasonably be hoped to map the universe into . (For readers worried 
about implicit quantification over ultimate classes, I stress that this motiva-
tional section is purely motivational: I am arguing that the desired properties 
of the hypothetical theory CUSɩ#, which turn out to lead to paradox, would 
have been reasonable to desire in the absence of paradox.)

Let 2 be the set of all pairs, which exists by a similar argument to that 
for 1. By the Axiom of Pairwise Union, 2 ∪ {{x}}, for arbitrary x, exists. 
It’s non-self-membered, since it has more than two members, unlike any of 
its members. It’s at least weakly blasphemous: Consider the mapping z → 
<z, z>, which maps the universe one-one into 2, hence also into 2 ∪ {{x}}. 
This does not suffice to show that 2 ∪ {{x}} is blasphemous, but does 
(I hope) make that seem a reasonable desideratum for CUSɩ#. If 2 ∪ {{x}} 
is blasphemous and non-self-membered, it’s a member of , the 1-isomor-
phism class of the set of all singletons.

Consider the class mapping x → 2 ∪ {{x}}. It is obviously one-one.  
By the preceding, if 2 ∪ {{x}} is blasphemous for each x, this mapping 
would inject the universe (abbr: U) into . So  would also be weakly 
blasphemous, so it seems a reasonable desideratum that U ≈ .

More formally, define U =df õu .∀x. x∈u. This will exist by the Unre-
stricted Axiom of Symmetric Difference.

Define blasphemous(b) iffdf U ≈ b, i.e. ∃f. maps1-1(f, U, b).
Let 1 be the set of all singletons; this exists by the Unrestricted Axiom 

of Generalized Frege 1-Cardinals, as the 1-isomorphism class of {Ø}, unioned 
with the 1-isomorphism class of any self-membered singleton, if such 
exists. It has more than one member, hence does not contain itself.

 will be the class of things to which 1 is 1-isomorphic:  =df {x | 1 1 x}. 
This will be a set by the Unrestricted Axiom of Generalized Frege 1-Car-
dinals, (I) below.

Assumptions on CUSɩ#:
 (I)	� Unrestricted Axiom of Generalized Frege 1-Cardinals: ∀b. ∃F ∀x. 

x ∈ F ≡ b 1 x
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 (II)	 The 1-Isomorphism Lemma still holds in CUSɩ#:
	 ∀a,b. non-empty(a) ⇒ a 1 b ≡ . a ≈ b  &  (a ∈ a ≡ b ∈ b)
(III)	 ∀x. 1 ≈ x iff U ≈ x
(IV)	 U ≈ 

Thus, by (II) and the definition of , since 1 ∈ 1, we have ∀x. x ∈  ≡ 1 ≈ 
x  &  x ∈ x.

By (III), ∀x. x ∈  ≡ U ≈ x  &  x ∈ x.
Substituting  in the preceding, we have  ∈  ≡ U ≈   &   ∈ . 

But U ≈  by (IV), so  ∈  ≡  ∈ , contradiction.

This could be interpreted as an example of the Bad Company Argument 
against equivalence sets ([Dummett 1991] pp. 188-9, [Boolos 1990], p. 214) 
or the Embarrassment of Riches Argument [Weir 2003], p. 28, or perhaps 
a confirmation of Forster’s “Naturam expellas furca” argument [Forster 
2006], p. 240. Cp. also Holmes’ proof of the non-set-hood of the member-
ship relation [Holmes 1998] p. 43, and Remark 7.7 on cardinalities and 
paradox in [Forster  &  Libert 2011].

I do not believe this is a counterexample to Heck’s observation that 
“there are no set-theoretic paradoxes specifically concerning cardinal num-
bers” ([Heck 2013], p. 224), nor even evidence against Frege-Russell car-
dinals for ill-founded sets, but merely a hazard of a relation which can code 
enough information about membership to emulate the Russell Paradox.

This may also mean that extensions of Oberschelp’s theory (which like 
CUSɩ, has the Singleton Function as a set, and which I believe also proves 
the existence of j-isomorphism classes for wellfounded sets) cannot prove 
the set-hood of unrestricted generalized Frege cardinals and/or some of the 
preceding natural mappings, on pain of inconsistency.

16.3.  Well-Founded Equivalence Relations

Theorem 16.5 (Well-Founded Equivalence Relation Theorem). ∀j ∈ ω, j 
is an equivalence relation on the well-founded sets.

The result is actually slightly stronger; only one of the sets need be 
assumed well-founded. Note that we are now assuming Foundation, so both 
the assumption and the title of the theorem are redundant; but for possible 
use over other base theories, and to emphasize the nature of the result,  
I will limit my direct use of Foundation. (Explicitly calling out the indirect 
assumptions necessary for this theorem would be non-trivial, however, 
because of the use of recursion and the Cumulative Union Lemma.)

Theorem 16.6 (Singleton Function/2-Isomorphism Theorem (Foundation 
for Finite Sets)). ∀b. <Ø, {Ø}> 2 b ≡ ∃d. b = <d, {d}>.

I.e., the singleton function is a 2-isomorphism equivalence class. The use 
of Foundation is only for the second part of the proof, is only needed for 
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sets with three or fewer members, and could be avoided by explicitly 
cataloging the six possible failures of Foundation, as in [Sheridan 1989]. 
Note that <Ø, {Ø}> expands, by the definition of Kuratowski ordered pair, 
to {{Ø}, {Ø, {Ø}}}.

This will help to show below that, in CUSɩ, the singleton function is a 
set; but there will be some non-obvious additional effort required, e.g., to 
show that an object which is 2-isomorphic to <Ø, {Ø}> in the base theory 
remains so in the interpretation, and to verify that there are no new objects 
which are of the form <x, {x}> but are not 2-isomorphic to <Ø, {Ø}>. 
If, for example, there were a Q such that Q = {Q}, then <Q, {Q}> = {{Q}, 
{Q, {Q}} } = {Q, {Q} } = {Q} = Q. This has only a single member, hence 
would not be 2-isomorphic to <Ø, {Ø}>. In the interpretation, all the new 
sets will be non-low, so this is not an issue. In a more general context, there 
are only a finite number of ways that this can go wrong, so it would not be 
hard to construct the singleton function as the union of a finite number of 
2-isomorphism classes. 

Lemma 16.7 (Level <j Equinumerosity Lemma (Function Subset Assump-
tion)).  If F: x j y and z ∈<j x, then F‘z ≈ z.

Lemma 16.8 (Increasing Strictness Lemma (Function Subset Assumption)). 
∀j, k ≤ ω ∀x, y. j ≤ k  &  x k y ⇒ x j y. (Cp. j Requirements (α), below.)

16.4.  Replacing at Level*j Construction

Given a well-founded set, a, not empty at level*j (for j ∈ ω), an arbitrary 
object z, and an arbitrary infinite Cantor cardinal χ larger than the transitive 
closure of a, I will construct below a set b(z) such that a j b(z) and z ∈j+2 

b(z). Additionally, b(z) will have a member at level j of cardinality χ.
The function b(z) is one-one, so the universe can be injected into a’s 

j-isomorphism class. In the interpretation below, the value of b( ) with a’s 
j-isomorphism class (which will be a set3) as argument, gives a member-
ship3 loop of length j+2; so every non-degenerate j-isomorphism class will 
be ill-founded.

Gandy’s and my conjecture in [Sheridan 1989] that the following con-
struction could be done by reverse recursion on membership depth seems 
to be false. A counterexample to the natural construction seems to be {{0}, 
{{Ø}}}, replacing 0 with "1 at level 2. The natural construction by reverse 
recursion on depth would leave {{Ø}} at level 1 unchanged, since {0} at 
level 2 would also be unchanged. But this would fail to preserve the level 1 
graph edge from {{Ø}} to {0}, since {{Ø}} would be unchanged, but {0} 
would map to {"1}. (Part of the difficulty is that {0} is a member at level 1, 
hence not at level*2. Using maximal rather than minimal depth would not 
work, since, for instance, 0 is a member of ω at all finite levels.)
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16.4.1.  Preliminary Definitions

a is not empty at level*j, so it has a member at level*j, d. Choose an arbi-
trary object z; take χ as an arbitrary infinite (Cantor) cardinal larger than 
TC(a). Construct F and b(z), which will be a with d replaced at level*j by 
χ(z) [defined below], with F: a j b(z). F is constructed by transfinite recur-
sion on a variant of the Cumulative Hierarchy, modified for urelements; 
thus this construction is essentially dependent on the Axiom of Foundation. 
(I had hoped that the consistency of the Axiom of Generalized Frege 
Cardinals would not be dependent on its restriction to well-founded sets, 
even though the available consistency proof is. But the above paradox of 
the set of all non-self-membered blasphemous sets mandates caution.)  
F will be constructed in stages, Fα for each ordinal α ≤ ρ(a), where ρ is the 
usual Cumulative Hierarchy rank function ([Levy 1979], §6.6); R(α) will 
be the usual αth stage of the Cumulative Hierarchy, modified for the inclu-
sion of the relevant urelements in R(0), as follows.

Let R(0) be the set of all urelements in TC(a); define, similarly to the 
usual cumulative hierarchy, R(α) = 


ξ<α P (R(ξ)), where P is power set. 

(Since TC(a) is a set, so will be the R(α)’s, and hence the Fα’s defined on 
them below.) Let R*(α) be the collection of objects first appearing in stage 
R(α), i.e., R(α) — 


ξ<α R(ξ). (So R*(α) will be empty if α is a limit ordinal. 

R*(0) will be equal to R(0).) The union of the Fα’s will be a mapping on 
the transitive closure of a; the desired F will be the restriction of the union 
of the Fα’s to Ξja. The desired b(z) will be F‘a. 

χ was taken above as an arbitrary infinite (Cantor) cardinal larger than 
TC(a); define χ(x) = χ — {{Ø}} ∪ {{x}}. Observe that χ(x) is one-one, and 
χ(x) contains x at level 2.

Let « be the first ordinal such that d ∈ R(«), i.e., « is unique such that 
d ∈ R*(«).

16.4.2.  The Construction

Define Fα on R*(α), for ordinals α, as follows; the recursion will end at the first 
stage, γ, containing a (i.e., R*(ρ(a)+1). γ must be a successor ordinal, so γ  -  1 
exists. Observe that at each stage α ≤ «, Fα will be obviously one-one, since 
χ(z) is distinct from—because it is larger than—any member of TC(a). Show-
ing that later functions, and their union, are one-one will be more difficult.

If d is not an urelement, then F0 will be the identity function on R*(0) 
(the urelements in TC(a)). Otherwise F0 maps d to χ(z), and is the identity 
on the rest of R*(0); and « is 0. Formally,
F0 =

{<d, χ(z)>} ∪ {<x, x> | x ∈ R*(0)  &  x ! d}, if urelement(d)
{<x,  x> | x ∈ R*(0)}, otherwise.
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F1, if d = Ø (and hence « = 1), maps Ø to χ(z), and is the identity on the 
rest of R*(1); otherwise F1 is just the identity function on R*(1). Formally,

F1 =
{ <Ø, χ(z)>} ∪ {<x, x> | x ∈ R*(1)  &  x ! Ø }, if d = Ø,
{ <x,  x> | x ∈ R*(1) }, otherwise.

For stages α between 1 and « (if any; if « is 0 or 1, this clause is vacuous, 
and the following clause coincides with clause 0 or 1), Fα is the identity on 
members of TC(a) in R*(α). I.e.,

Fα = {<x, x> | x ∈ R*(α) ∩ TC(a)}.

At stage « (where d ∈ R*(«)), F« maps d to χ(z), and is otherwise the iden-
tity on members of TC(a) in R*(«). I.e.,

F« = {<d, χ(z)>} ∪ {<x, x> | x ∈ R*(«)  &  x ∈ TC(a)  &  x ! d}.

Define F≤α = 


δ≤α Fδ; this is a function, since the domains of the Fα are 
disjoint. (The continuation of the definition below maintains this disjoint-
ness; each Fα will be restricted to R*(α).)

For successor ordinals α + 1 greater than « and less than γ, Fα+1‘x is 
F≤α“x, i.e., 	

Fα+1 = {<x, {F≤α‘w | w    ∈   x}   >    | x    ∈   R*(α+1) ∩ TC(a)}.

Observe that each F≤α‘w will be defined, since w ∈ x, and hence w is earlier 
in the Cumulative Hierarchy.

The limit ordinal case is trivial, since R*(α) is empty for α a limit ordinal.
Fγ is defined only for a:

Fγ = {<a, {F≤ γ-1‘y | y  ∈  a}>}.

Let b(z) be {F≤ γ-1‘w | w  ∈  a}, i.e., Fγ‘a. (For brevity, in the rest of this 
proof, since z is fixed, abbreviate b(z) to b.) Let

F+ = 


δ≤γ Fδ; let F be F+ restricted to Ξja, i.e.,
F = {<x,  y> | <x, y> ∈ F+  &  x ∈ Ξja}.

Example:  Let j = 2, a = 3 — {Ø} = {{Ø}, {{Ø}}} = {1, {1}}, d = 0, γ = 4, 
« = 1, χ = ω, χ(z) = ω — {{Ø}} ∪ {{z}}.

R*(0) = Ø (Since there are no urelements in TC(a).)
R*(1) = {Ø}
R*(2) = {{Ø}}
R*(3) = {{{Ø}} …}
R*(4) = {{{Ø}, {{Ø}}} …}
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F0 is the empty function.
F1 = F« = {<Ø, χ(z)>}.
F2‘x = F≤«“x = {<x, {F≤1‘w | w  ∈  x}  >  | x  ∈  R*(2)  ∩  TC(a)} = {<{Ø}, 

{F≤1‘Ø}  >   } = {<{Ø}, {χ(z)}  >   }.
F3‘x = F2+1‘x = F≤2“x = {<x, {F≤2‘w  |  w  ∈  x}   >  | x  ∈  R*(3) ∩ TC(a)} = 

{<{{Ø}}, {F≤2‘w  |  w  ∈  {{Ø}}>} = {<{{Ø}}, {F≤2’{Ø}}>} = {<{{Ø}}, 
{{χ(z)}}  >   }.

F4 = {<a, {F≤3‘y | y ∈ a}>} = {<a, {F≤3‘{Ø}, F≤3‘{{Ø}}}>} = {<a, {{χ(z)}, 
{{χ(z)}} }  >   }.

So b(z) = {{χ(z)}, {{χ(z)}}}.

16.4.3.  Properties of the Construction

Theorem 16.9 (Replacing Theorem).  F: a j b.

Lemma 16.10 (Domain Lemma).  The domain of F is Ξja.

Lemma 16.11 (Cardinality Lemma). ∀x ∈ domain(F). F‘x ! x iff TC(F‘x) ≥χ.
(For this and the following lemma, “>” and “≥” will denote the usual 

cardinality inequalities; given the presence of Foundation and Choice, this 
is unproblematic.)

Corollary 16.12 (Cardinality Corollary).  ∀x ∈ Ξjb. x > TC(a) ) x = F‘d.

Lemma 16.13 (One-One Lemma).  F is one-one.

Observations:  F‘d = χ(z): By the definition of F0, if d is an urelement; by 
the definition of F1, if d = Ø; otherwise by the definition of F«.

χ(z) ∈j b, since χ(z) = F‘d, and d ∈j a.
z is a member at level j+2 of b. (Recall that χ(z) contains z at level 2.)

Observation 16.14 (Cardinality Replacing Observation).  The above con-
struction (considered now as a function of χ) provides an injection of the 
infinite cardinals larger than the transitive closure of a into a’s j-isomor-
phism class.

16.5.  Definition of j-rep(x)

For arbitrary x, and j in ω, let r be the first object in the global well-order-
ing such that x j r (if any, otherwise let r be x itself 23); define j-rep(x) =df 

23  This case does not arise in the base theory. The situation will be far more complicated 
in the interpretation, but the impact on the present consistency proof is limited.
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<j, r>. Say that <j, r> is a j-rep iffdf there is an object x such that j-rep(x) 
is <j, r>.

Since ω-isomorphism is equality, define ω-rep(x) =df <ω, x>. Since Ø is 
the first object in the global well-ordering, 0-rep(x) = <0, Ø>. j-isomorphism 
on urelements will play little part in what follows, since they will be used 
for the new sets, but (as no two empty objects are j-isomorphic for j  >  0) 
for 1  <  j  <  ω and u an empty object, j-rep(u) will be <j,  u>.

Define rank (h) = j, for j  ≤  ω, if ∃s. h = j-rep(s); undefined otherwise. 
Since any j-rep is an ordered pair with first component j, this will be single-  
valued.

16.6.  Proof of   j Requirements

Lemma 16.15 (j Requirements Lemma).  j, ω, rank, and j-rep satisfy 
the j Requirements from Part II.11.

Substituting j for j, ω for μ, and using the specific definitions of j-rep 
and rank, the j Requirements are:

(α).	∀j, k ≤ ω ∀x, y. j ≤ k & x k y ⇒ x j y,
(β).	 ∀x, y. x 0 y,
(γ).	 ∀x, y. x ω y ≡ x = y,
(δ).	 ∀j ≤ ω ∀b ∃r. r = j-rep(b),
(ε).	 For 0 ≤ j ≤ ω, x j y iff j-rep(x) = j-rep(y),
(ζ).	 ∀h. rank(h) ≤ ω and ∀g. rank(g) = j ⇒ ∃x. g = j-rep(x),
(η).	 rank(0-rep(Ø)) = 0 and ¬∃s: low(s) & ∀d. d ∈ s  ∃x. 1-rep(x) = d.

Lemma 16.16 (Non-Emptiness and Prolificity Lemma).  If <j, a> is a j-rep 
and a is not empty at level*j, then <j, a> is j-prolific. (This is a generaliza-
tion of j Requirement (η.2).)

Corollary 16.17 (j Requirements (η)).

Lemma 16.18 (j-Empty j-Isomorphism Lemma).  If a is empty at level j, 
then the only thing which is j-isomorphic to a is a itself.

Note that this is not true in a theory which violates Finsler Strong Exten-
sionality [Aczel 1988].

Define j-pure(x) iff x has no members at less than level j which are urele-
ments; more formally: j-pure(x) iffdf ∀y. y∈<jx → ¬urelement(y). (For j = 1, 
1-pure(y) reduces to ¬urelement(y); 0-pure is vacuously true and will not be 
used.) (Note that this is simpler than the definition in [Sheridan 1993].) The 
intent is to exclude altered objects from being relevant to j-isomorphism, 
since this would make j-isomorphism different in the interpretation. This is 
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manifested in the j-Isomorphism j-Purity Lemma, below. If I were doing 
this construction without using all urelements in the base theory as new 
sets, which would allow for urelements in the interpretation, it would make 
sense to define j-pure in terms of altered objects rather than urelements.

17.  The Interpretation !3

17.1.  Definition of INDEX3

As noted above in the introductory remarks for Foundation, Choice, j-Iso-
morphism, and Less Generality (III.16), the definition of INDEX3 will be 
similar to the earlier definition of INDEX, with the following differences:
•	 ω is substituted for the arbitrary ordinal μ.
•	 For the arbitrary sequence of relations j (j  ≤  μ) I substitute j (j  ≤  ω), 

with ω being equality and 0 being the universal relation.
•	 One of the clauses (bracketed below) in the definition of INDEX is now 

redundant, given the assumption of Foundation in the Base Theory.
•	 Stricter conjuncts are substituted in clause (d), as noted in the original 

definition of INDEX (II.13).

Informally, an INDEX3 will be an ω+1-tuple, with at least one of its com-
ponents (other than ω) non-empty, in which each Lj contains only j-reps of 
j-pure objects not empty at level*j.

Define INDEX3(L) ≡df

(a)	 ω+1-tuple(L)  &  ∀j ≤ μ. set(Lj),
[(b)	 low(∪j≤ω Lj)],
(c)	 ∃j < ω ∃x. x ∈ Lj,
(d)	� ∀j < ω ∀a ∈ Lj . rank(a) = j & 2nd(a) is not empty at level*j & 2nd(a) 

is j-pure,
(e)	 ∀a ∈ Lω ∃x. a = ω-rep(x),
(f)	 ∀x. odd-or-even(sprig(L, x)).

Note that, despite the specialization of the arbitrary family of relations j 
(for j less than an arbitrary ordinal μ), to the j for finite j, (except for the 
trivial relation 0), conjunct (f) is still significant. The ω + 1-tuple ({0-rep(ω)} 
{1-rep(ω)} … {2-rep(ω)} … {j-rep(ω)} … {ω-rep(ω)}) is not an INDEX3, 
since its sprig for ω is neither odd nor even. The definition does not exclude 
all such unbounded ω+1-tuples, however: ({} {1-rep(1)} … {2-rep(2)} … 
{j-rep(j)} … {}) is an INDEX3, since by the Increasing Strictness Lemma, 
its sprig for any object is of length either zero or one.
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17.2.  Excess Urelements

Previous uses of the Urelement Bijection Axiom have ignored urelements 
not used as indexes for new sets. If the class of unused urelements were 
equinumerous to the universe, this would cause problems with the Axiom 
of Generalized Frege Cardinals. The Frege 1-cardinal of the empty set is a 
set containing the empty set plus all urelements, and is well-founded. If this 
set can be mapped onto the universe, Well-Founded Replacement would 
then require the existence of the Russell Set, leading to a contradiction.

So rather than the mapping T given by the Urelement Bijection Axiom, 
I will employ a mapping Tʺ based on T, but which is one-one from the 
class of INDEX3’s onto the class of urelements. (Thus Tʺ will also satisfy 
the T’ Injection Requirement.)

A Cantor-Schroeder-Bernstein-Dedekind construction will give a map-
ping Tʺ from the class INDEX3 one-one onto the class of urelements. Note 
that the required definition for Tʺ need merely be a particular definable 
formula; there is no need for a set mapping.

Since the class of all sets can be injected into the class INDEX3 (e.g., 
by the mapping from ξ to ({0-rep(Ø)} … {ω-rep(ξ)})), the mapping defined 
in the standard proof of the Cantor-Schroeder-Bernstein-Dedekind Theo-
rem, e.g., [Levy 1979] p. 85, gives a class mapping from the class INDEX3 
one-one onto the class of all sets. The composition of this with the original 
bijection T (from the sets one-one onto the urelements) gives the required 
bijection Tʺ from the class INDEX3 one-one onto the class of urelements.

Redefinition of *: L et * henceforth be an abbreviation for Tʺ; it will nor-
mally be used with parentheses omitted, as before. As noted above, I am 
reusing this terminology (as well as j-rep and rank); it is now being used 
in a more specific sense than in the more general proofs. For convenience, 
Tʺ will be abbreviated to T, since the original T will not be used again.

17.3. � Definition of !3 & Interpretations of the Axioms of CUSι

Define x ∈3 y ≡df

(a) ∃L. y = *L & INDEX3(L) & odd(sprig(L, x))
∨
(b) x ∈0 y.

As with ∈1 and ∈2, I will adopt the convention that a formula with subscript 
“3” represents the formula with ∈3 substituted for the base theory’s mem-
bership relation. As before, for convenience, “altered” will be redefined in 
terms of ∈3.

Discussion.  As in Part II, the domain of the interpretation is the same as that 
of the ground model. Church’s use of Compactness is again unnecessary, 
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since the entire sequence of relations j is used, not merely a finite subse-
quence.

Since we are now assuming Foundation in the base theory, the sets0 of 
the ground model will turn out to be definable as the low3 sets3 in the 
interpretation: after proving the Cardinal Injection Observation (17.1), the 
Ill-Foundedness Requirements, and the Unaltered Domain Lemma (17.3), 
below, it would not be hard to show, in the presence of a global well-order-
ing, that the altered objects are the non-low3 sets3. Observe that since the 
collection of old sets is definable in the interpretation, then so is the old 
membership relation, as the two relations differ only in that some old urele-
ments are new sets.

It would be straightforward to alter this construction to use Church’s 
j-equivalence (abbr: ≈j) instead of j. Chapter 7 of [Sheridan 1989] sketches 
a proof that any Church j-equivalence class is the union of a low number 
of j-isomorphism classes. For any two constructions using such related rela-
tion sequences, there is a natural embedding from the model with the looser 
relation into the model with the stricter. The embedding moves only the 
altered objects; substitute for each j-rep (in the sense of the looser relation) 
in the jth component of the associated ω+1-tuple, the low (by hypothesis) 
collection of j-reps (in the sense of the stricter relation) whose second com-
ponents bear the looser relation to the original j-rep’s second component. 

Provided that both relation sequences are absolute, the image of the 
embedded model is definable in the model with the stricter relation sequence: 
It is the unaltered objects, plus the altered objects which correspond to the 
combination of looser equivalence classes defined by the corresponding 
looser ω+1-tuple. E.g., define, for this section only, ≈j-rep(x) as the repre-
sentative of the ≈j equivalence class of x, and INDEX4 and ∈4 as the INDEX 
predicate and membership relation, defined analogously to j-rep(x), INDEX3, 
and ∈3, but in terms of Church’s j-equivalence in place of my j-isomor-
phism. Then x is in the image of the embedding of the looser model (∈4) 
in the stricter (∈3), iff it is either low3 or there is an ω+1-tuple N which sat-
isfies the requirements for INDEX4, such that membership in x (in terms 
of ∈3) satisfies the requirements specified by N in terms of ≈j.

Somewhat more formally, this predicate is: low3(x) ∨ ∃N. INDEX4(N) 
& ∀z. z ∈3 x ≡ odd3({<j, ≈j–rep(z)> | j ≤ μ & ≈j–rep(z) ∈3 Nj}3). Note 
that the meaningfulness of this predicate depends heavily on the absolute-
ness of, among others, ≈j–rep and membership in low3 sets3.

17.3.1. � Organization of the Verification of the Interpretations of the Axioms 
of CUSɩ

Verifying that the interpretation ∈3 satisfies the axioms of CUSɩ, which 
constitutes the rest of the body of the paper, will be organized as follows:
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(1)	 ∈† Lemma: Verify that ∈3 satisfies the requirements for an ∈†-inter
pretation (§ I.9.1), i.e., the form of the definition, the Ill-Foundedness 
Requirements, and the T’ Injection Requirement. This, by the Basic 
Axioms Theorem (I.9.1), will establish the Basic Axioms except Exten-
sionality.

(2)	 Verify that ∈3 satisfies the various assumptions of Part II. This will 
establish the Axioms of Extensionality (by Theorem II.14.7) and Sym-
metric Difference (by Theorem II.14.5). These assumptions are:
(2.1)	 The definitions of INDEX3 and ∈3 are of the required form, with 

clause (d) of the former satisfying a strengthened requirement.
(2.2)	 INDEX3 satisfies the Degeneracy/Diversity Properties (II.13.1).
(2.3)	 Required Properties of + (II.10.1).
(2.4)	 j and j-rep satisfy the j Requirements from section II.11. This 

was established in the j Requirements Lemma (III.16.15), above.
(3)	 Verify the interpretation of the Unrestricted Axiom of Pairwise Union.
(4)	 Prove the j-Pure j-Isomorphism Absoluteness Lemma.
(5)	 This lemma, plus the Equivalence Class Observation (II.14.2), yields 

the interpretation of the Axiom of Generalized Frege Cardinals.

17.4. !† Lemma

I will show in the following that ∈3 (along with Tʺ) satisfies the require-
ments for an ∈†-interpretation. An immediate corollary will be, by the 
Basic Axioms Theorem (I.9.1), that ∈3 satisfies the Basic Axioms except 
Extensionality. The requirements on the membership relation for the Basic 
Axioms Theorem are (a) that the relation be defined in a certain form, 
which is true by inspection, (b) the Tʹ Injection Requirement, which is true 
for Tʺ, as noted in its construction, and (c) Ill-Foundedness Requirements 
(1)–(3), the proofs of which are after the following two results.

Observation 17.1 (Cardinal Injection Observation).  Given an altered set x, 
we can inject the sufficiently large (i.e. infinite0 and larger than the transitive 
closure0 of the index of x) Cantor cardinals0 into the members3 of x.

Note that the sense of Cantor cardinality used here is that of the Base 
Theory; the Unaltered Domain Lemma (17.3), below, will lessen this difficulty. 
Note also that the injection constructed here is a formula in the base theory, 
not necessarily a function in the interpretation.

Corollary:

Observation 17.2 (Absolute Pairs Observation). “x = {y, z}” and “x = <y, z>” 
(unordered and Kuratowski ordered pairs) are both absolute.

This result will be frequently used without comment.
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Corollary:

Lemma 17.3 (Unaltered Domain Lemma).  (1) Any function3 whose domain3 
is unaltered, is unaltered. (2) If a function3 is unaltered, its domain3 is 
unaltered. (3) If a function3 is unaltered, its range3 is unaltered.

17.4.1.  Verification of the Ill-Foundedness Requirements for ∈3

Corollary:

Corollary 17.4 (Basic Axioms ∈3 Corollary).  ∈3 satisfies the Basic Axioms 
except Extensionality.

17.5.  �Extensionality, Symmetric Difference, and the Application of 
Part II

This section verifies (as specified in §III.17.3.1) that ∈3 satisfies the assump-
tions in Part II required for the Symmetric Difference2 Theorem (II.14.5) 
and the Interpretation of the Axiom of Extensionality for Sets (II.14.7). The 
requirements for the applicability of these results are as follows:

(I)	� The definition of INDEX3 (section III.17.1) is of the form required 
by the definition of ∈2 (II.14), with clause (d) of the definition of 
INDEX3 satisfying an additional requirement, as noted after the 
Degeneracy/Diversity Properties (II.13.1).

(II)	 The definition of ∈3 (III.17.3) is of the required form (II.14).
(III)	 INDEX3 satisfies the Degeneracy/Diversity Properties (II.13.1).
(IV)	� Addition on the natural numbers satisfies the Required Properties of + 

(II.10.1).
(V)	� j, j-rep, and rank satisfy the  j Requirements from section II.11. 

This was established in the j Requirements Lemma (III.16.15), above.
Theorem II.14.5 (Symmetric Difference2 Theorem)

∀a∀b∃z∀w. w ∈3 z ≡ (w ∈3 a  w ∈3 b).
Theorem II.14.7 (Interpretation of the Axiom of Extensionality for Sets)

∀a∀b. nonempty3(a) & ∀z. z ∈3 a ≡ z ∈3 b. ⇒ a = b.

17.6.  Verification of the New Axioms

I turn now to the verifications of the interpretation of the new axioms, the 
first of which was just proven.

17.6.1.  Unrestricted Axiom of Symmetric Difference

See above.
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17.6.2.  Unrestricted Axiom of Pairwise Union

Theorem 17.5 (Interpretation of the Unrestricted Axiom of Pairwise Union). 
∀x∀y∃z∀w. w ∈ z ≡ (w ∈ x ∨ w ∈ y)

17.6.3.  Purity Lemmata

For j ∈0 ω, define j-unaltered(x) iffdf ∀i ≤ j ∀u. u ∈i
0 x ≡ u ∈i

3 x. (Note 
that subscripts on the implicit “∈” in “≤” are unnecessary, since ordinals 
are unaltered.) Similarly to j-purity, the predicate 0-unaltered is vacuously 
true and will not be used; being 1-unaltered is equivalent to being unaltered.

Lemma 17.6 (j-Purity Chain Lemma).  If x is j-pure0, then any membership0 

chain from x of length ≤ j is also a membership3 chain, and conversely.
The result will obviously imply the following:

Corollary 17.7 (j-Unaltered j-Purity Corollary).  If x is j-pure0, it is j-un-
altered.

Lemma 17.8 (Ill-Founded Level j Lemma).  ∀j∈ω. ill-founded3(x) & x ∈j
3 

y → ill-founded3(y)

Lemma 17.9 (Well-Founded Purity Lemma). If b is well-founded3, it is 
j-pure0 for any j.

Theorem 17.10 (j-Pure j-Isomorphism Absoluteness Theorem). ∀a, b. 
j-pure0(a) ⇒ a j

0 b ≡ a j
3 b.

Corollary, by the Well-Founded Equivalence Relation Theorem (16.3), 
the j-Pure j-Isomorphism Absoluteness Theorem (17.10), and the Well-Founded 
Purity Lemma (17.9):

Remark 17.11 (Well-Founded3 Equivalence Relation3 Remark).  j
3 is a 

restricted equivalence relation on the well-founded3 sets3.
The following slightly stronger result follows from the above, but I will 

not use it; it serves only to justify the use of Frege’s name and the use of 
the word “equivalence”: If a is well-founded3, then (i) a j

3 a, (ii) a j
3 b 

≡ b j
3 a, (iii) a j

3 b & b j
3 c → a j

3 c.

Lemma 17.12 (j-Isomorphism j-Purity Lemma). ∀j∈ω ∀a ∀b.  j-pure0(a) & 
a j

0 b ⇒ j-pure0(b).
I.e., something to which something j-pure0 is j-isomorphic0, is also j-pure0.

17.6.4.  Frege Cardinals and the Singleton Function

Theorem 17.13 (Interpretation of the Restricted Axiom of Generalized Frege 
Cardinals).  ∀j ∈3 ω ∀b. wf3(b) ⇒ ∃F ∀x. x ∈3 F ≡ b j

3 x.
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Corollary:

Theorem 17.14 (Singleton Function Theorem).  The Singleton Function is 
a Set3.

This concludes the proof of the relative consistency of CUSɩ, Q.E.D.

18.  Conclusion and Future Work

The construction technique pioneered by Church and followed by Mitchell 
and myself suffices to rebut naive anti-Platonist arguments against the uni-
versal set and Frege-Russell cardinals, but in the long run it seems to be 
a dead end. Forster’s Potemkin Village criticism fairly argues that the 
technique will not suffice for serious theories, and it is hardly clear that a 
serious set theory with a universal set must have consistency strength easily 
comparable to a theory based on the cumulative hierarchy. The approach 
seems an even worse dead end in terms of manpower; all three consistency 
proofs involve large amounts of unrewarding complexity without concom-
itant aesthetic or theoretical benefits.

The paradox involving my partially-specified theory CUSɩ# seems less 
profound: merely an instance of the obvious (in retrospect) point that while 
natural equivalence relations may have equivalence classes which are sets, 
a relation which can code enough information about the membership rela-
tion to emulate the Russell Paradox cannot.

The recent work by neo-Fregeans is to some extent a divergent method 
of rescuing Frege: Positing representatives for equinumerosity classes, rather 
than defining them as sets, suffices for much of arithmetic. This presumably 
would have been considerable consolation to Frege, who seemed willing to 
abandon set theory with a universal set as a foundation for mathematics, 
once an inconsistency was found.24 But I like to think that he would have 
appreciated the benefit of honest toil in showing that something like his set 
theory could define Frege cardinals while avoiding the paradoxes.

To those considering doing further research in the field, I would advise 
against re-traversing Church’s, Mitchell’s, and my paths. Oberschelp’s theory 
may repay verification and further investigation; perhaps his theory can place 
the singleton function on a firmer footing than my efforts. Constructions 
which alter the equality relation, such as Malitz’s, and Church’s abandoned 
construction, may allow theories of greater complexity to have their relative 
consistency proved. My concluding advice echoes and extends Gödel’s and 

24  See, e.g., at the end of his career, “A New Attempt at a Foundation for Arithmetic,” 
reprinted in Posthumous Writings, pp. 278-281, in which he bases mathematics on the com-
plex numbers and geometry rather than the natural numbers and sets.
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Malitz’s: What is more important than relative consistency proofs is applying 
Platonistic intuition to develop new theories with new axioms.
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